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Abstract. The ADO method, an analytical version of the discrete-ordinates method, is used
here to solve a heat-transfer problem in a rarefied gas confined in a channel, as well as to solve
a half-space problem in order to evaluate the temperature jump at the wall. This work is an
extension of a previous work, devoted to flow problems, where the complete development of the
solution, which is analytical in terms of the spatial variable, is presented in a way, such that,
a wide class of kinetic models are considered, in an unified approach. A series of numerical
results are showed and different simulations are used in order to establish a general comparative
analysis based on this consistent set of results provided by the same methodology. In particular,
numerical results for heat-flow profile, temperature and density perturbations are obtained for
channels (walls), defined by different materials, on which different temperatures are imposed.
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1. Introduction

The heat-transfer problem in a rarefied gas, confined in a channel defined by two
parallel plates where different temperatures are imposed, has been studied inten-
sively in the literature over the years [1] – [11], as well as, the temperature-jump
problem [12]–[17]. Specially because of some modern technological applications,
as micro-systems [18] – [22], these problems have been revisited, in the search for
precise results provided by fast and reliable tools. In fact, for the micro-flows case,
when significant rarefaction effects have to be taken into account, in the transition
regime, the usual fluid dynamics approach does not seem to be appropriate. The
gas flow has to be characterized by the distribution function of the gas particles,
which can be obtained either from the solution of the Boltzmann equation (BE)
or from kinetic model equations derived from the BE – where simplified integral
collision operators are introduced [23] – [25].

In recent years, analytical solutions in terms of the spatial variable have been
∗Corresponding author
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developed, for both of the above mentioned problems [8], [26] – [30], by the ADO
method [31], which is an analytical version of the discrete-ordinates method [32].
In these listed works, different procedures were proposed to deal with kinetic equa-
tions, as the BGK [33] and the S model [34] equations. However, the ADO method
has been also applied, along with an expansion technique, to derive solutions for
the linearized Boltzmann equation [10, 35, 36]. The ADO method has been shown
to be very accurate, fast and easy to implement and, in this sense, a class of
problems has been solved by this approach. In fact, in a series of recent works,
“unified solutions” for different problems, have been developed for some kinetic
models [37]–[40].

In a very recent work [41], we were able to develop an unified approach, based
on the ADO method, which solution includes a whole class of kinetic equations,
more precisely, the BGK model [33], the S model [34], the Gross-Jackson (GJ)
model [42] and the MRS model [43]. In that work, the ADO solution was able to
represent in an unified approach the solution of a wide a class of flow problems for
all the four kinetic equations.

In this work, we extend this idea, of developing an analytical solution which is
valid for all four kinetic models, for describing heat transfer problems. In addition,
we present original results for the GJ [42] and MRS [43] models. Our final goal is
to establish the main procedures to apply the ADO method, which involves some
analytical steps, to a (as much as possible) major class of problems, such that, its
implementation will depend on just a few steps. Furthermore, based on the same
methodology, a comparative analysis for a wide class of problems in rarefied gas
dynamics, including the problems mentioned above, with results obtained from
different kinetic equations and the LBE equation, may be established. Still, we
introduce an analysis of the surface effects (accommodation coefficients), since in
our formulation we allow different accommodation coefficients in each one of the
surfaces.

In this way, we present the kinetic formulation of the problems to be solved
in Sec. 2. In Sec. 3 an appropriate reformulation is presented, in order to make
it possible the development of the discrete-ordinates approach detailed in Sec. 4.
In Sec. 5 the ADO solution is used to evaluate physical quantities of interest.
Computational aspects and numerical results are discussed in Sec. 6, and finally
some concluding comments are given in Sec. 7.

2. Kinetic equations

We start here from the non-linear Boltzmann equation written, in a general form
[44], as

v · ∇rf(r,v) = J(f ′, f) (1)

where f(r,v) is the gas atom space and velocity distribution function (f ′ and f are
associated with, respectively, before and after collisions distributions) and J is the
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collision operator [44]. We write f , for the cases weakly far from the equilibrium, as

f(r,v) = f0(v)[1 + h(r,v)] (2)

where h is a perturbation to the absolute Maxwellian f0(v)

f0(v) = n0(λ0/π)3/2e−λ0v2
, λ0 = m0/(2kT0). (3)

Here k is the Boltzmann constant, T0 is a reference temperature, m0 is the mass
and n0 is the equilibrium density of the gas. We substitute Eq. (2) into Eq. (1) and
use, along with properties of the collision operator, some physical considerations
[23], to obtain, for the dimensionless velocity variable

c = v(m0/2kT0)1/2, (4)

the one-dimensional linearized equation written in terms of the perturbation func-
tion h, as [44, 45]

cx
∂

∂τ
h(τ, c) + εh(τ, c) = επ−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c′2h(τ, c′)F (c′ : c)dc′xdc′ydc′z.

(5)
We consider here the dimensionless variable τ = x/l written in terms of a mean-free
path l, which, at this point, we leave arbitrary, and

ε = σ2
0n0π

1/2l, (6)

where σ0 is the collision diameter of the gas particles (in the rigid-sphere approx-
imation).

Still, in regard to Eq. (5), the scattering kernel is written, in this work, as

F (c′ : c) = 1 + 2(c′ · c) + (2/3)
(
c′2 − 3/2

) (
c2 − 3/2

)
+ βM(c′ : c) + $N(c′ : c),

(7a)
with

M(c′ : c) = (4/5) (c′ · c) (
c′2 − 5/2

) (
c2 − 5/2

)
(7b)

and
N(c′ : c) = 2

[
(c′ · c)2 − (1/3) c′2c2

]
, (7c)

such that, for appropriate choices of the parameters β and $, following previous
references [26, 43, 46], we can define four kinetic equations. In addition, as showed
by Barichello and Siewert [45], depending on the kinetic model, the parameter
ε will also assume different values, when defined in terms of a mean-free-path
evaluated in terms of viscosity (εp) or thermal-conductivity (εt).

In this way, to be clear, we complete the definition of Eqs. (5) and (7) as follows
[26, 43, 45, 46]

• the BGK model

β = $ = 0, εt = εp = 1, εp/εt = 1 (8)
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• the S model

β = 1/3, $ = 0, εt = 3/2, εp = 1, εp/εt = 2/3 (9)

• the Gross-Jackson (GJ) model

β = 5/9, $ = 1/3, εt = 9/4, εp = 3/2, εp/εt = 2/3 (10)

• the MRS model

β = 1− (16/15)21/2, $ = 1− (8/5)21/2, εt = (15/32)21/2,

εp = (5/16)21/2, εp/εt = 2/3.
(11)

To add a few more comments in regard to the models cited, we note that, from
Eqs. (8) to (11), it is easy to check a known difference between the BGK model
and the other ones (although all of them are constant collision frequency models),
in regard to the poor evaluation of the Prandtl number (εp/εt = 1). On the
other hand, we emphasize that according to the derivation proposed in Ref. [45]
and extended in Ref. [47], the BGK and the S models correspond to a two terms
expansion in a synthetic approximation of the exact kernel proposed by Pekeris
and Alterman [48] for rigid-spheres approximation, while the GJ and the MRS
models represent a three therms expansion, as showed in Ref. [43].

Still, in regard to Eqs. (5) and (7), based on the three components of the
velocity vector, (cx, cy, cz), with magnitude c, it is clear that

c′· c = c′xcx + c′ycy + c′zcz. (12)

In terms of the perturbation distribution h, some quantities of interest we
want to evaluate in this work, are, respectively, the perturbation of density and
temperature [44],

N(τ) = π−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c2

h(τ, c)dcxdcydcz, (13)

T (τ) =
2
3
π−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c2 (

c2 − 3/2
)
h(τ, c)dcxdcydcz (14)

and the heat flow [11]

Qx = π−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c2 (

c2 − 5/2
)
h(τ, c)cxdcxdcydcz. (15)

We note that, if we multiply Eq. (5) by cke−c2
for k = 0, 2, and we integrate over

all cx, cy, cz, we show that the heat flow is independent of the spatial variable
[44].

At this point, to complete the definition of the problems to be solved, we have
to supplement Eq. (5) with boundary conditions. In what follows we write them
explicitly, noting that for the heat-transfer problem, we consider a channel of
thickness 2a, such that, in Eq. (5), τ ∈ [−a, a]; for the half-space problem which
defines the temperature jump, we consider τ ∈ [0,∞).
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2.1 The heat-transfer problem

For this plane channel problem, we consider the walls with (dimensionless) tem-
peratures Tω1 and Tω2, respectively, on τ = −a and τ = a. Repeating the lin-
earization process introduced in Eq. (2), for the boundary conditions, we obtain
[44] the linearized boundary conditions, for the case of Maxwell law, written for
cx > 0, as

h(−a, cx, cy, cz) = α1δ1(c2 − 2) + (1− α1)h(−a,−cx, cy, cz)

+
2α1

π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−c′2h(−a,−c′x, c′y, c′z)c
′
xdc′xdc′ydc′z (16a)

and

h(a,−cx, cy, cz) = α2δ2(c2 − 2) + (1− α2)h(a, cx, cy, cz)

+
2α2

π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−c′2h(a, c′x, c′y, c′z)c
′
xdc′xdc′ydc′z, (16b)

with,

δi =
Tωi − T0

T0
, i = 1, 2, (17)

for T0 a reference temperature, which usually is assumed as (Tω1 + Tω2)/2. We
note that, to guarantee physically meaningful values for the temperatures one must
assumes δi ≥ −1, for i = 1, 2.

