
Z. angew. Math. Phys. 60 (2009) 70–115
0044-2275/09/010070-46
DOI 10.1007/s00033-008-7084-4
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An analytical approach to the unified solution of kinetic

equations in rarefied gas dynamics.

I. Flow problems

C. S. Scherer, J. F. Prolo Filho and L. B. Barichello∗

Abstract. The ADO method, an analytical version of the discrete-ordinates method, is used
to solve several classical problems in the rarefied gas dynamics field. The complete development

of the solution, which is analytical in terms of the spatial variable, is presented in a way, such
that, a wide class of kinetic models are considered, in an unified approach. A series of numerical

results are showed and different simulations are used in order to establish a general comparative
analysis based on this consistent set of results provided by the same methodology.
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1. Introduction

It is well known that under certain conditions, the behavior of a gas flow is de-
scribed by the solution of the Boltzmann equation [1]. Although this is the case
for important classical applications, such as vacuum equipments [2] and aerody-
namic applications [3], the interest in new technological applications, particularly
associated with micro-systems [4], has brought more attention, in these days, to
the use of approaches based on the Boltzmann equation [5]. In fact, even in the
continuum regime, procedures like the Lattice-Boltzmann method [6], has been
based on the theory originally proposed by Boltzmann and related to the kinetic
theory of gases.

In this context, due to the complexity of the original mathematical model and
the consequent computational and numerical difficulties associated, the so-called
kinetic models (kinetic equations) have played a very important role in providing
simpler mathematical models associated with the Boltzmann formulation, which
keep physical features of the original one and that are more amenable to the de-
velopment of analytical and numerical tools, in order to obtain numerical results
for physical quantities of interest. Some of these kinetic models have been widely
studied and used over the years, like the well known BGK model [7]. Extensions
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and improvements have been proposed to that formulation, like the Gross–Jackson
(GJ) model [8], the S-model [9] and, more recently, the CES [10], the CEBS [10]
and the MRS [11] models. In particular, recent works [11, 12, 13] note that re-
sults for the S-model formulation, as well as the GJ and MRS models, can be
obtained as particular cases (one gas) of the McCormack model [14] for mixtures.
In deriving all of the listed models, the collision frequency of the particles is con-
sidered not dependent of the velocity. However, velocity dependent models were
also proposed, like the CLF model [15, 16]. Results based on all these models,
for specific problems, were obtained by different authors, over the years [17]–[24],
most of them based on numerical approaches.

Following the recent interest in rarefied gas dynamics (RGD) applications, in
the past few years, a methodology initially proposed for radiative transfer prob-
lems, the ADO method [25], has been used in connection with some problems
in that field. In particular, a series of studies related to the derivation [10] and
solution of model equations has been developed. In summary, the same approach
has been used to solve in an “unified” manner many classical problems in RGD,
based on specific model equations: like the BGK model [26], the S-model [27], the
CLF model [28] and the CES model [29, 30]. In general, the ADO solution has
been shown to be concise, accurate and easy to implement. However, it is possible
to note, as could be expected of an analytical procedure, that, in developing the
solution, some steps may arise as special topics for each one of the kinetic equa-
tions and the specific problems to be solved. That is the case, particularly, for
two important issues which arise in the ADO solution – the derivation of an eigen-
value problem and the derivation of exact solutions associated with the presence
of degenerate eigenvalues.

In this work, we pursue the goal of having a solution as much general as possible,
which we believe is an important aspect when it comes to analytical approaches.
Then, following a general procedure, we develop the complete ADO solution, valid
for different kinetic equations, all of them described in a same general expression,
and for a wide class of problems. In this way, based on our solution, we present a
collection of results obtained by the ADO method for many classical flow problems
in the rarefied gas dynamics, which comprises previous developed cases, but where
we also include original results for the Gross–Jackson (GJ) and the MRS models,
and, we still add, for all models, the case of channels defined by different surfaces
(different accommodation coefficients). In this sense, a comparative analysis with
results from different models, provided by the same methodology, can be carried
out.

This work is organized such that, we present in the next section the general
formulation of all the problems we deal with. In Sec. 3 we present the transfor-
mation of the scalar problem in an appropriate vector form, in order to apply the
ADO method. In Secs. 4 and 5 the ADO solution is developed for flow problems.
The evaluation of the physical quantities of interest is presented in Sec. 6. Finally,
Secs. 7 and 8 are devoted to the discussion of computational aspects, numerical
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results and the indication of some concluding remarks.

2. Kinetic equations

We choose to start this work with the linearized Boltzmann equation (LBE), writ-
ten, in the form [21, 10]

cx
∂

∂τ
h(τ, c) + εh(τ, c) = επ−3/2

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

e−c′2h(τ, c′)F (c′ : c)dc′xdc′ydc′z + S(c),

(1)
with an inhomogeneous source term S(c),

c = v(m0/2kT0)
1/2, (2)

where k is the Boltzmann constant, T0 is a reference temperature and m0 is the
mass of a gas particle. In addition to the three components of the velocity vec-
tor (cx, cy, cz), which are expressed in dimensionless units, we consider here the
dimensionless (written in terms of a mean-free path l) spatial variable τ , and

ε = σ2
0n0π

1/2l, (3)

where σ0 is the collision diameter of the gas particles (in the rigid-sphere approx-
imation) and n0 is the equilibrium density of the gas. For rigid-spheres, the exact
scattering kernel F (c′ : c) can be expanded in terms of Legendre functions [31].
As showed in previous work [10], in order to obtain simpler mathematical and nu-
merical formulations, truncated forms of the expansion proposed by Pekeris and
Alterman [31] can be used to define, by imposing appropriate conditions, a class
of model equations. Particularly, in regard to the kinetic models discussed in this
work, two of them (BGK and S) are defined by two terms in that truncated ex-
pansion, while the GJ and the MRS models are defined by three terms. In fact,
for appropriate choices of the parameters β and ̟, following previous references
[32, 33, 34, 11], we can represent all of the kinetic equations we want to discuss
here, in a general expression

F (c′ : c) = 1+2(c′· c)+(2/3)
(

c′2 − 3/2
) (

c2 − 3/2
)

+βM(c′ : c)+̟N(c′ : c), (4a)

with
M(c′ : c) = (4/5) (c′ · c)

(

c′2 − 5/2
) (

c2 − 5/2
)

(4b)

and
N(c′ : c) = 2

[

(c′ · c)2 − (1/3) c′2c2
]

. (4c)

Furthermore, as showed by Barichello and Siewert [10], depending on the kinetic
model, ε also assumes different values, when defined in terms of a mean-free-path
evaluated in terms of viscosity (εp) or thermal-conductivity (εt).

