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Abstract

Recently it was shown that the eigenfunctions for the the asym-

metric exclusion problem and several of its generalizations as well

as a huge family of quantum chains, like the anisotropic Heisenberg

model, Fateev-Zamolodchikov model, Izergin-Korepin model, Suther-

land model, t − J model, Hubbard model, etc, can be expressed

by a matrix product ansatz. Differently from the coordinate Bethe

ansatz, where the eigenvalues and eigenvectors are plane wave combi-

nations, in this ansatz the components of the eigenfunctions are ob-

tained through the algebraic properties of properly defined matrices.

In this work, we introduce a formulation of a matrix product ansatz for

the six-vertex model with periodic boundary condition, which is the

paradigmatic example of integrability in two dimensions. Remarkably,

our studies of the six-vertex model are in agreement with the conjec-

ture that all models exactly solved by the Bethe ansatz can also be

solved by an appropriated matrix product ansatz.

1 Introduction

The Bethe ansatz in its several formulations (coordinate, inverse scattering
and functional) has been established over the years as a powerful tool for the
description of the eigenvectors of a huge variety of integrable one-dimensional
quantum spin chains and two-dimensional transfer matrices (see e.g. [1]-[5]
for reviews). A quantum Hamiltonian or a transfer matrix is considered ex-
actly integrable if an infinite number of its eigenstates can be expressed by
the Bethe ansatz in the thermodynamic limit. In the last two decades it has
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been shown that a matrix product ansatz (MPA) can be used to express the
stationary distribution of the probability densities of some special stochastic
models [6]-[9]. Although these models are in general not integrable through
the Bethe ansatz, they have the components of its ground-state wavefunc-
tions given in terms of a product of matrices. According to this ansatz, the
algebraic properties of the matrices defining the MPA fix the components of
the wavefunction apart from a normalization constant.

An important development of the MPA that appeared in the context of
stochastic models is the dynamical matrix product ansatz (DMPA) [10, 11].
This DMPA was shown originally to be valid to the problem of asymmetric
diffusion of particles on the lattice [10] and extended to other stochastic mod-
els and related spin Hamiltonians [12, 13]. This ansatz allows the calculation
of the probability densities, of the stochastic system, at arbitrary times. In
the related spin Hamiltonian this DMPA asserts that not only the ground-
state wave function, as in the standard MPA, but an arbitrary wavefunction
have its components expressed in terms of a matrix product ansatz whose
matrices, in distinction of the standard MPA, are now time dependent.

More recently [14]-[16] it was shown that several exactly solvable Hamil-
tonians, related or not to stochastic models, may also be solvable by an
appropriate time independent matrix product ansatz. In this new MPA not
only the ground-state but all wavefunctions can be expressed by a product
of matrices. Using this new MPA it was possible to rederivethe results pre-
viously obtained through the Bethe ansatz for several quantum chains with
one and two global conservation laws, such as the XXZ chain, spin-1 Fateev-
Zamolodchikov model, Izergin-Korepin model, Sutherland model, t-J model,
Hubbard model, etc [14, 15], as well as the exact solution of the asymmetric
exclusion problem with particles of arbitrary size [16]. Moreover, the com-
ponents of the eigenfunctions of the exact integrable Hamiltonians, which
according to the Bethe ansatz are normally given by a combination of plane
waves, can also be obtained from the algebraic properties of the matrices
defining the new MPA. In the case of Bethe ansatz solutions the eigenvalues
and the amplitudes of the plane waves are fixed apart from a normalization
constant by the eigenvalue equation of the Hamiltonian. On the other hand,
in the new MPA, the eigenvalue equation fix the commutation relations of the
matrices defining the ansatz. The advantage of the new MPA in the search
for new exact integrable models, as showed in our previous works [14]-[16], is
its simplicity and unifying character in the implementation for arbitrary sys-
tems. All the previous successful applications of the new MPA [14]-[16] was
concerned with the eigenspectrum of quantum Hamiltonians and stochas-
tic models. In this paper we are going to show that these results can also
be extended to transfer matrix calculations of two-dimensional classical spin
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models. More specifically we are going to extend the new MPA introduced in
[14]-[16] for the case of the row-to-row transfer matrix of the six-vertex model
with toroidal boundary condition, which is the paradigm of integrability in
two dimensions. This transfer matrix was diagonalized through the coordi-
nate Bethe ansatz firstly by Lieb [17], in a special case, and by Sutherland
[18] and Yang [19, 20].