In writing the boundary conditions above, we consider that a fraction of the
particles α is reflected diffusely and the rest (1 − α) specularly. In each of the
walls, αi ∈ (0, 1], i = 1, 2, denotes the accommodation coefficient.

2.2 The temperature-jump problem

In this work, we consider also the problem of evaluating the temperature jump
at the wall located at τ = 0. In this case, in addition to the boundary condition
defined for cx > 0 as

h(0, cx, cy, cz) = (1− α)h(0,−cx, cy, cz)

+
2α

π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−c′2h(0,−c′x, c′y, c′z)c
′
xdc′xdc′ydc′z, (18)

to solve Eq. (5), we impose the Welander condition [12, 28] on the perturbation
of the temperature

lim
τ→∞

d
dτ

T (τ) = K, (19)

where K is constant. We still note that, in Eq. (18), again, α ∈ (0, 1] is the
accommodation coefficient.
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3. Basic formulation

Since the quantities we want to evaluate, Eqs. (13) to (15), are defined in terms of
moments of the h function, we look for simpler problems written in terms of those
moments. In this way, we first define

g1(τ, cx) = π−1

∫ ∞

−∞

∫ ∞

−∞
e−(c2

y+c2
z)h(τ, cx, cy, cz)dcydcz (20)

and

g2(τ, cx) = π−1

∫ ∞

−∞

∫ ∞

−∞
(c2

y + c2
z − 1)e−(c2

y+c2
z)h(τ, cx, cy, cz)dcydcz. (21)

Then, we multiply Eq. (5) by

φ1(cy, cz) = π−1e−(c2
y+c2

z) (22)

and we integrate over all cy and cz, such that, (introducing the new notation
cx = ξ) we obtain a new equation for g1

ξ
∂

∂τ
g1(τ, ξ) + εg1(τ, ξ)

= επ−1/2

∫ ∞

−∞
e−ξ′2 [k11(ξ′, ξ)g1(τ, ξ′) + k12(ξ′, ξ)g2(τ, ξ′)] dξ′, (23)

where

k11(ξ′, ξ) = 1 + 2ξξ′

+ (2/3)
(
ξ2 − 1/2

) (
ξ′2 − 1/2

)
+ (4/5)βξξ′

(
ξ2 − 3/2

) (
ξ′2 − 3/2

)

+ 2$
[
(2/3)ξ2ξ′2 − (1/3)

(
ξ2 + ξ′2

)
+ 1/6

]
(24)

and

k12(ξ′, ξ) = (2/3)
(
ξ2 − 1/2

)
+ (4/5)βξξ′

(
ξ2 − 3/2

)
+ 2$

[
1/6− (1/3)ξ2

]
. (25)

Following analogous procedure, we multiply Eq. (5) now by

φ2(cy, cz) = π−1(c2
y + c2

z − 1)e−(c2
y+c2

z) (26)

and we integrate over all cy and cz to obtain (for cx = ξ)

ξ
∂

∂τ
g2(τ, ξ) + εg2(τ, ξ)

= επ−1/2

∫ ∞

−∞
e−ξ′2 [k21(ξ′, ξ)g1(τ, ξ′) + k22(ξ′, ξ)g2(τ, ξ′)] dξ′, (27)

with

k21(ξ′, ξ) = (2/3)
(
ξ′2 − 1/2

)
+ (4/5)βξξ′

(
ξ′2 − 3/2

)
+ 2$

[
1/6− (1/3)ξ′2

]
(28)



Vol. 60 (2009) Unified solution of kinetic equations in the rarefied gas dynamics 657

and
k22(ξ′, ξ) = 2/3 + (4/5)βξξ′ + (1/3)$. (29)

Eqs. (23) and (27) can be rewritten in a vector form as

ξ
∂

∂τ
G(τ, ξ) + εG(τ, ξ) = ε

∫ ∞

−∞
ψ(ξ′)K(ξ′, ξ)G(τ, ξ′)dξ′, (30)

where G(τ, ξ) has components g1(τ, ξ) and g2(τ, ξ),

ψ(ξ) = π−1/2e−ξ2
(31)

and the components kij(ξ′, ξ) of the 2× 2 matrix K(ξ′, ξ) are defined in Eqs. (24),
(25), (28) and (29).

Analogously, the boundary conditions given by Eqs. (16) are rewritten, for
ξ > 0, as

G(−a, ξ) = (1− α1)G(−a,−ξ) + 2α1Γ
∫ ∞

0

G(−a,−ξ′)e−ξ′2ξ′dξ′ + α1δ1Ω(ξ)

(32a)
and

G(a,−ξ) = (1− α2)G(a, ξ) + 2α2Γ
∫ ∞

0

G(a, ξ′)e−ξ′2ξ′dξ′ + α2δ2Ω(ξ) (32b)

with

Γ =
[

1 0
0 0

]
(33)

and

Ω(ξ) =
[

ξ2 − 1
1

]
. (34)

In the temperature-jump problem, the boundary condition given by Eq. (18) is
written, in the vector form, by

G(0, ξ)− (1− α)G(0,−ξ)− 2αΓ
∫ ∞

0

G(0,−ξ′)e−ξ′2ξ′dξ′ = 0. (35)

In terms of the definitions given in Eqs. (20) and (21) the quantities of interest
are also expressed in a vector form. In this way, the solution for the G(τ, ξ)
problem is used to evaluate the density perturbation distribution

N(τ) =
∫ ∞

−∞
ψ(ξ)

[
1
0

]T

G(τ, ξ)dξ, (36)

the temperature perturbation

T (τ) =
2
3

∫ ∞

−∞
ψ(ξ)

[
ξ2 − 1/2

1

]T

G(τ, ξ)dξ (37)
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and the heat flow

Qx =
∫ ∞

−∞
ψ(ξ)ξ

[
ξ2 − 3/2

1

]T

G(τ, ξ)dξ. (38)

At this point, we also define, for the heat-transfer problem, a normalized heat
flow [10] as

q =
Qx

Qfm
, (39)

where Qfm is the dimensionless heat flow for free-molecules

Qfm =
α1α2(δ1 − δ2)

(α1 + α2 − α1α2)π1/2
. (40)

Looking back to Eqs. (38) to (40), we write the normalized heat flow in terms of
the solution of the problem given by Eq. (30), and the boundary conditions given
by Eqs. (32), as

q =
1

Qfm

∫ ∞

−∞
ψ(ξ)ξ

[
ξ2 − 3/2

1

]T

G(τ, ξ)dξ. (41)

We develop the solution for the G problem in the next section.

4. A discrete ordinates solution

Firstly, looking back to Eq. (31) and noting that ψ(ξ) is an even function, we
rewrite the integral term in Eq. (30),

ξ
∂

∂τ
G(τ, ξ) + εG(τ, ξ) = ε

∫ ∞

0

ψ(ξ′) [K(ξ′, ξ)G(τ, ξ′) + K(−ξ′, ξ)G(τ,−ξ′)] dξ′.

(42)
Then we introduce a (half-range) quadrature scheme in [0,∞), to approximate the
integral term of the above equation, such that

ξ
∂

∂τ
G(τ, ξ) + εG(τ, ξ) = ε

N∑

k=1

ωkψ(ξk) [K(ξk, ξ)G(τ, ξk) + K(−ξk, ξ)G(τ,−ξk)] .