To be clear, we complete the definition of Eqs. (1) and (4) as follows [32, 10,
11, 34],
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• the BGK model

β = ̟ = 0, εt = εp = 1, εp/εt = 1 (5)

• the S model

β = 1/3, ̟ = 0, εt = 3/2, εp = 1, εp/εt = 2/3 (6)

• the Gross–Jackson (GJ) model

β = 5/9, ̟ = 1/3, εt = 9/4, εp = 3/2, εp/εt = 2/3 (7)

• the MRS model

β = 1 − (16/15)21/2, ̟ = 1 − (8/5)21/2, εt = (15/32)21/2,

εp = (5/16)21/2, εp/εt = 2/3. (8)

As pointed out previously [10], the ratio εp/εt, assumed as an expected value
for the Prandtl number, may be an aspect which establishes a difference between
the BGK model and the other ones, although all of them are constant collision
frequency models.

Once we have the basic kinetic equation defined, to complete the definition
of an specific problem to be solved, we supplement Eq. (1) with boundary condi-
tions. Here we consider specular and diffuse reflection, such that, for plane channel
problems, τ ∈ [−a, a], we write them, for cx > 0, as

h(−a, cx, cy, cz) − (1 − α1)h(−a,−cx, cy, cz)

=
2α1

π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−c′2h(−a,−c′x, c′y, c′z)c
′

xdc′xdc′ydc′z (9a)

and

h(a,−cx, cy, cz) − (1 − α2)h(a, cx, cy, cz)

=
2α2

π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−c′2h(a, c′x, c′y, c′z)c
′

xdc′xdc′ydc′z, (9b)

where we allow different accommodation coefficients αi ∈ (0, 1], for i = 1, 2, to
represent channels defined by different surfaces. We note that, results for the
Cercignani-Lampis kernel have been also recently obtained [32, 35, 13], although
we are not going to treat this case, in this work.

To complete this section we express in terms of the distribution h some basic
quantities of interest [32] we want to evaluate in this work, as the velocity profile

u(τ) = π−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

e−c2

h(τ, cx, cy, cz)cydcxdcydcz, (10)
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the heat flow profile

q(τ) = π−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

e−c2

h(τ, cx, cy, cz)(c
2 − 5/2)cydcxdcydcz, (11)

the mass flow and heat flow rates, in general,

U =
1

2a2

∫ a

−a

u(τ)dτ (12)

and

Q =
1

2a2

∫ a

−a

q(τ)dτ. (13)

3. Basic formulation

In order to reduce the number of variables involved in the problem, and taking
into account the way the quantities of interest are defined in terms of h, we define

g1(τ, cx) =

∫ ∞

−∞

∫ ∞

−∞

φ1(cy, cz)h(τ, cx, cy, cz)dcydcz, (14)

g2(τ, cx) =

∫ ∞

−∞

∫ ∞

−∞

φ2(cy, cz)h(τ, cx, cy, cz)dcydcz (15)

with
φ1(cy, cz) = (cy/π)e−(c2

y+c2

z) (16)

and
φ2(cy, cz) = [cy/(21/2π)](c2

y + c2
z − 2)e−(c2

y+c2

z), (17)

such that if we first multiply Eq. (1) by φ1(cy, cz) and integrate over all cy, cz, and
then repeat the same procedure with φ2(cy, cz), we obtain two equations which
can be written in a vector equation (for cx = ξ) as

ξ
∂

∂τ
G(τ, ξ) + εG(τ, ξ) = ε

∫ ∞

−∞

ψ(ξ′)K(ξ′, ξ)G(τ, ξ′)dξ′ + A(ξ). (18)

Here
ψ(ξ) = π−1/2e−ξ2

(19)

and

G(τ, ξ) =

[

g1(τ, ξ)
g2(τ, ξ)

]

. (20)

The components, defined in terms of the parameters β and ̟, of the 2× 2 matrix
K(ξ′, ξ) are given by

k11(ξ
′, ξ) = 1 + (2β/5)

(

ξ2 − 1/2
) (

ξ′2 − 1/2
)

+ 2̟ξ′ξ, (21a)

k12(ξ
′, ξ) = (23/2β/5)

(

ξ2 − 1/2
)

, (21b)
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k21(ξ
′, ξ) = (23/2β/5)

(

ξ′2 − 1/2
)

(21c)

and
k22(ξ

′, ξ) = 4β/5. (21d)

In addition, for each specific problem, the components of the 2 × 1 vector A(ξ)
will be defined by

a1(ξ) =

∫ ∞

−∞

∫ ∞

−∞

φ1(cy, cz)S(cx, cy, cz)dcydcz (22a)

and

a2(ξ) =

∫ ∞

−∞

∫ ∞

−∞

φ2(cy, cz)S(cx, cy, cz)dcydcz. (22b)

The same procedure described above is applied to the boundary conditions,
Eqs. (9). The resulting boundary conditions, for the G(τ, ξ) problem are expressed,
for ξ > 0, as

G(−a, ξ) − (1 − α1)G(−a,−ξ) = 0 (23a)

and
G(a,−ξ) − (1 − α2)G(a, ξ) = 0. (23b)

Still, from Eqs. (10) and (11), following the same procedure, we find expressions,
in terms of the G solution, for the velocity and heat flow profile, respectively,

u(τ) =

∫ ∞

−∞

ψ(ξ)

[

1
0

]T

G(τ, ξ)dξ, (24)

q(τ) =

∫ ∞

−∞

ψ(ξ)

[

ξ2 − 1/2
21/2

]T

G(τ, ξ)dξ. (25)

We note that T denotes the transpose operation.
In general, Eqs. (18) to (23) define the basic problem to be solved by the ADO

method, in order to describe the behavior of a gas when all the models given by
Eqs. (5) to (8) are considered. Next, we indicate some special aspects to be taking
into account in solving specific well known problems, which we briefly introduce.

