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Avenida Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil

4 Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria,
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Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water
blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns
occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study,
we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the
microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 µg/L) decreased by 63%
the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant
alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals
were exposed to 50 and 100 µg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion
of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted
significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate
that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of
toxic algal blooms.

1. Introduction

Microcystis aeruginosa is a freshwater cyanobacteria, known
producer of a family of toxins termed microcystins (MCs)
[1, 2]. MCs are hepatotoxic cyclic heptapeptides released into

water during or on senescence of cyanobacterial blooms [3].
The peptide rings of MCs contain five nonprotein amino
acids, whereas the two-protein amino acids distinguish
MCs from one another. MC-LR contains the amino acids
leucine and arginine. MC-LR is one of the most commonly



2 Journal of Toxicology

occurring [2, 4] and the most toxic microcystin [5]. The
intact cells as well as the toxins released after cellular lysis
can be responsible for the toxic effects observed in many
organisms, from microalgae [6] to mammals [7] including
human [8–10].

Exposure to toxic cyanobacteria or administration of
MCs may cause hepatotoxic effects [11–13], oxidative stress
[14], kidney damage [15, 16], growth inhibition [17, 18],
reproductive injury [19], haematological and biochemical
alterations [20–22], apoptosis [23], and even fish death [24].

Alterations in normal behavioral patterns may be the
first line of defense when an animal is exposed to an envi-
ronmental perturbation [25–28]. Additionally, studies have
shown important interrelationships between hormones and
behavior [29–33]. Thus, alteration in cortisol level may con-
sequently alter normal fish behavior. The effects of MC on
fish behavior are still unknown, but some issues have already
been addressed. Baganz et al. [34, 35] reported changes in
the spontaneous locomotor behavior of zebrafish (Danio
rerio) and Leucaspius delineatus after MC-LR exposure, and
Cazenave et al. [36] showed changes in swimming activity
of Jenynsia multidentata fed with microcystin-RR (MC-
RR). In addition, studies using different exposure routes
(intraperitoneal injection, oral ingestion, or immersion)
have demonstrated that MCs can accumulate in fish tissues,
mainly in the liver [21, 36–39], intestine [37, 39–41], gills
[42, 43], kidney [37, 39], muscle [40, 41, 44–46], gallbladder
[47], blood [40, 41, 48], and brain [43]. Altogether, these
findings indicate possible neurotoxic effects of MCs on
fish, causing serious risks to the success of fish populations
and changes in biodiversity, among other ecological conse-
quences [36].

The zebrafish is rapidly becoming a popular model spe-
cies in many areas of biological research. Its application in-
cludes the fields of developmental biology [49], toxicology
[50], neurophysiology, biomedicine, drug discovery [51],
human diseases [52–54], pharmacology and behavioral anal-
ysis [55–59]. These fish exhibit robust behavioral responses,
well-characterized genome, neural and endocrine systems
homologous to humans [60–62], and possess all of the “clas-
sical” vertebrate neurotransmitters [63, 64]. Additionally,
zebrafish are an ideal animal model for laboratory research
because they are inexpensive, require low maintenance, and
produce abundant offspring [65]. Recently, this fish was also
used for proteomic studies on the toxicity of MCs [66, 67].

In order to better understand the neurotoxic effects of
MCs on fish and to improve the knowledge of mechanisms
underlying the toxicity, the main goal of this study was to
assess the effects of MC-LR on zebrafish behavioral parame-
ters and endocrine (whole-body cortisol) response after toxin
exposure.

2. Materials and Methods

2.1. Animals. Wild-type adult (<8 months old) zebrafish
(Danio rerio) of both sexes were obtained from specialized
supplier (Redfish Agroloja, RS, Brazil). Animals were kept in
50 L housing tanks with tap water previously treated with

Tetra’s AquaSafe (to neutralize chlorine, chloramines, and
heavy metals present in the water that could be harmful to
fish) and continuously aerated (7.20 mg O2/L) at 26 ± 2◦C,
under a 14–10 h light/dark photoperiod in a density of up
to five animals per liter. Animals were acclimated for at least
two weeks before the experiments. They were fed three times
a day with TetraMin Tropical Flake fish.