(43)
Here, {ξk, ωk} are, respectively, the N nodes and weights of the (arbitrary) quadra-
ture scheme. If we now evaluate Eq. (43) in ξ = ±ξi, for i = 1, ..., N , we obtain
the discrete-ordinates version of Eq. (42) as

± ξi
d
dτ

G(τ,±ξi) + εG(τ,±ξi)

= ε

N∑

k=1

ωkψ(ξk) [K(ξk,±ξi)G(τ, ξk) + K(−ξk,±ξi)G(τ,−ξk)] , (44)
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to which we seek solutions of the form

G(τ, ξ) = Φ(ν, ξ)e−ετ/ν , (45)

where

Φ(ν, ξ) =
[

Φ1(ν, ξ)
Φ2(ν, ξ)

]
. (46)

If we substitute Eq. (45) into Eq. (44) we obtain, for i = 1, ..., N ,

(1∓ ξi/ν)Φ(ν,±ξi) =
N∑

k=1

ωkψ(ξk) [K(ξk,±ξi)Φ(ν, ξk) + K(−ξk,±ξi)Φ(ν,−ξk)] ,

(47)
and we can write Eqs. (47) in a matrix form as

(
I− ν−1M

)
Φ+(ν) = W(+,+)Φ+(ν) + W(−, +)Φ−(ν) (48a)

and (
I + ν−1M

)
Φ−(ν) = W(+,−)Φ+(ν) + W(−,−)Φ−(ν), (48b)

where I is the 2N × 2N identity matrix, M is the 2N × 2N matrix defined as

M = diag {ξ1, ξ2, ..., ξN , ξ1, ξ2, ..., ξN} , (49)

and Φ±(ν) are 2N × 1 vectors, such that

Φ±(ν) =
[

Φ1(ν,±ξ1) · · · Φ1(ν,±ξN ) Φ2(ν,±ξ1) · · · Φ2(ν,±ξN )
]T

.
(50)

Continuing, T denotes transpose operation, and W(±,±) are 2N × 2N matrices,
with N ×N submatrices components

W(±,±) =
[

W11(±,±) W12(±,±)
W21(±,±) W22(±,±)

]
, (51)

where the N ×N submatrices are defined, after noting Eqs. (24), (25), (28), (29)
and (31), as

[Wmn(±,±)]i,j = ωjψ(ξj)kmn(±ξj ,±ξi) (52)

for m, n = 1, 2 and i, j = 1, . . . , N .
From Eqs. (24), (25), (28) and (29) we find that, the kernel in Eq. (30) is such

that
K(ξ′, ξ) = K(−ξ′,−ξ) (53a)

and
K(−ξ′, ξ) = K(ξ′,−ξ). (53b)

In addition, from Eqs. (24), (25), (28), (29) , it is also possible to see, in Eq. (51)
that

W(+, +) = W(−,−) (54a)

and
W(+,−) = W(−, +). (54b)
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In this way, from now on, we define the matrices

W+ = W(+,+) = W(−,−) (55a)

and
W− = W(+,−) = W(−,+) (55b)

and we rewrite Eqs. (48) as
(
I− ν−1M

)
Φ+(ν) = W+Φ+(ν) + W−Φ−(ν) (56a)

and (
I + ν−1M

)
Φ−(ν) = W−Φ+(ν) + W+Φ−(ν). (56b)

Now, we first let
U = Φ+(ν) + Φ−(ν), (57)

where Φ+(ν) and Φ−(ν) are 2N × 1 vectors defined in Eq. (50), and we then add
and subtract Eqs. (56) such that we are able to define an eigenvalue problem

AX = λX. (58)

Here, A is the 2N × 2N matrix

A = (W+ −W− − I)M−1 (W+ + W− − I)M−1, (59)

and, noting Eq. (49), X is the 2N × 1 vector

X = MU. (60)

Here, the (real) eigenvalues are related to the separation constants as

λ = ν−2. (61)

In fact, we use the 2N eigenvalues (separation constants νj) and the 2N eigen-
vectors X(νj) given by Eq. (58) to express the elementary solutions written in
Eqs. (45) and (50) in the form

Φ+(νj) =
1
2
M−1

[
I− νj(W+ + W− − I)M−1

]
X(νj) (62)

and
Φ−(νj) =

1
2
M−1

[
I + νj(W+ + W− − I)M−1

]
X(νj). (63)

In this way, we are ready to write the general solution of the discrete-ordinates
problem given by Eq. (44) as

G(τ,±ξi) =
2N∑

j=1

[
AjΦ(νj ,±ξi)e−ε(a+τ)/νj + BjΦ(νj ,∓ξi)e−ε(a−τ)/νj

]
, (64)

where the vectors Φ(νj ,±ξi), are given in Eq. (46).
At this point it is important to emphasize that, except for the defining expres-

sions of the components of the kernel – Eqs. (24), (25), (28) and (29) – which are
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entries of the matrix written in Eqs. (51) and (52), the eigenvalue problem we find
here, in Eq. (58) is exactly the same one we obtained when the ADO solution was
developed for flow problems [41]. The defining expressions given in Eqs. (62) and
(63), are also the same. We see this is a good aspect of the ADO solution, when
one thinks of implementing the solution for obtaining numerical results.

Now, since these are conservative problems, we have to deal with the issue of
having eigenvalues that approach zero (separation constants going to infinity) as
N tends to infinity. For these two specific problems we are solving in this work,
we find two eigenvalues with that behavior. Because of that, we disregard the
associated elementary solutions and we add four exact solutions of the problem
given by Eq. (30), to the general solution given in Eq. (64), which we rewrite in
the form

G(τ,±ξi) = G∗(τ,±ξi)

+
2N−2∑

j=1

[
AjΦ(νj ,±ξi)e−ε(a+τ)/νj + BjΦ(νj ,∓ξi)e−ε(a−τ)/νj

]
(65)

where,
G∗(τ, ξ) = A∗1G1 + A∗2G2(ξ) + B∗

1G3(ξ) + B∗
2G4(τ, ξ), (66)

and, for the temperature-jump problem we set a = 0 in Eq. (65). Here, the
introduced exact solutions are

G1 =
[

1
0

]
, G2(ξ) =

[
ξ2 − 1/2

1

]
, G3(ξ) =

[
ξ
0

]
(67a,b,c)

and
G4(τ, ξ) = τH(ξ) + F(ξ), (67d)

with

H(ξ) =
[

ξ2 − 3/2
1

]
and F(ξ) =

ξ

ε(β − 1)

[
ξ2 − 3/2

1

]
. (67e,f)

The next step is to determine the arbitrary constants present in the solution,
Eq. (65), which will be done in the next section, by using the boundary conditions.
Before doing that, however, we want to emphasize two aspects. Firstly, regarding
to the eigenvalue problem derived here, expressed in Eq. (58), which includes the
S model case: the derivation here presented, for the ADO method, is simpler than
the one described for the temperature-jump problem, for the S model in Ref. [30],
which related the one gas and the binary gas mixture cases.

Secondly, a special remark has to be done with respect to derivation of the
exact solutions given in Eqs. (67), which are, for instance, different of the flow
problems case [41]. In earlier works where the ADO method was used for solving
(scalar) problems in this field of rarefied gas dynamics [49, 37] the derivation of
the needed exact solutions was based on the procedure already proposed by Case
and Zweifel [50] for conservative problems in neutron transport. The procedure
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had to be extended for the components of vector problems [8, 27, 28]. In fact,
the derivation of the exact solutions is an issue to be investigated depending on
the problem. Here, the exact solutions introduced are variations of previous works
[8, 27, 51, 30].

In particular, to derive the solution given in Eq. (67d), we follow a procedure
proposed by Siewert [51] where, once we know H(ξ), we substitute Eq. (67d) into
Eq. (30) to obtain

F(ξ) = −(ξ/ε)H(ξ) +
∫ ∞

−∞
ψ(ξ′)K(ξ′, ξ)F(ξ′)dξ′. (68)

Following Refs. [51, 30], we write

F(ξ) =
3∑

α=0

Pα(ξ)Fα, (69)

where

P0(ξ) = 1, P1(ξ) = ξ, P2(ξ) = ξ2 − 1/2 and P3(ξ) = ξ
(
ξ2 − 3/2

)
.

(70a,b,c,d)
We then substitute Eq. (69) into Eq. (68), we multiply the resulting equation by
ψ(ξ)Pk(ξ), for k = 0, 1, 2, 3, and we integrate over all ξ, to obtain a 8 × 8 linear
system which, in this case, can be solved analytically (differently of the mixture
case) to find the components of the vectors Fα.

Having explained the two points above, as we mention before our next step is
to obtain the 4N arbitrary constants A∗1, A∗2, B∗

1 , B∗
2 and Aj , Bj , j = 1, ..., 2N −2

for each one of the two problems we are interested in this work, in order to define
physical quantities of interest.