The Poiseuille flow problem

When the flow in a channel, defined by plates located at τ = ∓a, is caused by
a (dimensionless) constant pressure gradient, in the direction parallel to the walls,
the inhomogeneous term, in Eq. (1) happens to be [21, 29]

S(c) = −kP cy, (26)

with kP constant. In this way, we substitute Eq. (26) into Eqs. (22), to define the
inhomogeneous vector term in Eq. (18), for the Poiseuille flow problem, as

A(ξ) = −kP

[

1/2
0

]

. (27)
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The thermal-creep problem

In this case [21, 29], in Eq. (1),

S(c) = −cy(c2
x + c2

y + c2
z − 5/2)kT , (28)

and kT is a constant gradient of temperature, in the direction parallel to the walls,
which induces the flow. Here, we evaluate Eqs. (22), to obtain

A(ξ) = −
kT

2

[

ξ2 − 1/2
21/2

]

. (29)

The Couette flow problem

When the flow in the channel is driven by plates located at τ = ∓a, moving
with velocities, respectively, uwi, i = 1, 2, the linearization process [21] leads to
S(c) = 0, in Eq. (1). In fact, the effect of the velocities of the plates is expressed
in the inhomogeneous boundary conditions, now written as

h(−a, cx, cy, cz) − (1 − α1)h(−a,−cx, cy, cz) = 2α1uw1cy+

2α1

π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−c′2h(−a,−c′x, c′y, c′z)c
′

xdc′xdc′ydc′z (30a)

and

h(a,−cx, cy, cz) − (1 − α2)h(a, cx, cy, cz) = 2α2uw2cy+

2α2

π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−c′2h(a, c′x, c′y, c′z)c
′

xdc′xdc′ydc′z, (30b)

where, as previously, αi ∈ (0, 1], i = 1, 2, are the accommodation coefficients.
In this way, in Eq. (18), for the Couette flow problem, we have A(ξ) = 0, while

Eqs. (23) are rewritten, for ξ > 0, as

G(−a, ξ) − (1 − α1)G(−a,−ξ) = α1uw1Ω (31a)

and
G(a,−ξ) − (1 − α2)G(a, ξ) = α2uw2Ω, (31b)

with

Ω =

[

1
0

]

. (32)

In addition, in this problem, we also want to evaluate a component of the
pressure tensor

Pxy = π−1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

e−c2

h(τ, c)cxcydcxdcydcz (33)

which is expressed in the vector form as

Pxy = π1/2

∫ ∞

−∞

ψ(ξ)

[

1
0

]T

G(τ, ξ)ξdξ. (34)
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The thermal-slip problem

In order to define the usually called slip conditions for the Navier-Stokes equa-
tions, when the gas has a moderate state of rarefaction, we solve a half-space
problem, τ ∈ [0,∞), with

S(c) = −cy(c2
x + c2

y + c2
z − 5/2)kT (35)

where, again, kT is a constant temperature gradient in the direction of the flow.
Following the same steps described previously, we find in Eq. (18), for this problem,

A(ξ) = −
kT

2

[

ξ2 − 1/2
21/2

]

. (36)

Now, when solving half-space problems, τ ∈ [0,∞), it is usual to consider the
plate located at τ = 0, such that, for cx > 0, a boundary condition analogous to
Eq. (9a), is written as

h(0, cx, cy, cz) − (1 − α)h(0,−cx, cy, cz)

=
2α

π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−c′2h(0,−c′x, c′y, c′z)c
′

xdc′xdc′ydc′z. (37)

In this case, in addition to a boundary condition, written in a vector form as

G(0, ξ) − (1 − α)G(0,−ξ) = 0, ξ > 0, (38)

the definition of the problem is completed by some given condition at infinity.
Here we consider the desired behavior of the velocity

lim
τ→∞

u(τ) = As, (39)

where As is a constant, the thermal-slip coefficient, and the velocity profile is
defined in Eq. (24).

The viscous-slip problem

For this half-space problem, τ ∈ [0,∞), in Eq. (1), we find [21]

S(c) = −2cxcyk0 (40)

where k0 is a constant velocity gradient in the normal direction of the flow. In
this way, in Eq. (18)

A(ξ) = −k0

[

ξ
0

]

. (41)

In addition to the condition

G(0, ξ) − (1 − α)G(0,−ξ) = 0, ξ > 0 (42)

we consider the velocity profile, defined as

uk(τ) = k0τ +

∫ ∞

−∞

ψ(ξ)

[

1
0

]T

G(τ, ξ)dξ, (43)
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diverges at infinity, but in a way such that

lim
τ→∞

d

dτ
uk(τ) = k0. (44)

4. General solution

In the previous section we showed that the basic problem, the G problem, to be
solved in most of the cases related to the problems of interest, defined by Eqs. (18)
to (23), has a source term. In this way, the general solution of the problem has to
be proposed in a way that

G(τ, ξ) = Gh(τ, ξ) + Gp(τ, ξ), (45)

where the particular solution Gp(τ, ξ) has to be found for each specific problem.
Here, we follow previous works [32, 27] and we propose, for Eq. (18), particular

solutions of the form

Gp(τ, ξ) = Bτ2 + Cτξ + Dξ2 + Eξ + F (46)

where B, C, D, E and F are 2×1 constant vectors. Then, if we substitute Eq. (46)
into Eq. (18), we find, after noting Eqs. (27),(29),(36) and (41), respectively,

Gp(τ, ξ) = kP

[

ε(1 − ̟)τ2/2 − τξ + [(5 − 4β)ξ2]/[5ε(1 − β)]
21/2β/[5ε(1 − β)]

]

, (47)

for the Poiseuille flow problem;

Gp(τ, ξ) =
kT

2ε(β − 1)

[

ξ2

21/2

]

, (48)

for the thermal-creep and thermal-slip problems; and

Gp(τ, ξ) =
k0ξ

ε(̟ − 1)

[

1
0

]

, (49)

for the viscous-slip problem.
Looking back to Eq. (45), we note that, when we substitute that equation into

Eq. (18) we find that the homogeneous solution, Gh(τ, ξ) must satisfy the following
problem:

ξ
∂

∂τ
Gh(τ, ξ) + εGh(τ, ξ) = ε

∫ ∞

−∞

ψ(ξ′)K(ξ′, ξ)Gh(τ, ξ′)dξ′. (50)

Since Eq. (45) is used also in the boundary conditions, we obtain, for the homo-
geneous problem the boundary equations written, for ξ > 0, as

Gh(−a, ξ) − (1 − α1)G
h(−a,−ξ) = R+(ξ) (51a)

and
Gh(a,−ξ) − (1 − α2)G

h(a, ξ) = R−(ξ), (51b)
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for the Poiseuille and thermal-creep (plane channel) problems. Here we note that

R+(ξ) = (1 − α1)G
p(−a,−ξ) − Gp(−a, ξ) (52a)

and

R−(ξ) = (1 − α2)G
p(a, ξ) − Gp(a,−ξ). (52b)

On the other hand, for the Couette flow problem, which is already an homogeneous
problem (A(ξ) = 0), and we do not have to compute a particular solution. In other
words, in Eq. (45), Gp(τ, ξ) = 0. In this problem, noting Eqs. (31), the boundary
conditions, Eqs. (51), are such that

R+(ξ) = α1uw1

[

1
0

]

(53a)

and

R−(ξ) = α2uw2

[

1
0

]

. (53b)

For the half-space problems, when we substitute Eq. (45) into Eqs. (38) and
(42), we obtain, for ξ > 0,

Gh(0, ξ) − (1 − α)Gh(0,−ξ) = R(ξ) (54a)

with

R(ξ) = (1 − α)Gp(0,−ξ) − Gp(0, ξ). (54b)

In the next section we proceed to develop a discrete ordinates solution for the
problem defined by Eq. (50).