The procedures were previously approved by the Ani-
mal Ethics Committee of Pontifical Catholic University of
Rio Grande do Sul (PUCRS) under the protocol number
10/00142-CEUA.

2.2. Treatments. The amount of MC-LR in the cell culture of
M. aeroginosa (strain RST9501) was detected by a Quantita-
tive Antibody Immunoassay (Elisa) against MC-LR provided
by Envirologix (Portland, USA), within a range of detection
from 0.05 to 2.5 µg/L MCs. A suitable dilution was applied
to the culture sample to provide detection within the range.
Zebrafish were distributed in three groups: the first group
(controls) was exposed to water containing the culture
medium of M. aeroginosa for 24 hours; the second and third
groups were exposed to cell culture in a final MC-LR concen-
tration of 50 µg/L and 100 µg/L during 24 hours, respectively.
Immediately after the exposure, animals were tested in tank-
diving behavioral test and social interaction. After behavioral
tests animals were euthanized by decapitation.

The MC-LR concentrations and the time of exposure
were chosen based on a previous study using J. multidentata
[43]. Besides, such concentrations are commonly encoun-
tered in cyanobacterial bloom events [68, 69].

2.3. Tank-Diving Behavioral Test. Behavioral testing took
place during the light phase between 10:00 AM and 4:00
PM The animals were individually transferred to a 2.7 L
tank (24 cm L × 8 cm W × 20 cm H) with laterals and
bottom white covered to avoid any visual disturbances and
habituated to the tank for 30 s, as previously described [70].
There was no drug exposure during behavioral experiments.
The locomotor activity of the animals was video-recorded
using Logitech Quickcam PRO9000 for five minutes after
the habituation period and further analyzed using the ANY-
Maze recording software (Stoelting Co., Wood Dale, IL,
USA). The tank was divided into equal sections with four
vertical lines and one horizontal line, and the following
behavior patterns were measured: distance traveled (meters),
immobility time (seconds), number of crossings, absolute
turn angle, path efficiency, and time (seconds) spent in the
bottom portion. This task exploits the natural tendency for
zebrafish to spend most of the time at the bottom when
introduced into a novel environment and then gradually
extend the swimming range, over a period of minutes, to
include the upper portions of the test tank. A longer time
spent in the bottom part of the tank indicates heightened
anxiety [71].

2.4. Social Interaction. Zebrafish is a schooling fish that
may exhibit preference for its conspecifics under certain
circumstances. The social interaction analysis was based on
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Gerlai [72]. After 24 hours of exposition to 50 or 100 µg/L
of MC-LR, fish were placed in groups of five in a small
experimental tank (30 cm L × 15 cm H × 10 cm W). On
one side of the experimental tank, an empty fish tank was
placed, and, on the other side, there was a tank of identical
size containing 15 conspecifics. The experimental fish were
allowed to acclimate to the experimental tank for a 30 s
period, after which their behavior was analyzed. The next
10 s of this test was analyzed as follows. The experimental
tank was virtually divided into two equal sections with one
vertical line. The time that all five experimental fish spent
on the side of the tank closer to the conspecific school was
measured using a stopwatch.

2.5. Acute Restraint Stress (ARS) Protocol. The ARS protocol
was based on Piato et al. [73]. Following the habituation
period, fish were submitted to the ARS protocol. This
experiment consisted in keeping each animal enclosed into
microcentrifuge plastic tubes of 2 mL with the cap closed and
small openings in both ends to allow free water circulation
inside the tube and completely avoid fish locomotion. After
90 min of confinement, animals were gently captured and
immediately frozen in liquid nitrogen and stored at −80◦C
until cortisol extraction. Aeration (8 ppm, Labcom Test
Camboriú, SC, Brazil) and water temperature (26 ± 2◦C)
were controlled throughout the test.