2 The asymmetric six-vertex model and its

transfer matrix

The six-vertex model defined on a square lattice, was introduced to explain
the residual entropy of the ice [17]-[20]. We are going to consider the asym-
metric version of the six-vertex model that was first studied and exactly
solved with standard methods [21, 22]. This model is defined on a square
lattice with M rows and N columns and toroidal boundary condition. At
each horizontal (vertical) lattice bond we attach an arrow pointing to the
left or right (up or down) directions. These arrows configurations can be
equivalently described by the vertex configurations of the lattice. A vertex
configuration at a given site (center) is formed by the four arrows attached
to its links. The allowed vertex configurations are those satisfying the ice
rules: two of the arrows pointing inward and the other two pointing outward
of its center. There are six possible configurations for the vertices. Theses
configurations are showed in fig. 1a. In fig. 1b, a more convenient notation
is introduced, in which we only draw by a solid line (broken line) the links
having arrows pointing to the left or down (right or up) of the center defin-
ing the vertex. Labeling the M rows sequentially by m = 1, 2, ...,M and by
{xm} the solid line positions on the vertical edges of the row m, the partition
function can be written as

Z =
∑

{x1}

∑

{x2}

· · ·
∑

{xM}

T ({x1}, {x2})T ({x2}, {x3}) · · ·T ({xM}, {x1}) = Tr(TM),

(1)
where T is the 2N × 2N transfer matrix, with elements

T ({y}, {x}) =
∑

e−β(n1ǫ1+n2ǫ2+···+n6ǫ6), (2)

where the summation is over all allowed arrangements of lines on the hor-
izontal edges and nj (j = 1, ..., 6) are the numbers of vertices of types
(1, ..., 6) formed by the configurations. For convenience we label the Boltz-
mann weights a0, a1, b1, b2, c1, c2 associated with the vertices as in fig. 1.
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It is also important to mention that the number of vertical and horizontal
lines is conserved, forming continuous non-crossing paths through the lat-
tice. On the other hand the transfer matrix, due to the toroidal boundary
condition, is translation invariant. As a consequence of these symmetries
the transfer matrix breaks up into blocks of disjoint sectors labeled by the
number n of vertical lines (n = 0, ..., N) and the momentum eigenvalues P
(P = 2π

N
l, l = 0, 1, ..., N − 1).

3 The Matrix Product ansatz for the six-vertex

model

The ansatz we propose [14]-[16] states that any eigenfunction |Ψn,P 〉 of the
transfer matrix (2) in the sector with n (n = 0, 1, 2, . . . , N) vertical lines and
momentum P (P = 2π

N
l, l = 0, 1, ..., N − 1) is given in terms of a matrix

product, i. e., their amplitudes are given by the trace of the following matrix
product:

|ψn,P 〉 =

∗
∑

x1,...,xn

Tr(Ex1−1AEx2−x1−1A · · ·Exn−xn−1−1AEL−xnΩP )|x1, . . . , xn〉,

(3)
where |x1, . . . , xn〉 denote the configurations with vertical lines at positions
(x1, . . . , xn) and the symbol (∗) in the sum means the restriction to the con-
figurations where L ≥ xi+1 > xi ≥ 1. The objects A, E and ΩP are abstract
matrices, or operators, with an associative product whose commutation re-
lations will be fixed by imposing the validity of the eigenvalue equation of
the transfer matrix (2). The matrices A and E are associated with the sites
where we have a vertical line or not, respectively, and the matrix ΩP is in-
troduced in order to fix the momentum P of the eigenfunction |Ψn,P 〉. The
fact that |ψn,P 〉 has a momentum P imply that the ratio of the amplitudes
corresponding to the configurations |x1, . . . , xn〉 and |x1 + 1, . . . , xn + 1〉 is
e−iP , i.e.,