5. Physical quantities of interest

5.1 The heat-transfer problem

We consider the discrete-ordinates version of the boundary conditions given in
Eqs. (32)

G(−a, ξi) = (1− α1)G(−a,−ξi) + 2α1Γ
N∑

k=1

ωkξkG(−a,−ξk)e−ξ2
k + α1δ1Ω(ξi)

(71a)
and

G(a,−ξi) = (1− α2)G(a, ξi) + 2α2Γ
N∑

k=1

ωkξkG(a, ξk)e−ξ2
k + α2δ2Ω(ξi), (71b)

where we will apply the general solution, Eq. (65). However, we note that, since
the solution G1, Eq. (67a), satisfies the homogeneous boundary condition, the
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coefficient A∗1 can not be determined. We then solve, using the least-squares
approach, a 4N equations and 4N − 1 unknowns linear system defined (noting
Eqs. (67)) by the equations

α1A
∗
2Ω(ξi) +

2N−2∑

j=1

Aj {Φ(νj , ξi)− (1− α1)Φ(νj ,−ξi)− 2α1G1S−(νj)}

+ B∗
1 [(2− α1)G3(ξi) + (α1/2)π1/2G1] + B∗

2 [(2− α1)F(ξi)− α1aΩ(ξi)]

+
2N−2∑

j=1

Bj {Φ(νj ,−ξi)− (1− α1)Φ(νj , ξi)− 2α1G1S+(νj)} e−2aε/νj = α1δ1Ω(ξi)

(72a)

and

α2A
∗
2Ω(ξi) +

2N−2∑

j=1

Aj {Φ(νj ,−ξi)− (1− α2)Φ(νj , ξi)− 2α2G1S+(νj)} e−2aε/νj

−B∗
1 [(2− α2)G3(ξi) + (α2/2)π1/2G1]−B∗

2 [(2− α2)F(ξi)− α2aΩ(ξi)]

+
2N−2∑

j=1

Bj {Φ(νj , ξi)− (1− α2)Φ(νj ,−ξi)− 2α2G1S−(νj)} = α2δ2Ω(ξi), (72b)

for i = 1, ..., N . Here Φ(νj ,±ξi) are defined in Eq. (46),

S−(νj) =
N∑

k=1

ωkξke−ξ2
k

[
1
0

]T

Φ(νj ,−ξk) (73a)

and

S+(νj) =
N∑

k=1

ωkξke−ξ2
k

[
1
0

]T

Φ(νj , ξk). (73b)

The discrete-ordinates solution of Eq. (30), with boundary conditions given by
Eqs. (32), is now completely established, except by the coefficient A∗1. We are able
to write, however, the physical quantities of interest for the heat-transfer problem.
In this way, we apply Eq. (65) into Eqs. (36) and (37) to obtain, respectively, the
density perturbation and the temperature perturbation

N(τ) = A∗1 −B∗
2τ +

2N−2∑

j=1

[
Aje−ε(a+τ)/νj + Bje−ε(a−τ)/νj

]
V(νj) (74)

and

T (τ) = A∗2 + B∗
2τ +

2
3

2N−2∑

j=1

[
Aje−ε(a+τ)/νj + Bje−ε(a−τ)/νj

]
Y(νj). (75)
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Here

V(νj) =
N∑

k=1

ωkψ(ξk)
[

1
0

]T

[Φ(νj , ξk) + Φ(νj ,−ξk)] (76)

and

Y(νj) =
N∑

k=1

ωkψ(ξk)
[

ξ2
k − 1/2

1

]T

[Φ(νj , ξk) + Φ(νj ,−ξk)] . (77)

We note that, the density perturbation depends on the coefficient A∗1, and
so, it is not uniquely defined. Because of that, we follow Ref. [8] and use the
normalization condition ∫ a

−a

N(τ)dτ = 0, (78)

such that, if we substitute Eq. (74) into Eq. (78) we get

A∗1 =
1

2aε

2N−2∑

j=1

νj(e−2aε/νj − 1)(Aj + Bj)V(νj). (79)

Now, looking back to Eq. (38) we can also define the heat flow

Qx =
5

4ε(β − 1)
B∗

2 +
2N−2∑

j=1

[
Aje−ε(a+τ)/νj −Bje−ε(a−τ)/νj

]
Z(νj), (80)

where

Z(νj) =
N∑

k=1

ωkξkψ(ξk)
[

ξ2
k − 3/2

1

]T

[Φ(νj , ξk)−Φ(νj ,−ξk)] . (81)

It is noted, however, that the summation in Eq. (80) goes to zero as N increases,
and so, it is usual to restrict the evaluation of the normalized heat flow, ex-
pressed in Eq. (41), to

q =
5

4ε(β − 1)Qfm
B∗

2 , (82)

although it was not analytically proved. Here Qfm is given by Eq. (40).

5.2 The temperature-jump problem

For this half-space problem, in addition to the discrete-ordinates version of the
boundary conditions given by Eq. (35)

G(0, ξi)− (1− α)G(0,−ξi)− 2αΓ
N∑

k=1

ωkξkG(0,−ξk)e−ξ2
k = 0, (83)
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we consider the Welander condition as written in Eq. (19). In this way, we
impose the solution does not increase exponentially at infinity, such that, for
j = 1, ..., 2N − 2 we take Bj = 0. In other words, we write the general solu-
tion, Eq. (65), for a = 0, as

G(τ,±ξi) = G∗(τ,±ξi) +
2N−2∑

j=1

AjΦ(νj ,±ξi)e−ετ/νj . (84)

Continuing, we see that, if we apply Eq. (84) into Eq. (37) and use Eq. (19) we
get

B∗
2 = K. (85)

We then substitute Eq. (84) into Eq. (83) to obtain the 2N × 2N linear system
for the other arbitrary constants in the following form

2N−2∑

j=1

Aj {Φ(νj , ξi)− (1− α)Φ(νj ,−ξi)− 2αG1S(νj)}+ αA∗2Ω(ξi)

+ B∗
1 [(2− α)G3(ξi) + (α/2)π1/2G1] = (α− 2)KF(ξi), (86)

for i = 1, ..., N . Here again, Φ(νj ,±ξi) are defined in Eq. (46) and

S(νj) =
N∑

k=1

ωkξke−ξ2
k

[
1
0

]T

Φ(νj ,−ξk). (87)

Once more, since G1 satisfies the boundary condition, Eq. (35), we are not able
to evaluate the coefficient A∗1. Now, if we use Eq. (84) into Eqs. (36) and (37),
and note Eqs. (76) and (77), we see that the density perturbation

N(τ) = A∗1 −Kτ +
2N−2∑

j=1

Aje−ετ/νjV(νj) (88)

depends on that coefficient, and, on the other hand, it does not affect the tem-
perature perturbation

T (τ) = A∗2 +Kτ +
2
3

2N−2∑

j=1

Aje−ετ/νjY(νj). (89)

Following previous work [28] we impose the normalization condition

lim
τ→∞

[N(τ) + T (τ)] = 0 (90)

to find that A∗1 = −A∗2 and to rewrite the density perturbation in the final form

N(τ) = −A∗2 −Kτ +
2N−2∑

j=1

Aje−ετ/νjV(νj). (91)
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Now, if we consider the linear component in Eq. (89)

Tasy(τ) = A∗2 +Kτ, (92)

we can use it to define the temperature-jump coefficient ζ [12], which re-
lates the temperature perturbation at the wall with the normal gradient of the
temperature, as

Tasy(0) = ζ
d
dτ

Tasy(τ)|τ=0 (93)

such that
ζ = A∗2/K. (94)

6. Computational procedures and numerical results

To implement the ADO solution, the first step is to define the quadrature scheme.
As we have explained in previous works, in general, we define a half-range quadra-
ture scheme in [0,∞). We use the transformation

u(ξ) = e−ξ, (95)

to map the interval [0,∞) into [0, 1], where we are then able to use the Gauss
Legendre usual scheme with a new change of variable:

v(u) = 2u− 1. (96)

The numerical results showed here, were obtained by two independent FOR-
TRAN programs where, once we have the N quadrature points ξk and the weights
ωk defined, the main steps to follow are simple:

• to solve an eigenvalue problem, Eq. (58), to obtain the separation constants
νj and the elementary solutions Φ±(νj);

• to solve a linear system, given by Eqs. (72) for the heat-transfer problem and
Eq. (86) for the temperature-jump problem.

• to evaluate the temperature and density perturbations by Eqs. (74) and (75)
– or Eqs. (89) and (91) – as well as, the normalized heat flow (Eq. (82)) and the
jump coefficient (Eq. (94)).

In this sense, the solution is concise, easy to implement and fast (less than one
second in a 2.66 GHz Pentium IV machine). We obtain the results presented in
this work using N = 50 quadrature points, since we noted that all the digits listed
here are preserved (plus or minus one in the last digit) when we increase the value
of N (up to 100).

Some parameters are needed to be defined in order to get the numerical results.
In particular, we use the constant K = 1, in Eq. (19). In the case of ε, as mentioned
previously, different values are assumed, according the specific kinetic model [45]
and, depending on the definition of the mean-free-path in terms of viscosity (εp)
or thermal conductivity (εt). These values are listed in Eqs. (8) to (11).
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To have some confidence in our programs and also in order to be able to perform
a general comparative analysis, initially we defined and solved some cases to which
results were available in the literature. In fact, we note that results for the BGK
[8, 27] and S model [30] previously known, and used to check our results, can be
obtained in our formulation for an appropriate choice of the parameters in Eq. (7a).
We found good agreement with results listed (with one less digit than we list in
our tables) in those works. In this way, for the heat-transfer problem, we present
in Tables 1 to 6, a complete comparison between results obtained in this work for
all the models, and the linearized Boltzmann equation (LBE) [10]. In Ref. [10]
it was used ε = εt. Results for density perturbation, temperature perturbation
and heat flow are showed, for different values of channel width, accommodation
coefficients and temperatures imposed at the wall. We note agreement, between
the kinetic models and the LBE, in 1 to 3 digits, in general. Many simulations were
performed and a more complete and detailed analysis is presented in Refs. [26] and
[52]. Differently of the case of flow problems [41], it seems difficult to say, for this
problem, which kinetic model produces better results, when compared with LBE
results. But it seems that more agreement is obtained mostly by the S model
formulation.