2.6. Measurement of Cortisol. The extraction and measure-
ment of whole-body cortisol from zebrafish have been
described in detail by Barcellos et al. [74]. Briefly, zebrafish
were distributed in four groups: the first group, which con-
sisted of zebrafish exposed to water containing the culture
medium of M. aeroginosa for 24 hours, was considered
the “negative control”; the second and third groups were
exposed to cell culture in a final MC-LR concentration of
50 µg/L and 100 µg/L during 24 hours, respectively; in the
fourth group, considered the “positive control,” zebrafish
were submitted to the ARS protocol. After, zebrafish were
captured and immediately frozen in liquid nitrogen and
stored at −80◦C until whole-body cortisol extraction. Each
zebrafish was weighed, and a pool of three fish was minced
and placed into a disposable stomacher bag with 2 mL of
phosphate buffered saline (PBS, pH 7.4) for 6 min. The
contents were transferred to a 10 mL screw top disposable
test tube, and 5 mL of laboratory grade ethyl ether was
added. The tube was vortexed for 1 min and centrifuged
for 10 min at 3000 rpm. The tube was then immediately
frozen at liquid nitrogen, and the unfrozen portion (ethyl
ether containing cortisol) was decanted. The ethyl ether was
transferred to a new tube and completely evaporated under
a gentle stream of nitrogen for 2 h, yielding a lipid extract
containing the cortisol. The extract was stored at −20◦C
until the ELISA was conducted on the samples suspended
with 1 mL of PBS buffer. In order to prevent a possible
stress response induced by manipulation, the time elapsed
between capture and killing was less than 10 s. Whole-
body cortisol was measured in duplicate samples of tissue
extract with a commercially available high sensitivity salivary

cortisol-enzyme immunoassay kit (Salimetrics, USA). The
specificity of the test was evaluated by comparing the
parallelism between the standard curve and serial dilutions
of the tissue extracts in PBS (pH 7.4). The standard curve
constructed with the human standards ran parallel to that
obtained using serial dilutions of zebrafish tissue extracts.
In the linear regression test, high positive correlation (R2 =
0.9818) was found between the curves. The intra-assay
coefficient of variation was 3.33–3.65%.

2.7. Statistical Analysis. Data of the exploratory assessment,
social interaction, and cortisol levels were expressed as
mean ± SEM and analyzed by one-way ANOVA, followed
by Newman-Keuls post hoc test. A significant difference was
attributed to P < 0.05. All data were evaluated by SPSS 18.0
for Windows.

3. Results

Distinct parameters of zebrafish swimming activity were
evaluated in the 5-min tank-diving behavioral test. MC-LR
exposure at 100 µg/L significantly (one-way ANOVA/New-
man-Keuls, P < 0.0081, n = 10) decreased the distance
traveled (3.7 ± 0.6 meters) in relation to control animals
(10.3 ± 1.7 meters) (Figure 1(a)) and significantly (one-way
ANOVA/Newman-Keuls, P < 0.039, n = 10) increased
the immobility time (137.6 ± 27.6 seconds) when compared
to the control group (41.5 ± 17.3 seconds) (Figure 1(b))
whereas MC-LR exposure at 50 µg/L did not alter both
parameters. No differences in the number of line crossings,
absolute turn angle, and path efficiency were observed in
both concentrations tested (Figure 1(c), 1D and 1E, resp.).

Control animals spent 58.4% of time (175.0 ± 28.6) in
the bottom portion of the test tank. Animals exposed to 50
and 100 µg/L MC-LR significantly (one-way ANOVA/New-
man-Keuls, P < 0.0003, n = 10) increased (93%) the time
spent in the bottom portion of the test tank (282.1 ± 7.90
and 282.7 ± 9.7, resp.) when compared with control group
(175.0± 28.6) (Figure 1(f)).