Tr(Ex1−1AEx2−x1−1A · · ·Exn−xn−1−1AEL−xnΩP )

Tr(Ex1AEx2−x1−1A · · ·Exn−xn−1−1AEL−xn−1ΩP )
= e−iP , (4)

and consequently from (3) we obtain the following commutation relations

AΩP = e−iP ΩPA, EΩP = e−iP ΩPE. (5)

The matrix product ansatz will be valid if the algebraic relations among
the matrices A, E and ΩP are consistent with the constrains imposed by the
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eigenvalue equation
T |ψn,P 〉 = Λn|ψn,P 〉. (6)

To solve this last equation, it is helpful to begin, as usual, by considering the
simple cases where n = 0, 1 and 2 before considering the general case.

The case n = 0.

In this case the solution of the eigenvalue equation (6) is trivial since we
do not have vertical lines between two successive rows. There are only two
possible horizontal arrangements either all bonds have a line or all of them
are empty. In this case the vertices are all of type 1 or type 3 (see figure 1)
and consequently the eigenvalue is given by

Λ0 = aN
0 + bN1 (7)

where a0 and b1 are the Boltzmann weights of the vertices of types 1 and 3,
respectively (see figure 1).

The case n = 1.

We have in this case just one vertical line between two rows. The transfer
matrix links a vertical line at position y (y = 1, .., N) above a row to a
vertical line at any position x (x = 1, ..., N) under this row. The elements
of the transfer matrix T (y, x) in this sector with momentum P are given by
(2). They are the product of the Boltzmann weights of the vertex appearing
on the row. If the position of the line x is less (greater) than y, the vertex
configuration at these sites will be of types 5 and 6 (6 and 5) and all the
others vertices will be of types 3 (1) and 1 (3) depending on whether the
vertices are between the positions x and y, or not, respectively. In the case
where x = y these vertices should be of type 4 or 2 with all the remains
vertices of type 1 or 3 respectively. Consequently the eigenvalue equation (6)
for the transfer matrix (2) associated with the components of |ψn,P 〉 (3) with
n = 1 and momentum P give us the relations

Λ1Tr(Ex−1AEN−xΩP ) =
N

∑

y=x+1

a
N−y+x−1
0 b

y−x−1
1 c1c2Tr(E

y−1AEN−yΩP ) +

x−1
∑

y=1

a
x−y−1
0 b

N−x+y−1
1 c1c2Tr(E

y−1AEN−yΩP ) +

(aN−1
0 b2 + bN−1

1 a1)Tr(Ex−1AEN−xΩP ). (8)

Equation (8) can be simplified in order to express all the matrix products in
terms of a single one. This is possible by exploring the cyclic property of the
trace as well as the commutation relations (5). This allow us to factorize the

5



matrix product in the following form

Λ1 =

N
∑

y=x+1

a
N−y+x−1
0 b

y−x−1
1 c1c2e

−iP (y−x) +

x−1
∑

y=1

a
x−y−1
0 b

N−x+y−1
1 c1c2e

−iP (y−x) +

(aN−1
0 b2 + bN−1

1 a1). (9)

By evaluating the sums in (9) we obtain

Λ1 = aN
0 L(P ) + bN1 M(P ) + bN1

c1c2

a0

(

b1

a0

)−x
e−iP (1−x)

a0 − b1e−iP
(1 − e−iNP ), (10)

where

L(P ) =
a0b2 + (c1c2 − b1b2)e

−iP

a2
0 − a0b1e−iP

and M(P ) =
a0a1 − c1c2 − a1b1e

−iP

a0b1 − b21e
−iP

.