For the temperature-jump problem, we first check our program comparing re-
sults for the BGK and S model with results available in previous works [27, 30].
In this case, in Tables 20 to 22, the results obtained in this work, were compared
with the CES model [29] and the LBE equation [35]. Same general aspects noted
in regard to the previous problem are observed here, and again we emphasize that
in Refs. [29] and [35], it was used ε = εt.

In addition to that, we generate for both problems some new results, in order
to establish a better analysis in regard to the possible influence of certain parame-
ters (as the accommodation coefficients, the temperature at the walls, the channel
thickness) on the quantities of interest. In Tables 7 to 19 these results are showed
for the heat-transfer problem. In Tables 23 to 26, for the temperature-jump prob-
lem.

Along with the results presented in the tables, we generate some figures, in
order to help the analysis (under a different point of view) of the influence of some
parameters in the behavior of the quantities of interest. In this way, temperature
perturbation and heat flow, as well as, the temperature-jump coefficient are ana-
lyzed in Figs. 1 to 6. In particular, ε = εt was used to generate the S model results
used to generate the figures.

For the heat-transfer problem, we can note that (see Tables 11 to 14) variation
in the accommodation coefficients seems to produce more significant effects on the
temperature distribution than the variation on the imposed temperature at the
walls, as possible expected surface effects in micro scale. It can be noted, from the
analysis of the slopes of the curves, in Figs. 1 and 2. In fact, we can see in Fig. 4,
nonlinear dependence on accommodation coefficients for the heat flow.

For the temperature-jump problem we can also note, from the showed results,
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Figure 1. Heat transfer problem: temperature perturbation T (τ), 2a = 1.0, α1 = 0.3, α2 = 0.6,
δ1=1.0

Figure 2. Heat transfer problem: temperature perturbation T (τ), 2a = 1.0, δ1 = 1.0, δ2 = 6.0,
α1 = 0.3
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Figure 3. Heat transfer problem: heat flow Qx, 2a = 1.0, α1 = 0.9, α2 = 0.3

Figure 4. Heat transfer problem: heat flow Qx, 2a = 1.0, δ1 = 8.0, δ2 = 1.0
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Figure 5. Heat transfer problem: heat flow Qx, α1 = 0.2, α2 = 0.5, δ2 = 1.0

Figure 6. Temperature jump problem: the temperature-jump coefficient ζ
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the effect of the accommodation coefficient on the order of magnitude for the
jump, which increases significantly (see Fig. 6) in the range far from the perfect
accommodation.

7. Concluding comments

In this work, the solution of the heat-transfer problem for a rarefied gas confined
in a plane channel was analyzed, as well as the evaluation of the temperature jump
at the wall. An analytical discrete-ordinates solution was developed, by the ADO
method, for a class of four kinetic equations in a general procedure. The results
showed a good agreement between the kinetic model results and results available
for the LBE equation. In addition, through the accommodation coefficients, it
was analyzed the special influence of the surface effects on the physical quantities
of interest. In subsequent paper, we show that, evaporation effects can be also
taking into account following the same basic procedure, which emphasizes the
general aspect of this analytical approach.
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Table 5. The heat-transfer problem: normalized heat flow q, ε = εt, 2a = 5.0, δ1 = 1.0,
δ2 = −1.0

α1 α2 BGK S GJ MRS LBE [10]
0.7 0.1 8.042633(–1) 8.035306(–1) 8.030294(–1) 8.058217(–1) 8.08046(–1)
0.7 0.3 5.990574(–1) 5.980539(–1) 5.973904(–1) 6.011983(–1) 6.04641(–1)
0.7 0.5 4.929175(–1) 4.919910(–1) 4.913948(–1) 4.949030(–1) 4.98494(–1)
0.7 0.7 4.282278(–1) 4.274347(–1) 4.269340(–1) 4.299409(–1) 4.33435(–1)
0.7 0.9 3.847899(–1) 3.841333(–1) 3.837222(–1) 3.862285(–1) 3.89560(–1)
0.7 1.0 3.680461(–1) 3.674549(–1) 3.670844(–1) 3.693550(–1) 3.72597(–1)
0.9 0.1 8.004407(–1) 7.997988(–1) 7.993510(–1) 8.018463(–1) 8.04152(–1)
0.9 0.3 5.794079(–1) 5.785310(–1) 5.779447(–1) 5.813255(–1) 5.84853(–1)
0.9 0.5 4.597632(–1) 4.589723(–1) 4.584625(–1) 4.614917(–1) 4.65054(–1)
0.9 0.7 3.847899(–1) 3.841333(–1) 3.837222(–1) 3.862285(–1) 3.89560(–1)
0.9 0.9 3.334255(–1) 3.328995(–1) 3.325767(–1) 3.345867(–1) 3.37630(–1)
0.9 1.0 3.133714(–1) 3.129056(–1) 3.126213(–1) 3.144064(–1) 3.17305(–1)
1.0 1.0 2.919178(–1) 2.915091(–1) 2.912618(–1) 2.928302(–1) 2.95558(–1)

Table 6. The heat-transfer problem: normalized heat flow q, ε = εt, 2a = 0.2, δ1 = 1.0,
δ2 = −1.0

α1 α2 BGK S GJ MRS LBE [10]
0.7 0.1 9.866428(–1) 9.848277(–1) 9.825229(–1) 9.880406(–1) 9.85339(–1)
0.7 0.3 9.642502(–1) 9.597169(–1) 9.540464(–1) 9.677859(–1) 9.61123(–1)
0.7 0.5 9.462739(–1) 9.398866(–1) 9.320062(–1) 9.513156(–1) 9.42048(–1)
0.7 0.7 9.315774(–1) 9.239249(–1) 9.146055(–1) 9.376882(–1) 9.26730(–1)
0.7 0.9 9.193798(–1) 9.108756(–1) 9.006500(–1) 9.262484(–1) 9.14234(–1)
0.7 1.0 9.140383(–1) 9.052258(–1) 8.946962(–1) 9.211968(–1) 9.08832(–1)
0.9 0.1 9.862970(–1) 9.844793(–1) 9.821893(–1) 9.877064(–1) 9.85019(–1)
0.9 0.3 9.613244(–1) 9.565784(–1) 9.506960(–1) 9.650564(–1) 9.58139(–1)
0.9 0.5 9.391618(–1) 9.322438(–1) 9.238008(–1) 9.446757(–1) 9.34745(–1)
0.9 0.7 9.193798(–1) 9.108756(–1) 9.006500(–1) 9.262484(–1) 9.14234(–1)
0.9 0.9 9.016318(–1) 8.920002(–1) 8.805875(–1) 9.095146(–1) 8.96135(–1)
0.9 1.0 8.934300(–1) 8.833759(–1) 8.715497(–1) 9.017137(–1) 8.87870(–1)
1.0 1.0 8.836675(–1) 8.731437(–1) 8.608625(–1) 8.924007(–1) 8.78053(–1)
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Table 7. The heat-transfer problem: density perturbation N(τ), Gross-Jackson model, ε = εt,
2a = 1.0, α1 = 0.9, α2 = 0.1

δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0
τ δ2 = 1.0 δ2 = 3.0 δ2 = 5.0 δ2 = 7.0 δ2 = 9.0

–0.5 –2.608418(–1) –1.863155(–1) –1.117893(–1) –3.726311(–2) 3.726311(–2)
–0.4 –1.829596(–1) –1.306854(–1) –7.841127(–2) –2.613709(–2) 2.613709(–2)
–0.3 –1.332247(–1) –9.516050(–2) –5.709630(–2) –1.903210(–2) 1.903210(–2)
–0.2 –8.930586(–2) –6.378990(–2) –3.827394(–2) –1.275798(–2) 1.275798(–2)
–0.1 –4.754407(–2) –3.396005(–2) –2.037603(–2) –6.792010(–3) 6.792010(–3)
0.0 –6.179842(–3) –4.414172(–3) –2.648503(–3) –8.828345(–4) 8.828345(–4)
0.1 3.615202(–2) 2.582287(–2) 1.549372(–2) 5.164575(–3) –5.164575(–3)
0.2 8.106389(–2) 5.790278(–2) 3.474167(–2) 1.158055(–2) –1.158055(–2)
0.3 1.312717(–1) 9.376550(–2) 5.625930(–2) 1.875310(–2) –1.875310(–2)
0.4 1.933337(–1) 1.380955(–1) 8.285734(–2) 2.761911(–2) –2.761911(–2)
0.5 3.110808(–1) 2.222005(–1) 1.333203(–1) 4.444011(–2) –4.444011(–2)