In relation to social interaction test, the results showed
that 50 and 100 µg/L of MC-LR concentrations did not
promote any alteration in the animals regarding this behavior
(Figure 2).

Levels of whole-body cortisol also were measured.
The ARS protocol (positive control) resulted in enhanced
whole-body cortisol in relation to control group (one-way
ANOVA/Newman-Keuls, P < 0.005, n = 7; 10.7 ± 1.4 and
6.7 ± 0.7, resp.). Zebrafish treated with both concentrations
of MC-LR did not present altered levels of cortisol in relation
to control group (Figure 3).

4. Discussion

Behavioral alterations reflect how an animal senses and
responds to its environment and is the first line of defense
when an animal is exposed to an environmental perturbation
[28]. Since it was already demonstrated that the effects
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Figure 1: Effect of microcystin-LR exposure on the distance traveled (a), immobility time (b), number of line crossings (c), absolute turn
angle (d), path efficiency (e), and time in the bottom portion (f) determined during 5 min of video recording in the tank-diving behavioral
test. Data expressed as mean ± SEM. n = 10. One-way ANOVA/Newman-Keuls post hoc test. ∗: P < 0.05 compared to control group.

promoted by cyanobacterial crude extracts on aquatic organ-
isms were either more pronounced or different from those
observed using pure toxins [75, 76], we used cell culture
of the microcystin-producing cyanobacterium M. aeruginosa
(MC-LR) in order to evaluate the effects of MCs on zebrafish
behavior.

The toxin concentration and time period of animals’
exposure were chosen based on previous studies that
showed MCs accumulation in fish tissues [21, 37–48]. The
results presented herein demonstrated that 100 µg/L MC-LR
decreased the distance traveled and increased the immobility
time. However, no significant alterations were found in the
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tion. Data expressed as mean ± SEM. n = 10. One-way ANOVA/
Newman-Keuls post hoc test.
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Figure 3: Effect of exposure to microcystin-LR on whole-body
cortisol levels. Data expressed as men ± SEM. n = 7. One-way
ANOVA/Newman-Keuls post hoc test. ∗P < 0.05 compared to
control group.

number of line crossings with both concentrations. When
animals were exposed to 50 and 100 µg/L, MC-LR led to a
significant increase in the time spent in the bottom portion.
The results also showed that none of the MC-LR concentra-
tions tested promoted significant alterations in the absolute
turn angle, path efficiency, or social interaction.

Since behavior links physiological function with ecolog-
ical processes for a given species, it might provide a useful
indicator or biomarker for detecting harmful chemical
pollutants [77]. The potential of the zebrafish as a model in
neurobehavioral research has emerged only recently. Studies
have examined behavior in zebrafish larvae [78–81], as well
as their responses to different drugs, such as ethanol [82,
83] and fluoxetine [84]. Studies on adult zebrafish include
social behavior [85–87], olfactory-related behaviors [88, 89],
anxiety [74], addiction [90–92], sleep [93], learning and
memory [94, 95].