5. A discrete ordinates solution

In order to develop a solution for the homogeneous problem, defined by Eq. (50),
we first note that ψ(ξ), Eq. (19), is an even function, and we rewrite Eq. (50) as

ξ
∂

∂τ
Gh(τ, ξ) + εGh(τ, ξ)

= ε

∫ ∞

0

ψ(ξ′)
[

K(ξ′, ξ)Gh(τ, ξ′) + K(−ξ′, ξ)Gh(τ,−ξ′)
]

dξ′. (55)

We then introduce a half-range quadrature scheme to deal with the integral term
of Eq. (55), which we express now as

ξ
∂

∂τ
Gh(τ, ξ) + εGh(τ, ξ)

= ε
N

∑

k=1

ωkψ(ξk)
[

K(ξk, ξ)Gh(τ, ξk) + K(−ξk, ξ)Gh(τ,−ξk)
]

(56)
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where {ξk, ωk} are the N arbitrary nodes and weights defined for the interval
[0,∞). In this way, we assume ξ = ±ξi, for i = 1, ..., N , in Eq. (56) to obtain the
discrete ordinates version of Eq. (55),

± ξi
d

dτ
Gh(τ,±ξi) + εGh(τ,±ξi)

= ε

N
∑

k=1

ωkψ(ξk)
[

K(ξk,±ξi)G
h(τ, ξk) + K(−ξk,±ξi)G

h(τ,−ξk)
]

. (57)

We now seek for exponential solutions of the system given by Eq. (57), in the
form

Gh(τ, ξ) = Φ(ν, ξ)e−ετ/ν , (58)

where

Φ(ν, ξ) =

[

Φ1(ν, ξ)
Φ2(ν, ξ)

]

. (59)

We then substitute Eq. (58) into Eq. (57) to obtain, for i = 1, ..., N ,

(1 ∓ ξi/ν)Φ(ν,±ξi) =

N
∑

k=1

ωkψ(ξk) [K(ξk,±ξi)Φ(ν, ξk) + K(−ξk,±ξi)Φ(ν,−ξk)] ,

(60)
which we write in a matrix form as

(

I − Mν−1
)

Φ+(ν) = W(+,+)Φ+(ν) + W(−,+)Φ−(ν) (61a)

and
(

I + Mν−1
)

Φ−(ν) = W(+,−)Φ+(ν) + W(−,−)Φ−(ν), (61b)

with I the 2N × 2N identity matrix, M the 2N × 2N matrix defined as

M = diag {ξ1, ξ2, ..., ξN , ξ1, ξ2, ..., ξN} , (62)

and Φ±(ν) the 2N × 1 vectors

Φ±(ν) =
[

Φ1(ν,±ξ1) · · · Φ1(ν,±ξN ) Φ2(ν,±ξ1) · · · Φ2(ν,±ξN )
]T

.
(63)

Here T denotes the transpose operation. Continuing, W(±,±) is a 2N × 2N
matrix

W(±,±) =

[

W11(±,±) W12(±,±)
W21(±,±) W22(±,±)

]

, (64)

which have N × N sub-matrices as components, defined by

[Wmn(±,±)]i,j = ωjψ(ξj)kmn(±ξj ,±ξi), (65)

for m,n = 1, 2 and i, j = 1, ..., N . Here ωj are the weights of the quadrature
scheme, ψ(ξj) is defined in Eq. (19) and kmn(±ξj ,±ξi) are the components given
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in Eqs. (21). In fact, we can see from Eqs. (21) that the 2 × 2 matrix K(ξ′, ξ) is
such that

K(ξ′, ξ) = K(−ξ′,−ξ) (66a)

and

K(−ξ′, ξ) = K(ξ′,−ξ). (66b)

So, if we consider the result given by Eqs. (66) and note Eq. (65), we can verify
that, in Eqs. (64),

W(+,+) = W(−,−) (67a)

and

W(+,−) = W(−,+). (67b)

In this way, from now on, we use

W+ = W(+,+) = W(−,−) (68a)

and

W− = W(+,−) = W(−,+). (68b)

We use Eqs. (68) to rewrite Eqs. (61) as
(

I − Mν−1
)

Φ+(ν) = W+Φ+(ν) + W−Φ−(ν) (69a)

and
(

I + Mν−1
)

Φ−(ν) = W−Φ+(ν) + W+Φ−(ν). (69b)

Now, we let

U = Φ+(ν) + Φ−(ν), (70)

where Φ+(ν) and Φ−(ν) are 2N × 1 vectors defined in Eq. (63), and we add and
subtract Eqs. (69) to derive an eigenvalue problem

AX = λX, (71)

where A is a 2N × 2N matrix defined as

A = (W+ − W− − I)M−1 (W+ + W− − I)M−1, (72)

X is a 2N × 1 vector, such that

X = MU (73)

and, the eigenvalues are related to the separation constants, in Eq. (58), as

λ = ν−2. (74)

In fact, from Eq. (71) we obtain 2N separation constants νj and 2N eigenvectors
X(νj), which we use, along with Eqs. (61) to write the 2N×1 elementary solutions

Φ+(νj) =
1

2
M−1

[

I − νj(W+ + W− − I)M−1
]

X(νj) (75a)
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and

Φ−(νj) =
1

2
M−1

[

I + νj(W+ + W− − I)M−1
]

X(νj). (75b)

Looking back to Eq. (58), we are able now to write the general solution of the
problem given by Eq. (56) as

Gh(τ,±ξi) =

2N
∑

j=1

[

AjΦ(νj ,±ξi)e
−ε(a+τ)/νj + BjΦ(νj ,∓ξi)e

−ε(a−τ)/νj

]

. (76)

At this point, as usual for conservative problems, we have to consider that
some, in this case just one, eigenvalues go to zero when N goes to infinity, and
we have to introduce some exact solutions. Here, we take this aspect into account
and we rewrite Eq. (76), as

Gh(τ,±ξi) = A∗

1G1 + B∗

1G2(τ,±ξi)

+

2N−1
∑

j=1

[

AjΦ(νj ,±ξi)e
−ε(a+τ)/νj + BjΦ(νj ,∓ξi)e

−ε(a−τ)/νj

]

(77)

for the plane channel problems, and assuming a = 0

Gh(τ,±ξi) = A∗

1G1 + B∗

1G2(τ,±ξi)

+

2N−1
∑

j=1

[

AjΦ(νj ,±ξi)e
−ετ/νj + BjΦ(νj ,∓ξi)e

ετ/νj

]

, (78)

for the half-space problems. In these expressions, the chosen exact solutions of the
problem given by Eq. (55) are

G1 =

[

1
0

]

(79)

and

G2(τ, ξ) =

[

ετ − ξ/(1 − ̟)
0

]

. (80)

We proceed to evaluate the 4N coefficients A∗
1, B∗

1 , Aj , Bj , j = 1, ..., 2N − 1
to establish the complete ADO solution and to evaluate the quantities of interest.