Table 8. The heat-transfer problem: density perturbation N(τ), MRS model, ε = εt, 2a = 1.0,
α1 = 0.9, α2 = 0.1

δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0
τ δ2 = 1.0 δ2 = 3.0 δ2 = 5.0 δ2 = 7.0 δ2 = 9.0

–0.5 –2.391373(–1) –1.708124(–1) –1.024874(–1) –3.416248(–2) 3.416248(–2)
–0.4 –1.815600(–1) –1.296857(–1) –7.781145(–2) –2.593715(–2) 2.593715(–2)
–0.3 –1.346948(–1) –9.621061(–2) –5.772637(–2) –1.924212(–2) 1.924212(–2)
–0.2 –9.036828(–2) –6.454877(–2) –3.872926(–2) –1.290975(–2) 1.290975(–2)
–0.1 –4.697245(–2) –3.355175(–2) –2.013105(–2) –6.710350(–3) 6.710350(–3)
0.0 –3.641493(–3) –2.601067(–3) –1.560640(–3) –5.202134(–4) 5.202134(–4)
0.1 4.033846(–2) 2.881319(–2) 1.728791(–2) 5.762638(–3) –5.762638(–3)
0.2 8.579828(–2) 6.128449(–2) 3.677069(–2) 1.225689(–2) –1.225689(–2)
0.3 1.340435(–1) 9.574539(–2) 5.744723(–2) 1.914907(–2) –1.914907(–2)
0.4 1.879338(–1) 1.342384(–1) 8.054309(–2) 2.684769(–2) –2.684769(–2)
0.5 2.634701(–1) 1.881929(–1) 1.129157(–1) 3.763859(–2) –3.763859(–2)

Table 9. The heat-transfer problem: density perturbation N(τ), Gross-Jackson model, ε = εt,
2a = 1.0, δ1 = 9.0, δ2 = 1.0

α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5
τ α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.7 α2 = 1.0

–0.5 –3.059617(–1) –7.049584(–1) –9.525032(–1) –1.120026 –1.288053
–0.4 –2.038719(–1) –4.673100(–1) –6.281692(–1) –7.348936(–1) –8.387667(–1)
–0.3 –1.449270(–1) –3.304296(–1) –4.418011(–1) –5.140980(–1) –5.820501(–1)
–0.2 –9.494907(–2) –2.146986(–1) –2.846630(–1) –3.284339(–1) –3.670298(–1)
–0.1 –4.857717(–2) –1.076907(–1) –1.398655(–1) –1.579263(–1) –1.705392(–1)
0.0 –3.389050(–3) –3.873925(–3) 0.000000 6.059666(–3) 1.722072(–2)
0.1 4.232772(–2) 1.005487(–1) 1.398655(–1) 1.690931(–1) 2.022638(–1)
0.2 9.042127(–2) 2.095291(–1) 2.846630(–1) 3.365017(–1) 3.899190(–1)
0.3 1.438400(–1) 3.291989(–1) 4.418011(–1) 5.159868(–1) 5.873428(–1)
0.4 2.095463(–1) 4.738062(–1) 6.281692(–1) 7.247019(–1) 8.097408(–1)
0.5 3.337644(–1) 7.365653(–1) 9.525032(–1) 1.071114 1.150140
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Table 10. The heat-transfer problem: density perturbation N(τ), MRS model, ε = εt, 2a = 1.0,
δ1 = 9.0, δ2 = 1.0

α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5
τ α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.7 α2 = 1.0

–0.5 –2.683578(–1) –6.248364(–1) –8.484871(–1) –1.000019 –1.151167
–0.4 –1.986421(–1) –4.612411(–1) –6.246805(–1) –7.343725(–1) –8.423028(–1)
–0.3 –1.454753(–1) –3.366964(–1) –4.545762(–1) –5.327792(–1) –6.084172(–1)
–0.2 –9.635783(–2) –2.218816(–1) –2.980764(–1) –3.476625(–1) –3.942233(–1)
–0.1 –4.894297(–2) –1.113299(–1) –1.477543(–1) –1.702661(–1) –1.896364(–1)
0.0 –2.051300(–3) –2.339855(–3) 0.000000 3.598036(–3) 1.005335(–2)
0.1 4.520680(–2) 1.070683(–1) 1.477543(–1) 1.768191(–1) 2.079455(–1)
0.2 9.378624(–2) 2.189485(–1) 2.980764(–1) 3.521715(–1) 4.068182(–1)
0.3 1.451122(–1) 3.362830(–1) 4.545762(–1) 5.334116(–1) 6.101757(–1)
0.4 2.022318(–1) 4.653371(–1) 6.246805(–1) 7.280695(–1) 8.246815(–1)
0.5 2.820535(–1) 6.404404(–1) 8.484871(–1) 9.760875(–1) 1.084443

Table 11. The heat-transfer problem: temperature perturbation T (τ), Gross-Jackson model,
ε = εt, 2a = 1.0, α1 = 0.9, α2 = 0.1

δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0
τ δ2 = 1.0 δ2 = 3.0 δ2 = 5.0 δ2 = 7.0 δ2 = 9.0

–0.5 7.676816 7.769154 7.861492 7.953830 8.046169
–0.4 7.588964 7.706402 7.823841 7.941280 8.058719
–0.3 7.531664 7.665474 7.799284 7.933094 8.066905
–0.2 7.481060 7.629329 7.777597 7.925865 8.074134
–0.1 7.432940 7.594957 7.756974 7.918991 8.081008
0.0 7.385170 7.560836 7.736501 7.912167 8.087832
0.1 7.336044 7.525746 7.715447 7.905149 8.094850
0.2 7.283561 7.488258 7.692955 7.897651 8.102348
0.3 7.224457 7.446040 7.667624 7.889208 8.110791
0.4 7.151186 7.393704 7.636222 7.878740 8.121259
0.5 7.016785 7.297703 7.578622 7.859540 8.140459

Table 12. The heat-transfer problem: temperature perturbation T (τ), MRS model, ε = εt,
2a = 1.0, α1 = 0.9, α2 = 0.1

δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0
τ δ2 = 1.0 δ2 = 3.0 δ2 = 5.0 δ2 = 7.0 δ2 = 9.0

–0.5 7.650653 7.750466 7.850280 7.950093 8.049906
–0.4 7.588271 7.705907 7.823544 7.941181 8.058818
–0.3 7.537947 7.669962 7.801977 7.933992 8.066007
–0.2 7.490621 7.636158 7.781694 7.927231 8.072768
–0.1 7.444425 7.603161 7.761896 7.920632 8.079367
0.0 7.398334 7.570238 7.742143 7.914047 8.085952
0.1 7.351502 7.536787 7.722072 7.907357 8.092642
0.2 7.302956 7.502111 7.701267 7.900422 8.099577
0.3 7.251200 7.465142 7.679085 7.893028 8.106971
0.4 7.193044 7.423603 7.654162 7.884720 8.115279
0.5 7.111541 7.365386 7.619232 7.873077 8.126922
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Table 13. The heat-transfer problem: temperature perturbation T (τ), Gross-Jackson model,
ε = εt, 2a = 1.0, δ1 = 9.0, δ2 = 1.0

α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5
τ α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.7 α2 = 1.0

–0.5 8.085923 6.871613 6.094378 5.548556 4.971458
–0.4 7.970051 6.602303 5.727363 5.113321 4.464645
–0.3 7.901202 6.442828 5.510740 4.857237 4.167778
–0.2 7.842827 6.308135 5.328462 4.642532 3.920175
–0.1 7.788759 6.183960 5.161178 4.446359 3.695399
0.0 7.736073 6.063644 5.000000 4.258388 3.481767
0.1 7.682635 5.942475 4.838821 4.071739 3.271873
0.2 7.626149 5.815551 4.671537 3.879825 3.059121
0.3 7.563062 5.675504 4.489259 3.673408 2.834911
0.4 7.485353 5.505971 4.272636 3.432867 2.581857
0.5 7.343476 5.207272 3.905621 3.042625 2.200993

Table 14. The heat-transfer problem: temperature perturbation T (τ), MRS model, ε = εt,
2a = 1.0, δ1 = 9.0, δ2 = 1.0

α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5
τ α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.7 α2 = 1.0

–0.5 8.041472 6.746370 5.911396 5.327872 4.720662
–0.4 7.965941 6.569041 5.668697 5.039693 4.385443
–0.3 7.908620 6.434761 5.485304 4.822373 4.133378
–0.2 7.855976 6.311734 5.317669 4.624171 3.904224
–0.1 7.805337 6.193727 5.157310 4.435070 3.686425
0.0 7.755331 6.077584 5.000000 4.250155 3.474439
0.1 7.704913 5.960967 4.842689 4.065982 3.264551
0.2 7.652968 5.841457 4.682330 3.879231 3.053404
0.3 7.597863 5.715601 4.514695 3.685455 2.836786
0.4 7.536202 5.576328 4.331302 3.475945 2.606840
0.5 7.450079 5.386832 4.088603 3.206744 2.325234