(11)
In order to satisfy (6), the eigenvalue Λ1 in (10) should be independent of
the vertical line position x. Thus the last term in the right hand side of
(10) must vanish. The only way to cancel this term, for non zero Boltzmann
weights, is obtained by imposing the following constraint to the momentum
P

eiNP = 1, (12)

which is automatically satisfied, since P = 2π
N
l l = 0, 1, ..., N − 1. The

eigenvalue (10) is then given by

Λ1 = aN
0 L(P ) + bN1 M(P ). (13)

An alternative solution of (8), whose generalization will be convenient for
arbitrary values of n, is obtained by expressing the matrix A in terms of the
matrix E and a spectral parameter dependent matrix

A = AkE, (14)

with Ak satisfying
EAk = eikAkE. (15)

As a consequence of (5) and (15) Ak also satisfies

AkΩP = ΩPAk. (16)

The spectral parameter k will be fixed by the eigenvalue equation (8). In-
serting (14) in (8) and using the commutation relation (15) we obtain (9)
with the value k replacing P . Therefore

Λ1 = aN
0 L(k) + bN1 M(k), (17)
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with

eiNk = 1, k =
2π

N
l (l = 0, 1, ..., N − 1). (18)

Comparing (12) and (13) with (17) and (18) we observe the equality k = P .
This fact can also be seen directly by inserting (14) in (4) and using (15).

We still need to verify whether the algebraic relations among the matrices
Ak, E and ΩP (5), (15) and (16) are consistent with the cyclic property of
the trace. Indeed these equations yield

Tr(AkE
NΩP ) = e−iNkTr(ENAkΩP ) = e−iNkTr(ENΩPAk)

= e−iNkTr(AkE
NΩP ), (19)

which satisfies the cyclicity of the trace due to (18). Since no new constraints
is obtained for the matrices Ak, E and ΩP , with k = P , and for spectral
parameter k, the MPA is consistent.

The case n = 2.

In this sector there are two vertical lines in the row. We have in general
two types of relations, which are relations where at least one of the vertical
lines (y1,y2) coincide with (x1,x2) and those where y1 and y2 interlace with
x1 and x2 (x1 < y1 < x2 < y2 or y1 < x1 < y2 < x2). Then, the eigenvalue
equation (6) imply

Λ2 Tr(Ex1−1AEx2−x1−1AEN−x2ΩP ) =
x2

∑

y1=x1

N ∗
∑

y2=x2

a
N−y2+x1−1
0 c2f(x1, y1)g(y1, x2)f(x2, y2)Tr(E

y1−1AEy2−y1−1AEN−y2ΩP ) +

x1
∑

y1=1

x2 ∗
∑

y2=x1

b
N−x2+y1−1
1 c1g(y1, x1)f(x1, y2)g(y2, x2)Tr(E

y1−1AEy2−y1−1AEN−y2ΩP ),(20)

where the symbol ∗ in the sums means that terms with y1 = y2 are excluded
and

f(x, y) =

{

b2
c2

if x = y

c1b
y−x−1
1 if y > x

and g(y, x) =

{

a1

c1
if x = y

c2a
x−y−1
0 if x > y

.

(21)
The relation (20) connects configurations where the arrangements of vertical
lines above one row do not have the same distance of the vertical lines below
this same row. In other words, the distance of the incoming lines y2 − y1 are
in general different of the outcoming distance x2 − x1. As a consequence,
it is not possible to solve the eigenvalue equation by just using the cyclic
property of the trace in (3) as done previously in the case n = 1. We need
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now to use a generalization of the algebraic relation (14) for the case of two
lines. The generalization of (14) is done by writing the matrix A in terms of
two new spectral parameter matrices as:

A =

2
∑

j=1

Akj
E, (22)

with the commutation relations

EAkj
= eikjAkj

E and Akj
ΩP = ΩPAkj

(j = 1, 2), (23)

where the spectral parameters k1 and k2 are up to now unknown complex
numbers.