6. Physical quantities of interest

At this point we need to apply the proposed form of the general solution, Eqs. (77)
and (78), respectively, for plane channel and half-space problems, into the bound-
ary equations, in order to determine the arbitrary constants present in the solution
and, next, to evaluate the velocity and heat flow profiles, as well as the other quan-
tities of interest.
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For channel problems, we look back to Eqs. (51) where we then substitute
Eq. (77) , such that, for i = 1, ..., N we obtain a 4N × 4N linear system,

2N−1
∑

j=1

{

Aj [Φ(νj , ξi) − (1 − α1)Φ(νj ,−ξi)]

+ Bj [Φ(νj ,−ξi) − (1 − α1)Φ(νj , ξi)]e
−2aε/νj

}

+ A∗

1α1G1 − B∗

1 [aεα1G1 + (α1 − 2)G2(0, ξi)] = R+(ξi) (81a)

and

2N−1
∑

j=1

{

Aj [Φ(νj ,−ξi) − (1 − α2)Φ(νj , ξi)]e
−2aε/νj

+ Bj [Φ(νj , ξi) − (1 − α2)Φ(νj ,−ξi)]
}

+ A∗

1α2G1 + B∗

1 [aεα2G1 + (α2 − 2)G2(0, ξi)] = R−(ξi). (81b)

The right-hand side of Eqs. (81) is expressed by different forms depending on
the problem to be solved, according Eqs. (52) and (53). In this sense, for the
Poiseuille flow problem

R+(ξi) = RP+(ξi)

= kP

[

(α1 − 2)aξi − α1ε(1 − ̟)a2/2 − [α1(5 − 4β)ξ2
i ]/[5ε(1 − β)]

−α12
1/2β/[5ε(1 − β)]

]

(82a)

and

R−(ξi) = RP−(ξi)

= kP

[

(α2 − 2)aξi − α2ε(1 − ̟)a2/2 − [α2(5 − 4β)ξ2
i ]/[5ε(1 − β)]

−α22
1/2β/[5ε(1 − β)]

]

. (82b)

Differently, for the thermal-creep problem,

R+(ξi) = RT+(ξi) =
kT α1

2ε(1 − β)

[

ξ2
i

21/2

]

(83a)

and

R−(ξi) = RT−(ξi) =
kT α2

2ε(1 − β)

[

ξ2
i

21/2

]

. (83b)

Finally, for solving the Couette flow problem, we have to evaluate the system
given by Eqs. (81) with the right-hand side given by

R+(ξi) = RC+(ξi) = α1uw1

[

1
0

]

(84a)

and

R−(ξi) = RC−(ξi) = α2uw2

[

1
0

]

, (84b)
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for i = 1, ..., N .
In this way, looking back to Eqs. (24), (25) and (34), we see that once we have

solved the G problem and we have completely established the solution, given by
Eq. (45), we can use the definitions

V(νj) =
N

∑

k=1

ωkψ(ξk)

[

1
0

]T

[Φ(νj , ξk) + Φ(νj ,−ξk)] (85)

and

Y(νj) =

N
∑

k=1

ωkψ(ξk)

[

ξ2
k − 1/2
21/2

]T

[Φ(νj , ξk) + Φ(νj ,−ξk)] , (86)

to write the following quantities:

Poiseuille flow problem

• velocity profile

uP (τ) = kP

[

ε(1 − ̟)τ2

2
+

5 − 4β

10ε(1 − β)

]

+ A∗

1 + B∗

1ετ

+

2N−1
∑

j=1

[Aje
−ε(a+τ)/νj + Bje

−ε(a−τ)/νj ]V(νj) (87)

• heat flow profile

qP (τ) =
kP

2ε(1 − β)
+

2N−1
∑

j=1

[Aje
−ε(a+τ)/νj + Bje

−ε(a−τ)/νj ]Y(νj) (88)

• mass flow rate

UP = kP

[

ε(1 − ̟)a

6
+

5 − 4β

10aε(1 − β)

]

+
A∗

1

a

+
1

2εa2

2N−1
∑

j=1

νj(Aj + Bj)(1 − e−2aε/νj )V(νj) (89)

• heat flow rate

QP =
kP

2aε(1 − β)
+

1

2εa2

2N−1
∑

j=1

νj(Aj + Bj)(1 − e−2aε/νj )Y(νj). (90)

Thermal-creep problem

• velocity profile

uT (τ) =
kT

4ε(β − 1)
+A∗

1 +B∗

1ετ +

2N−1
∑

j=1

[Aje
−ε(a+τ)/νj +Bje

−ε(a−τ)/νj ]V(νj) (91)
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• heat flow profile

qT (τ) =
5kT

4ε(β − 1)
+

2N−1
∑

j=1

[Aje
−ε(a+τ)/νj + Bje

−ε(a−τ)/νj ]Y(νj) (92)

• mass flow rate

UT =
kT

4aε(β − 1)
+

A∗
1

a
+

1

2εa2

2N−1
∑

j=1

νj(Aj + Bj)(1 − e−2aε/νj )V(νj) (93)

• heat flow rate

QT =
5kT

4aε(β − 1)
+

1

2εa2

2N−1
∑

j=1

νj(Aj + Bj)(1 − e−2aε/νj )Y(νj). (94)

Couette flow problem

• velocity profile

uC(τ) = A∗

1 + B∗

1ετ +
2N−1
∑

j=1

[Aje
−ε(a+τ)/νj + Bje

−ε(a−τ)/νj ]V(νj) (95)

• heat flow profile

qC(τ) =
2N−1
∑

j=1

[Aje
−ε(a+τ)/νj + Bje

−ε(a−τ)/νj ]Y(νj) (96)

• mass flow rate

UC =
1

2a2

∫ a

0

uC(τ)dτ =
A∗

1

2a
+

B∗
1ε

4

+
1

2εa2

2N−1
∑

j=1

νj(Aje
−aε/νj + Bj)(1 − e−aε/νj )V(νj) (97)