Table 15. The heat-transfer problem: heat flow Qx, ε = εt, 2a = 5.0, δ1 = 8.0 and δ2 = 1.0

α1 α2 BGK S GJ MRS
0.7 0.1 3.045766(–1) 3.042991(–1) 3.041093(–1) 3.051667(–1)
0.7 0.3 6.289031(–1) 6.278496(–1) 6.271531(–1) 6.311507(–1)
0.7 0.5 8.015793(–1) 8.000725(–1) 7.991031(–1) 8.048080(–1)
0.7 0.7 9.106524(–1) 9.089658(–1) 9.079011(–1) 9.142955(–1)
0.7 0.9 9.869966(–1) 9.853123(–1) 9.842579(–1) 9.906865(–1)
0.7 1.0 1.017474 1.015839 1.014815 1.021092
0.9 0.1 3.126463(–1) 3.123956(–1) 3.122207(–1) 3.131954(–1)
0.9 0.3 6.643369(–1) 6.633313(–1) 6.626591(–1) 6.665355(–1)
0.9 0.5 8.600947(–1) 8.586151(–1) 8.576613(–1) 8.633282(–1)
0.9 0.7 9.869966(–1) 9.853123(–1) 9.842579(–1) 9.906865(–1)
0.9 0.9 1.077387 1.075687 1.074644 1.081139
0.9 1.0 1.113845 1.112190 1.111179 1.117524
1.0 1.0 1.152879 1.151264 1.150288 1.156482
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Table 16. The heat-transfer problem: heat flow Qx, ε = εt, 2a = 2.0, δ1 = 8.0 and δ2 = 1.0

α1 α2 BGK S GJ MRS
0.7 0.1 3.418737(–1) 3.409296(–1) 3.401526(–1) 3.429983(–1)
0.7 0.3 8.107691(–1) 8.059813(–1) 8.021232(–1) 8.165441(–1)
0.7 0.5 1.120644 1.112450 1.105963 1.130642
0.7 0.7 1.343425 1.332971 1.324829 1.356348
0.7 0.9 1.513230 1.501594 1.492674 1.527854
0.7 1.0 1.584328 1.572446 1.563413 1.599414
0.9 0.1 3.518597(–1) 3.509624(–1) 3.502341(–1) 3.529537(–1)
0.9 0.3 8.694020(–1) 8.644953(–1) 8.605981(–1) 8.754478(–1)
0.9 0.5 1.236106 1.227286 1.220409 1.247075
0.9 0.7 1.513230 1.501594 1.492674 1.527854
0.9 0.9 1.732709 1.719453 1.709460 1.749592
0.9 1.0 1.826868 1.813217 1.803014 1.844401
1.0 1.0 1.932021 1.917923 1.907476 1.950265

Table 17. The heat-transfer problem: heat flow Qx, ε = εt, 2a = 0.2, δ1 = 8.0 and δ2 = 1.0

α1 α2 BGK S GJ MRS
0.7 0.1 3.736442(–1) 3.729568(–1) 3.720839(–1) 3.741735(–1)
0.7 0.3 1.012290 1.007531 1.001578 1.016002
0.7 0.5 1.538824 1.528437 1.515622 1.547023
0.7 0.7 1.981056 1.964782 1.944964 1.994050
0.7 0.9 2.358233 2.336420 2.310191 2.375852
0.7 1.0 2.526885 2.502523 2.473413 2.546675
0.9 0.1 3.852405(–1) 3.845305(–1) 3.836360(–1) 3.857910(–1)
0.9 0.3 1.102234 1.096792 1.090048 1.106513
0.9 0.5 1.756921 1.743980 1.728185 1.767236
0.9 0.7 2.358233 2.336420 2.310191 2.375852
0.9 0.9 2.913413 2.882291 2.845413 2.938885
0.9 1.0 3.175602 3.139866 3.097831 3.205046
1.0 1.0 3.489892 3.448330 3.399827 3.524382
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Table 18. The heat-transfer problem: heat flow Qx, Gross-Jackson model, ε = εt and 2a = 1.0

δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0
α1 α2 δ2 = 0.0 δ2 = 1.0 δ2 = 3.0 δ2 = 5.0 δ2 = 7.0
0.7 0.1 4.061911(–1) 3.554172(–1) 2.538694(–1) 1.523216(–1) 5.077389(–2)
0.7 0.3 1.018915 8.915513(–1) 6.368223(–1) 3.820934(–1) 1.273644(–1)
0.7 0.5 1.464610 1.281533 9.153812(–1) 5.492287(–1) 1.830762(–1)
0.7 0.7 1.808080 1.582070 1.130050 6.780300(–1) 2.260100(–1)
0.7 0.9 2.084291 1.823755 1.302682 7.816094(–1) 2.605364(–1)
0.7 1.0 2.203941 1.928449 1.377463 8.264782(–1) 2.754927(–1)
0.9 0.1 4.185768(–1) 3.662547(–1) 2.616105(–1) 1.569663(–1) 5.232210(–2)
0.9 0.3 1.100785 9.631872(–1) 6.879908(–1) 4.127945(–1) 1.375981(–1)
0.9 0.5 1.640329 1.435288 1.025205 6.151235(–1) 2.050411(–1)
0.9 0.7 2.084291 1.823755 1.302682 7.816094(–1) 2.605364(–1)
0.9 0.9 2.461040 2.153410 1.538150 9.228901(–1) 3.076300(–1)
0.9 1.0 2.630137 2.301370 1.643836 9.863017(–1) 3.287672(–1)
1.0 1.0 2.824499 2.471437 1.765312 1.059187 3.530624(–1)

Table 19. The heat-transfer problem: heat flow Qx, MRS model, ε = εt and 2a = 1.0

δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0 δ1 = 8.0
α1 α2 δ2 = 0.0 δ2 = 1.0 δ2 = 3.0 δ2 = 5.0 δ2 = 7.0
0.7 0.1 4.101947(–1) 3.589203(–1) 2.563717(–1) 1.538230(–1) 5.127434(–2)
0.7 0.3 1.042264 9.119815(–1) 6.514153(–1) 3.908492(–1) 1.302830(–1)
0.7 0.5 1.508874 1.320265 9.430467(–1) 5.658280(–1) 1.886093(–1)
0.7 0.7 1.869448 1.635767 1.168405 7.010432(–1) 2.336810(–1)
0.7 0.9 2.157865 1.888132 1.348666 8.091997(–1) 2.697332(–1)
0.7 1.0 2.281828 1.996599 1.426142 8.556855(–1) 2.852285(–1)
0.9 0.1 4.225197(–1) 3.697047(–1) 2.640748(–1) 1.584448(–1) 5.281496(–2)
0.9 0.3 1.125847 9.851167(–1) 7.036548(–1) 4.221928(–1) 1.407309(–1)
0.9 0.5 1.690939 1.479572 1.056837 6.341023(–1) 2.113674(–1)
0.9 0.7 2.157865 1.888132 1.348666 8.091997(–1) 2.697332(–1)
0.9 0.9 2.552455 2.233398 1.595284 9.571708(–1) 3.190569(–1)
0.9 1.0 2.728294 2.387257 1.705183 1.023110 3.410367(–1)
1.0 1.0 2.930488 2.564177 1.831555 1.098933 3.663110(–1)
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Table 23. The temperature-jump problem: density perturbation N(τ), Gross-Jackson model

α = 0.1 α = 0.3 α = 1.0
τ ε = εp ε = εt ε = εp ε = εt ε = εp ε = εt

0.0 –3.112351(1) –2.074901(1) –9.022763 –6.015175 –1.445581 –9.637207(–1)
0.1 –3.158919(1) –2.114919(1) –9.440136 –6.376117 –1.713814 –1.202815
0.2 –3.183919(1) –2.135760(1) –9.671538 –6.571312 –1.885744 –1.355340
0.3 –3.203641(1) –2.152345(1) –9.856968 –6.729306 –2.033010 –1.487678
0.4 –3.220666(1) –2.166865(1) –1.001882(1) –6.869193 –2.167461 –1.610057
0.5 –3.236038(1) –2.180174(1) –1.016619(1) –6.998426 –2.293971 –1.726528
0.6 –3.250298(1) –2.192697(1) –1.030379(1) –7.120733 –2.415086 –1.839135
0.7 –3.263762(1) –2.204676(1) –1.043438(1) –7.238247 –2.532316 –1.949055
0.8 –3.276632(1) –2.216263(1) –1.055975(1) –7.352294 –2.646634 –2.057024
0.9 –3.289045(1) –2.227556(1) –1.068110(1) –7.463749 –2.758703 –2.163531
1.0 –3.301099(1) –2.238625(1) –1.079927(1) –7.573217 –2.868993 –2.268914
2.0 –3.411656(1) –2.343519(1) –1.189277(1) –8.616588 –3.922127 –3.293612
3.0 –3.515279(1) –2.444838(1) –1.292488(1) –9.628270 –4.940418 –4.300261
4.0 –3.616826(1) –2.545286(1) –1.393858(1) –1.063223(1) –5.948221 –5.302516
5.0 –3.717559(1) –2.645455(1) –1.494508(1) –1.163373(1) –6.951915 –6.303367
6.0 –3.817929(1) –2.745523(1) –1.594835(1) –1.263433(1) –7.953775 –7.303709
7.0 –3.918123(1) –2.845552(1) –1.695007(1) –1.363459(1) –8.954749 –8.303852
8.0 –4.018227(1) –2.945564(1) –1.795099(1) –1.463469(1) –9.955274 –9.303913
9.0 –4.118285(1) –3.045569(1) –1.895150(1) –1.563474(1) –1.095556(1) –1.030394(1)