Inserting (22) in (20) and using in this expression (23) and (11) we ob-
tain, after similar manipulation as we did in the case n = 1, the following
constraints

2
∑

j,l=1

[

Λ2 − aN
0 L(kj)L(kl) − bN1 M(kj)M(kl)

]

e−ikjx1e−iklx2Tr(Akj
Akl

ENΩP )

−
2

∑

j,l=1

aN
0

[

L(kl)M(kj) −
a1b2

a0b1

](

b1

a0

)x2−x1

e−i(kj+kl)x2Tr(Akj
Akl

ENΩP )

−
2

∑

j,l=1

bN1

[

L(kl)M(kj) −
a1b2

a0b1

](

b1

a0

)x1−x2

e−i(kj+kl)x1Tr(Akj
Akl

ENΩP )

+

2
∑

j,l=1

bN1
c21c

2
2

[

e−iNkle−ikjx1 − e−iklx1

]

e−i(kj+kl)

a2
0(a0 − b1e−ikj)(a0 − b1e−ikl)

(

b1

a0

)−x2

Tr(Akj
Akl

ENΩP )

−

2
∑

j,l=1

bN1
c21c

2
2

[

e−i(N+1)kle−ikjx2 − e−ikje−iklx2

]

a0b1(a0 − b1e−ikj )(a0 − b1e−ikl)

(

b1

a0

)−x1

Tr(Akj
Akl

ENΩP )

+

2
∑

j,l=1

bN1 c1c2b2

[

e−i(N+1)kle−ikjx1

a2
0(a0 − b1e−ikl)

−
−e−ikje−iklx1

a2
0(a0 − b1e−ikj)

] (

b1

a0

)−x2

Tr(Akj
Akl

ENΩP ) (24)

+

2
∑

j,l=1

bN1 c1c2a1

[

e−i(N+1)kle−ikjx2

a0b1(a0 − b1e−ikl)
−

−e−ikje−iklx2

a0b1(a0 − b1e
−ikj )

](

b1

a0

)−x1

Tr(Akj
Akl

ENΩP ) = 0,

where 1 ≤ x1 < x2 ≤ N . This can only be satisfied if each sum is identically
zero. Moreover since Λ2 should be independent of x1 or x2 a possible solution
of (24) is obtained by imposing

Λ2 = aN
0 L(k1)L(k2) + bN1 M(k1)M(k2). (25)
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The algebraic relation between the matrices Ak1
and Ak2

are obtained by
imposing that both the second and third terms in (24) are zero independently,
i. e.,

Akj
Akl

= −S(kj, kl)Akl
Akj

(l 6= j)
(

Akj

)2
= 0 (j, l = 1, 2), (26)

where

S(kj, kl) =
L(kj)M(kl) −

a1b2
a0b1

L(kl)M(kj) −
a1b2
a0b1

, (27)

with L(k) and M(k) given by (11). Finally, the vanishing of the last four
terms in (24) will give us relations that fix the spectral parameters values
k1 and k2. These equations are obtained by exploring the algebraic relations
(26)

eiNkl = −S(kj, kl) (l, j = 1, 2 and l 6= j). (28)

The eigenvalues and eigenvectors are obtained by inserting the solutions
(k1, k2) of these last equations in (25) and (27), respectively. The momentum
P is obtained by using (22) and (23) in (4), i.e., P = k1 + k2.

The consistency of the algebraic equations (22), (23) and (27) with the
cyclic property of the trace in (3), as in the case n = 1, can be easily verified,
yielding

Tr(Akj
Akl

ENΩP ) = −S(kj, kl)Tr(Akl
Akj

ENΩP )

= −S(kj, kl)e
−iNkjTr(Akl

ENAkj
ΩP )

= −S(kj, kl)e
−iNkjTr(Akj

Akl
ENΩP ). (29)

The case of general n.