• heat flow rate

QC =
1

2a2

∫ a

0

qC(τ)dτ =
1

2εa2

2N−1
∑

j=1

νj(Aje
−aε/νj + Bj)(1 − e−aε/νj )Y(νj) (98)

• a component of the pressure tensor

Pxy =
B∗

1π1/2

2(̟ − 1)
. (99)

Analogously, for half-space problems, we begin with the general solution given
by Eq. (78). However, we now choose B∗

1 = 0 and Bj = 0 for j = 1, ..., 2N−1, to be
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consistent with the required behavior at infinity. The solution for the homogeneous
problem is then expressed as

Gh(τ,±ξi) = A∗

1G1 +

2N−1
∑

j=1

AjΦ(νj ,±ξi)e
−ετ/νj . (100)

We substitute Eq. (100) into the discrete ordinates version of the boundary con-
dition, given by Eqs. (54), to obtain, for i = 1, ..., N , the 2N × 2N linear system

αA∗

1G1 +
2N−1
∑

j=1

Aj [Φ(νj , ξi) − (1 − α)Φ(νj ,−ξi)] = R(ξi), (101)

where, for the thermal-slip problem

R(ξi) = Rs(ξi) =
kT α

2ε(1 − β)

[

ξ2
i

21/2

]

(102)

and for the viscous-slip problem

R(ξi) = Rk(ξi) =
k0(α − 2)ξi

ε(̟ − 1)

[

1
0

]

. (103)

Once we solve the system, Eq. (101), we are in position of evaluating the
following expressions:

Thermal-slip problem

• velocity profile

us(τ) =
kT

4ε(β − 1)
+ A∗

1 +
2N−1
∑

j=1

Aje
−ετ/νjV(νj) (104)

• heat flow profile

qs(τ) =
5kT

4ε(β − 1)
+

2N−1
∑

j=1

Aje
−ετ/νjY(νj) (105)

• thermal-slip coefficient

As =
kT

4ε(β − 1)
+ A∗

1. (106)

Viscous-slip problem

• velocity profile

uk(τ) = k0τ + A∗

1 +

2N−1
∑

j=1

Aje
−ετ/νjV(νj) (107)
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• heat flow profile

qk(τ) =
2N−1
∑

j=1

Aje
−ετ/νjY(νj) (108)

• viscous-slip coefficient Ak is such that

uasy(0) = Ak
d

dτ
uasy(τ)|τ=0, (109)

where

uasy(τ) = k0τ + A∗

1. (110)

In this way,

Ak =
A∗

1

k0
. (111)

7. Computational aspects and numerical results

The basic steps to implement the ADO solution developed here are simple:
• to solve the eigenvalue problem given by Eq. (71);
• to evaluate the elementary solutions, Eqs. (75);
• to solve the linear system defined in Eqs. (81), for plane channel problems,

and in Eq. (101), for half-space problems;
• to evaluate the quantities – Eqs. (87) to (99) and (104) to (111) – defined in

the previous section.
We have done that using FORTRAN programs, where linear algebra software

packages, usually LINPACK [36] and EISPACK [37], are used to deal with the
eigenvalue problems and the linear system. In this specific work, two independent
programs were developed in order to check the results presented.

However, we emphasize that, according with the derivation initiated in Eq. (55),
one of the (good) features of the ADO method is the use of an arbitrary quadrature
scheme. So, the very first step, needed to define the eigenvalue problem mentioned
in the above list, is to define a quadrature scheme. In most of the works related to
applications of the ADO method, in rarefied gas dynamics problems, a half-range

quadrature scheme is proposed. In fact, we first use the transformation

u(ξ) = e−ξ (112)

to map the interval [0,∞) into [0, 1] and we then make use of another change of
variable,

v(u) = 2u − 1, (113)

to be able to work, for v ∈ [−1, 1], with the known Gauss-Legendre quadrature
scheme. In this way, we approximate the integral term originally defined in the
interval [0,∞).
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The numerical results listed in the tables were obtained with N = 50 quadrature
points, and, checked by two different programs. In general, it takes less than one
second to obtain numerical results for a profile, in a Pentium IV - 2,66 GHz. We
have tested many different values for N to have more confidence in our results and
we note that the digits listed here are kept (plus or minus one in the last digit)
when the value of N increases.

Since we have available an analytical procedure, which generates a fast solution
and which easily allow us to work with a wide range of parameters, it seems a
good point to have a wide series of results, which may give us possible ideas about
physical behavior, and, in particular to establish a general view of the different
kinetic models results.

Then, we present in Tables 1 to 26 results for all the problems described in
Sec. 3. First of all, to have more confidence in our programs, by an appropriate
choice of the parameters β and ̟, in Eqs. (4), we solved particular cases of the
BGK and S-model to compare with Refs. [26] and [27], with which we found good
agreement. Then, in order to establish a general and complete comparison, we
generate results, showed in Tables 1 to 18, for a set of parameters to which we had
available in the literature results provided by the ADO method, for other kinetic
models than the GJ and MRS models. In particular, results provided by the CES
model [29, 30] and also the LBE equation [38]. It is important to remark that dif-
ferently of the models defined in Eqs. (4), the CES model components [10] have to
be evaluated by solving some integral equations, and the difficulties and the com-
putational effort involved in its implementation are much more significant. Same
observation is valid for the results obtained from the LBE equation [38], where, in
fact, the ADO method is associated with the coefficients of a proposed expansion
of the solution in terms of Legendre functions. We believe these comments are
relevant, in respect to the analysis we try to establish in this work.

And so, Tables 1 to 4 are related to the different quantities of interest evaluated
for the Poiseuille flow problem. Results for the thermal-creep problem are listed
in Tables 5 to 7. In Tables 8 to 12, the results showed are associated with the
Couette flow problem. An analysis of the thermal-slip and viscous-slip problems
may be based on Tables 13 to 15 and Tables 16 to 18, respectively.