10.0 –4.218317(1) –3.145572(1) –1.995179(1) –1.663476(1) –1.195572(1) –1.130395(1)
20.0 –5.218361(1) –4.145574(1) –2.995217(1) –2.663478(1) –2.195594(1) –2.130396(1)

Table 24. The temperature-jump problem: density perturbation N(τ), MRS model

α = 0.1 α = 0.3 α = 1.0
τ ε = εp ε = εt ε = εp ε = εt ε = εp ε = εt

0.0 –3.097660(1) –2.065107(1) –8.907059 –5.938039 –1.407291 –9.381942(–1)
0.1 –3.125265(1) –2.090326(1) –9.156580 –6.167509 –1.580157 –1.101692
0.2 –3.144892(1) –2.108102(1) –9.339020 –6.334287 –1.721613 –1.235629
0.3 –3.162154(1) –2.123783(1) –9.501431 –6.483260 –1.853443 –1.360904
0.4 –3.178071(1) –2.138300(1) –9.652423 –6.622316 –1.979711 –1.481276
0.5 –3.193089(1) –2.152052(1) –9.795749 –6.754829 –2.102204 –1.598376
0.6 –3.207450(1) –2.165255(1) –9.933474 –6.882630 –2.221915 –1.713093
0.7 –3.221306(1) –2.178040(1) –1.006688(1) –7.006841 –2.339464 –1.825980
0.8 –3.234760(1) –2.190495(1) –1.019683(1) –7.128215 –2.455271 –1.937410
0.9 –3.247882(1) –2.202684(1) –1.032394(1) –7.247281 –2.569639 –2.047647
1.0 –3.260728(1) –2.214650(1) –1.044867(1) –7.364432 –2.682793 –2.156887
2.0 –3.379993(1) –2.327178(1) –1.161669(1) –8.474049 –3.773301 –3.216648
3.0 –3.490767(1) –2.433450(1) –1.271107(1) –9.529153 –4.824972 –4.247132
4.0 –3.597630(1) –2.537076(1) –1.377134(1) –1.056107(1) –5.858272 –5.264932
5.0 –3.702301(1) –2.639332(1) –1.481243(1) –1.158096(1) –6.881110 –6.276076
6.0 –3.805614(1) –2.740801(1) –1.584161(1) –1.259393(1) –7.897398 –7.283368
7.0 –3.908032(1) –2.841790(1) –1.686293(1) –1.360266(1) –8.909336 –8.288289
8.0 –4.009835(1) –2.942471(1) –1.787884(1) –1.460868(1) –9.918265 –9.291688
9.0 –4.111202(1) –3.042949(1) –1.889090(1) –1.561291(1) –1.092505(1) –1.029407(1)

10.0 –4.212252(1) –3.143289(1) –1.990017(1) –1.661592(1) –1.193027(1) –1.129578(1)
20.0 –5.215822(1) –4.144185(1) –2.993174(1) –2.662385(1) –2.194813(1) –2.130028(1)
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Table 25. The temperature-jump problem: temperature perturbation T (τ), Gross-Jackson
model

α = 0.1 α = 0.3 α = 1.0
τ ε = εp ε = εt ε = εp ε = εt ε = εp ε = εt

0.0 3.073530(1) 2.049020(1) 8.690296 5.793531 1.276168 8.507787(–1)
0.1 3.126150(1) 2.094594(1) 9.158200 6.201029 1.567967 1.111862
0.2 3.155439(1) 2.119052(1) 9.425946 6.426995 1.757731 1.279706
0.3 3.178578(1) 2.138357(1) 9.640492 6.608272 1.919559 1.423854
0.4 3.198436(1) 2.155025(1) 9.826574 6.766592 2.066274 1.555695
0.5 3.216211(1) 2.170072(1) 9.994541 6.910787 2.203301 1.679912
0.6 3.232537(1) 2.184026(1) 1.014988(1) 7.045439 2.333543 1.798953
0.7 3.247797(1) 2.197198(1) 1.029593(1) 7.173256 2.458763 1.914271
0.8 3.262240(1) 2.209788(1) 1.043485(1) 7.295978 2.580123 2.026806
0.9 3.276039(1) 2.221931(1) 1.056815(1) 7.414789 2.698429 2.137200
1.0 3.289321(1) 2.233724(1) 1.069693(1) 7.530529 2.814269 2.245909
2.0 3.406930(1) 2.342139(1) 1.185153(1) 8.604520 3.899775 3.287015
3.0 3.513209(1) 2.444398(1) 1.290678(1) 9.624412 4.930523 4.298135
4.0 3.615870(1) 2.545134(1) 1.393021(1) 1.063090(1) 5.943614 5.301777
5.0 3.717100(1) 2.645400(1) 1.494105(1) 1.163324(1) 6.949688 6.303095
6.0 3.817702(1) 2.745502(1) 1.594635(1) 1.263415(1) 7.952666 7.303604
7.0 3.918007(1) 2.845543(1) 1.694905(1) 1.363451(1) 8.954183 8.303810
8.0 4.018167(1) 2.945560(1) 1.795046(1) 1.463466(1) 9.954978 9.303896
9.0 4.118253(1) 3.045568(1) 1.895122(1) 1.563473(1) 1.095540(1) 1.030393(1)

10.0 4.218300(1) 3.145571(1) 1.995164(1) 1.663476(1) 1.195564(1) 1.130395(1)
20.0 5.218361(1) 4.145574(1) 2.995217(1) 2.663478(1) 2.195594(1) 2.130396(1)

Table 26. The temperature-jump problem: temperature perturbation T (τ), MRS model

α = 0.1 α = 0.3 α = 1.0
τ ε = εp ε = εt ε = εp ε = εt ε = εp ε = εt

0.0 3.078213(1) 2.052142(1) 8.727037 5.818025 1.288190 8.587937(–1)
0.1 3.107989(1) 2.079372(1) 8.998042 6.067194 1.478004 1.037467
0.2 3.129215(1) 2.098520(1) 9.195680 6.246894 1.630311 1.180409
0.3 3.147780(1) 2.115264(1) 9.370341 6.405785 1.770614 1.312387
0.4 3.164801(1) 2.130647(1) 9.531625 6.552852 1.903861 1.438073
0.5 3.180772(1) 2.145122(1) 9.683808 6.692031 2.032277 1.559535
0.6 3.195970(1) 2.158940(1) 9.829278 6.825490 2.157110 1.677916
0.7 3.210570(1) 2.172257(1) 9.969538 6.954577 2.279152 1.793933
0.8 3.224688(1) 2.185178(1) 1.010561(1) 7.080200 2.398943 1.908072
0.9 3.238411(1) 2.197776(1) 1.023823(1) 7.203006 2.516874 2.020678
1.0 3.251801(1) 2.210106(1) 1.036795(1) 7.323472 2.633235 2.132008
2.0 3.374623(1) 2.324819(1) 1.156839(1) 8.452900 3.744188 3.204035
3.0 3.487229(1) 2.432070(1) 1.267935(1) 9.516813 4.806053 4.239846
4.0 3.595177(1) 2.536214(1) 1.374939(1) 1.055338(1) 5.845275 5.260420
5.0 3.700542(1) 2.638771(1) 1.479671(1) 1.157596(1) 6.871852 6.273156
6.0 3.804322(1) 2.740425(1) 1.583008(1) 1.259058(1) 7.890631 7.281419
7.0 3.907065(1) 2.841532(1) 1.685431(1) 1.360037(1) 8.904292 8.286958
8.0 4.009101(1) 2.942291(1) 1.787229(1) 1.460708(1) 9.914449 9.290762
9.0 4.110638(1) 3.042822(1) 1.888588(1) 1.561178(1) 1.092212(1) 1.029342(1)

10.0 4.211814(1) 3.143198(1) 1.989628(1) 1.661511(1) 1.192801(1) 1.129531(1)
20.0 5.215774(1) 4.144180(1) 2.993132(1) 2.662381(1) 2.194789(1) 2.130026(1)
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