The previous calculation can be extended for arbitrary values of the num-
ber n of vertical lines. The transfer matrix (2) when applied to the amplitudes
of |ψn,P 〉 give us an eigenvalue equation linking an arrangement of vertical
lines x1, ..., xn with arrangements y1, ..., yn with x1 ≤ y1 ≤ x2 ≤ · · ·xn ≤ yn

and y1 ≤ x1 ≤ y2 ≤ · · ·yn ≤ xn. To solve this eigenvalue equation we need
to extend the definition (22) and the commutation relations (23) for general
n, i. e.,

A =

n
∑

j=1

Akj
E (30)

with

EAkj
= eikjAkj

E and Akj
ΩP = ΩPAkj

(j = 1, ..., n), (31)

where kj (j = 1, . . . , n) are in general unknown complex numbers that will
be fixed by the eigenvalue equation (6). Actually the definition (30) is not
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the only possible one. The most general definition that enable us to solve
the eigenvalue equation is A =

∑n

j=1E
αAkj

E1+β, where α and β are integer
numbers. However (30) is more convenient since otherwise the S-matrix in
(32) and the Bethe equation (33) will depend on the parameters α and β.
Inserting (30) in the eigenvalue equation (6) and using the commutation
relations (31) we obtain, similarly as done in the case n = 2, the algebraic
relations among the matrices {Akj

}

Akj
Akl

= −S(kj , kl)Akl
Akj

(

Akj

)2
= 0 (j 6= l = 1, ..., n), (32)

where S(kj, kl) is given by (27) and the spectral parameters kj (j = 1, ..., n)
are fixed by the equation

eiNkl = (−1)n−1

n
∏

l=1 (l 6=j)

S(kj, kl) (j = 1, ..., n). (33)

No new algebraic relations appear for the matrices {Akj
} and the associativity

of the algebra (31) and (32) follows from the property S(kj, kl)S(kl, kj) = 1.
The eigenvalues for the transfer matrix (2) in the sector with general n is
then given by

Λ2 = aN
0 L(k1)L(k2) · · ·L(kn) + bN1 M(k1)M(k2) · · ·M(kn), (34)

where L(k) and M(k) are given by (11) and the spectral parameters {kj}
are the solutions of (33). The eigenvalues (34) and the spectral parameter
equations coincide with the corresponding equations obtained through the
Bethe ansatz [19, 20].

Finally, the momentum P follows from (4) and (31):

P =
n

∑

j=1

kj. (35)

The consistency of the algebraic relations of the matrices defining the
MPA (3) with the cyclic property of the trace in (3) is promptly verified as
in the cases where n = 1 and n = 2. Therefore the MPA is consistent and a
infinite number of eigenvectors of the transfer matrix (2) can be written by
(3) in the thermodynamic limit.

4 Conclusion

In conclusion, we have shown that the new MPA introduced in [14, 15] for
one dimensional quantum spin chains, such as the XXZ chain, spin-1 Fateev-
Zamolodchikov model, Izergin-Korepin model, Sutherland model, t-J model,
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Hubbard model, as well as the exact solution of the asymmetric exclusion
problem with particles of arbitrary size [16], can also be extended to the
diagonalization of the row-to-row transfer matrix of the six-vertex model
with toroidal boundary condition. Differently from the standart MPA [6]-[9]
this new MPA [14, 15] asserts that all wavefunctions can be expressed by a
product of matrices. The solution of the six vertex model through the new
MPA is in agreement with the conjecture proposed in [10] and [14, 15] that all
models exactly solved by Bethe ansatz can also be solved by an appropriate
MPA. An interesting problem for the future is the formulation of a MPA for
others spin models like the 8-vertex model, which is related to quantum spin
chains with no global conservation laws such as the XYZ chain.
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Figure 1: The six vertex configurations and their related Boltzmann weights.
In (a) we draw all the arrows and in (b) we draw by solid lines th links where
the arrows are pointing to the down and left directions.
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