Here we note that, we used the Onsager’s relation [39]–[44], UT = QP , as an
additional way of checking our results for the Poiseuille and thermal-creep prob-
lem, and so, we supressed the related repeated results in Tables 5 to 7. Another
variation of the Onsager’s relation that yields a useful relationship between the
thermal-slip coefficient and the heat flow of the viscous-slip problem [44, 45] was
also checked. We follow Siewert [45] and write this relation as

1

k0

∫ ∞

0

qk(τ)dτ =
εpεt

ε2
a

[

γ − (εb/εt)
As

kT

]

, (114)

with

γ =
8

15π1/2εpεt

∫ ∞

0

e−c2

A(c)B(c)c3dc, (115)
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and where, εa assumes the given value for ε, in Eq. (18), when the viscous-slip
problem is solved. Analogously, εb assumes the given value for ε, in Eq. (18),
when the thermal-slip problem is solved. Still, in Eq. (115), the correspondent
approximations for the Chapman-Ensgok functions [19, 10], A(c) and B(c), related
to all four kinetic models we treat in this work, are expressed as [10, 34, 11]

A(c) = εtc(c
2 − 5/2), B(c) = εpc

2. (116a,b)

If we substitute Eqs. (116) into Eq. (115), we find that γ = 1/2, for all four kinetic
models (BGK, S, GJ and MRS). This result agrees with previous result by Siewert
[45] obtained for the BGK and the S model. In this way, we rewrite Eq. (114) as

1

k0

∫ ∞

0

qk(τ)dτ =
εpεt

ε2
a

[

1/2 − (εb/εt)
As

kT

]

, (117)

which was used to check our results, according Eqs. (108) and (106), for k0 = kT =
1. In fact, from these equations we can still write

2N−1
∑

j=1

AjνjY(νj) =
εpεt

εa
[1/2 − (εb/εt)As] . (118)

In particular, for different choices of εa and εb, we were able to confirm the results
given in Table 15, for the BGK, S, GJ and MRS models.

Next, in Tables 19 to 26, we chose the GJ model to generate some results for
channel problems defined by surfaces with different accommodation coefficients,
since it has been of interest these days [46], and, at the same time, not many
results are available in the literature.

An analysis of the general class of cases we have studied lead us to point out
some concluding comments:

• Considering the three kinetic models which gives a correct value for Prandtl
number (εp/εt ratio), the S-model, the GJ model and the MRS model, which
solution here are developed from the same main procedure, a detailed view [47]
seems to point out that, the MRS model shows results in better agreement (in
general 2 to 3 digits) with the CES and the LBE results; except for the Poiseuille
flow and thermal-creep problems, where the GJ model works better, in this sense.

• In most of the cases the CES model results show better agreement, in general
one more digit, than other models, when compared with the LBE results. However
we call the attention to the fact that, the ADO method applied to this formulation
is not included in the derivation presented here, and more significant analytical
and computational efforts have to be considered.

• When the BGK model is included in the comparison, a better agreement
between the dimensionless results provided for all the models depends, of course,
on the choice of the mean-free-path.

A much more detailed analysis was taken into account [47], however, it would
be too long to present here. But, surely, we can say that having a fast solution
was very helpful in the generation of all the results [47].
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8. Concluding remarks

A complete derivation of the solution of a class of kinetic equations – BGK, S,
GJ and MRS models – based on an analytical version of the discrete-ordinates
method, the ADO method, was presented. Several problems of the rarefied gas
dynamics were solved based on this approach. A general comparison and analysis
of those results with results provided by the LBE equation was established. The
fact of using the same method, with analytical character, has been an important
aspect and motivation when a comparative analysis of accurate results has to be
carried out. Considering the analytical and computational effort versus the results,
it seems that the GJ and MRS models add some improvements with respect to
the other constant collision frequency models. In addition, it is important to
emphasize that the ADO solution can be seen as a quite general procedure, in
the sense of being able to deal with all this wide class of problems under the same
basic procedures. In subsequent papers, we show that, except for minor changes in
regard to the components of the matrix given by Eqs. (21) and the exact solutions
expressed in Eqs. (79) and (80), the ADO solution is also valid in this general
sense to problems associated with heat-transfer and evaporation processes.
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Table 19. Poiseuille problem: mass flow rate UP with GJ model, ε = εp and kP = 1.0

α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5

2a α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.8 α2 = 1.0

0.10 –6.70315 –5.29293 –4.26632 –3.15486 –2.59659

0.30 –5.85677 –4.52999 –3.61547 –2.67425 –2.22107

0.50 –5.66560 –4.32458 –3.43312 –2.54315 –2.12461

0.70 –5.61234 –4.24121 –3.35602 –2.49242 –2.09302

0.90 –5.61241 –4.20648 –3.32162 –2.47465 –2.08808

1.00 –5.62314 –4.19914 –3.31335 –2.47268 –2.09121

2.00 –5.87222 –4.26638 –3.35934 –2.55324 –2.20256

5.00 –6.83729 –4.75063 –3.77995 –3.01116 –2.69895

7.00 –7.45341 –5.09721 –4.09634 –3.34049 –3.04174

9.00 –8.03572 –5.44352 –4.41936 –3.67276 –3.38338

10.0 –8.31538 –5.61607 –4.58218 –3.83930 –3.55363

Table 20. Poiseuille problem: mass flow rate UP with GJ model, ε = εp and kP = 1.0

α1 = 1.0 α1 = 1.0 α1 = 1.0 α1 = 1.0 α1 = 1.0

2a α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.8 α2 = 1.0

0.10 –3.23646 –2.90617 –2.59659 –2.16688 –1.90112

0.30 –2.85427 –2.51716 –2.22107 –1.83855 –1.61688

0.50 –2.79553 –2.43057 –2.12461 –1.74792 –1.53852

0.70 –2.80942 –2.41283 –2.09302 –1.71399 –1.50984

0.90 –2.85252 –2.42289 –2.08808 –1.70385 –1.50222

1.00 –2.88011 –2.43365 –2.09121 –1.70388 –1.50295

2.00 –3.23995 –2.61963 –2.20256 –1.78063 –1.57939

5.00 –4.43491 –3.29187 –2.69895 –2.19815 –1.98647

7.00 –5.17873 –3.71708 –3.04174 –2.50829 –2.29176

9.00 –5.87113 –4.12225 –3.38338 –2.82660 –2.60667

10.0 –6.19999 –4.31897 –3.55363 –2.98757 –2.76631
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Table 21. Poiseuille problem: heat flow rate QP with GJ model, ε = εp and kP = 1.0

α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5

2a α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.8 α2 = 1.0

0.10 1.89586 1.57432 1.32860 1.05026 9.05271(–1)

0.30 1.20945 1.03139 8.98886(–1) 7.51688(–1) 6.76059(–1)

0.50 9.31226(–1) 8.09273(–1) 7.22061(–1) 6.27882(–1) 5.80308(–1)

0.70 7.66249(–1) 6.75364(–1) 6.13601(–1) 5.49593(–1) 5.18165(–1)

0.90 6.54228(–1) 5.83048(–1) 5.37441(–1) 4.92662(–1) 4.71600(–1)

1.00 6.10346(–1) 5.46517(–1) 5.06899(–1) 4.69228(–1) 4.52005(–1)

2.00 3.69403(–1) 3.41520(–1) 3.29799(–1) 3.24064(–1) 3.23770(–1)

5.00 1.70712(–1) 1.64802(–1) 1.66071(–1) 1.71603(–1) 1.75984(–1)

7.00 1.25460(–1) 1.22854(–1) 1.25113(–1) 1.30534(–1) 1.34412(–1)

9.00 9.90403(–2) 9.79012(–2) 1.00314(–1) 1.05183(–1) 1.08513(–1)

10.0 8.95692(–2) 8.88622(–2) 9.12513(–2) 9.58381(–2) 9.89302(–2)

Table 22. Poiseuille problem: heat flow rate QP with GJ model, ε = εp and kP = 1.0

α1 = 1.0 α1 = 1.0 α1 = 1.0 α1 = 1.0 α1 = 1.0

2a α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.8 α2 = 1.0

0.10 1.11449 1.00512 9.05271(–1) 7.71244(–1) 6.91176(–1)

0.30 8.42671(–1) 7.52178(–1) 6.76059(–1) 5.83048(–1) 5.32260(–1)

0.50 7.24337(–1) 6.44134(–1) 5.80308(–1) 5.06887(–1) 4.68986(–1)

0.70 6.44485(–1) 5.72715(–1) 5.18165(–1) 4.58380(–1) 4.28865(–1)

0.90 5.83055(–1) 5.18600(–1) 4.71600(–1) 4.22264(–1) 3.98865(–1)

1.00 5.56864(–1) 4.95717(–1) 4.52005(–1) 4.07053(–1) 3.86145(–1)

2.00 3.83564(–1) 3.45979(–1) 3.23770(–1) 3.05262(–1) 2.98443(–1)

5.00 1.92524(–1) 1.79718(–1) 1.75984(–1) 1.76217(–1) 1.77937(–1)

7.00 1.43006(–1) 1.35332(–1) 1.34412(–1) 1.36643(–1) 1.38944(–1)

9.00 1.13331(–1) 1.08295(–1) 1.08513(–1) 1.11264(–1) 1.13559(–1)

10.0 1.02582(–1) 9.84083(–2) 9.89302(–2) 1.01742(–1) 1.03971(–1)
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Table 23. Thermal-creep problem: heat flow rate QT with GJ model, ε = εp and kT = 1.0

α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5

2a α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.8 α2 = 1.0

0.10 –1.05048(1) –8.84162 –7.49218 –5.87342 –4.98851

0.30 –6.26190 –5.47381 –4.80606 –3.97230 –3.50205

0.50 –4.62535 –4.13891 –3.71573 –3.17335 –2.86080

0.70 –3.69524 –3.36174 –3.06659 –2.68148 –2.45613

0.90 –3.08434 –2.84104 –2.62320 –2.33537 –2.16507

1.00 –2.85011 –2.63878 –2.44874 –2.19642 –2.04646

2.00 –1.62388 –1.55018 –1.48260 –1.39081 –1.33508

5.00 –7.08241(–1) –6.94452(–1) –6.81727(–1) –6.64309(–1) –6.53660(–1)

7.00 –5.14364(–1) –5.07252(–1) –5.00685(–1) –4.91698(–1) –4.86204(–1)

9.00 –4.03745(–1) –3.99432(–1) –3.95449(–1) –3.89998(–1) –3.86668(–1)

10.0 –3.64533(–1) –3.61037(–1) –3.57809(–1) –3.53393(–1) –3.50695(–1)

Table 24. Thermal-creep problem: heat flow rate QT with GJ model, ε = εp and kT = 1.0

α1 = 1.0 α1 = 1.0 α1 = 1.0 α1 = 1.0 α1 = 1.0

2a α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.8 α2 = 1.0

0.10 –6.01184 –5.49157 –4.98851 –4.26400 –3.79974

0.30 –4.16422 –3.82332 –3.50205 –3.05262 –2.77228

0.50 –3.35743 –3.10019 –2.86080 –2.53032 –2.32658

0.70 –2.84648 –2.64361 –2.45613 –2.19914 –2.04163

0.90 –2.47999 –2.31598 –2.16507 –1.95897 –1.83305

1.00 –2.33135 –2.18289 –2.04646 –1.86039 –1.74680

2.00 –1.45893 –1.39425 –1.33508 –1.25455 –1.20546

5.00 –6.79836(–1) –6.66183(–1) –6.53660(–1) –6.36560(–1) –6.26110(–1)

7.00 –4.99830(–1) –4.92728(–1) –4.86204(–1) –4.77289(–1) –4.71841(–1)

9.00 –3.94950(–1) –3.90635(–1) –3.86668(–1) –3.81245(–1) –3.77933(–1)

10.0 –3.57409(–1) –3.53912(–1) –3.50695(–1) –3.46298(–1) –3.43612(–1)
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Table 25. Couette problem: component Pxy of the pressure tensor, GJ model, ε = εp and
uw1 = −uw2 = 1.0

α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5 α1 = 0.5

2a α1 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.8 α2 = 1.0

1.0(–1) 9.01195(–2) 2.25802(–1) 3.23169(–1) 4.26788(–1) 4.77939(–1)

1.0 8.50593(–2) 1.96912(–1) 2.67784(–1) 3.36756(–1) 3.68962(–1)

1.0(1) 5.90856(–2) 9.76856(–2) 1.12564(–1) 1.23364(–1) 1.27572(–1)

1.0(3) 1.73770(–3) 1.75813(–3) 1.76232(–3) 1.76474(–3) 1.76557(–3)

1.0(7) 1.77245(–7) 1.77245(–7) 1.77245(–7) 1.77245(–7) 1.77245(–7)

Table 26. Couette problem: component Pxy of the pressure tensor, GJ model, ε = εp and
uw1 = −uw2 = 1.0

α1 = 1.0 α1 = 1.0 α1 = 1.0 α1 = 1.0 α1 = 1.0

2a α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.8 α2 = 1.0

1.0(–1) 9.90573(–2) 2.91796(–1) 4.77939(–1) 7.46110(–1) 9.18291(–1)

1.0 9.31454(–2) 2.46543(–1) 3.68962(–1) 5.14717(–1) 5.94581(–1)

1.0(1) 6.29742(–2) 1.08792(–1) 1.27572(–1) 1.41624(–1) 1.47197(–1)

1.0(3) 1.74086(–3) 1.76137(–3) 1.76557(–3) 1.76800(–3) 1.76884(–3)

1.0(7) 1.77245(–7) 1.77245(–7) 1.77245(–7) 1.77245(–7) 1.77245(–7)
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