There are still only few studies evaluating the effects
of MCs on fish behavior. Baganz et al. [34] verified that
exposure to MC-LR caused dose-effect-related changes in
spontaneous locomotor activity in zebrafish. Whereas expo-
sure to lower concentrations (0.5 and 5 µg/L) caused an
increase in daytime mobility, elevated exposures (15 and
50 µg/L) led to significantly increased immobility. The high-
est exposure (50 µg/L) also reduced the spawning activity and
reduced spawning success. In contrast to daytime activities,
night-time swimming activity was significantly greater at the
higher MC-LR exposures. In another study, Baganz et al.
[35] showed changes in the spontaneous locomotor behavior
of zebrafish and L. delineatus after exposure to MC-LR in
concentrations of 0.5, 5, and 15 µg/L for 17 days and 50 µg/L
for six days. During the daytime, the mobility of zebrafish
as well as L. delineatus increased significantly by exposure
to the lowest concentrations, whereas higher concentrations
led to significantly decreased mobility. Influenced by MC-
LR, the swimming time of L. delineatus reversed, going
from a prominently diurnal activity to a nocturnal one;
zebrafish remained active during the daytime. Additionally,
Cazenave et al. [36] reported changes in the swimming
activity of J. multidentata fed with contaminated food pellets
containing MC-RR. Low levels (0.01 µg/g) increased the
swimming activity, while the highest dose (1 µg/g) used
produced significant changes with respect to control group
(only since approximately 20 hours of exposure), when the
swimming activity was decreased.

In this sense, our findings demonstrate that MC-LR at
the highest concentration (100 µg/L) caused a decrease in
the distance traveled and an increase in the immobility time
in zebrafish. Interestingly, no significant alterations in the
number of line crossings were found at the same MC-LR
concentration and time of exposure, despite the tendency to
decrease the number of crossings in greater concentration.
It is important to emphasize that these findings are similar
to the results published previously by Baganz et al. [35].
However, these authors have used purified toxin whereas a
cell culture of the microcystin-producing cyanobacterium
M. aeruginosa (MC-LR) was used in our experiments.
Reduction in swimming capability, resulting in a reduction
in the rate of activity, may decrease the ability to gather
food and make the fish more vulnerable to predation [96].
Under natural conditions, this reduced overall level of
activity will eventually cause disadvantages to the organisms
in the ecosystem, and, therefore, influence the biocoenotic
structures and functions [34].

Exposure to a novel environment evokes a robust anxiety
response in zebrafish [97], as they dive to the bottom
(geotaxis) until they feel safe to swim in the upper regions of
the tank [58]. Here, MC-LR at 50 and 100 µg/L promoted an
increase in the time spent in the bottom portion, suggesting
an anxiety behavior.

The zebrafish is a social species and exhibits group
preference as well as aggression. Shoaling behavior com-
mences soon after hatching and fish reared in isolation
quickly form shoals when placed together [98]. One study
has demonstrated that exposure to nonylphenol over a 5-day
period decreased shoaling tendency in juvenile rainbow trout
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(Oncorhynchus mykiss) [99]. Similarly, herbicide-exposed
goldfish also showed a decreased aggregation [100]. Loco-
motor activity, aggressive behavior, and group preference of
the male zebrafish and group preference of the females were
clearly inhibited when zebrafish were exposed for 60 days to
100 µg/L nonylphenol concentration [101]. For this reason,
we evaluated the effect of MC-LR exposure on zebrafish
social interaction. However, no significant alteration was
found between control and MC-LR-exposed animals.

Studies have shown important interrelationships be-
tween stress hormones and behavior [29–33]. An elevated
plasma cortisol level is a primary indicator of a stress
response in fish [102]. Zebrafish, like humans, employ
cortisol as a primary stress response hormone [74]. Con-
sidering this, we measured whole-body cortisol in zebrafish
to verify if MC could elicit a stress response in treated
fish. However, no significant alterations were found in
whole-body cortisol levels in animals exposed to both
concentrations of MC-LR compared to the control group.
Barcellos et al. [74] demonstrated that whole-body cortisol
level of zebrafish increases after visual contact with a predator
species. Cortisol levels were significantly higher in zebrafish
submitted to unpredictable chronic stress (UCS) protocol
when compared to control group [103]. Bury et al. [104]
reported a significant increase in plasma cortisol levels of
the brown trout (Salmo trutta) after 1 h and returned to the
control level after 24 h of exposure to lysed toxic Microcystis
aeruginosa cells. Crucian carp (Carassius auratus) exposed to
sublethal and lethal doses (150 µg/kg and 600 µg/kg, resp.)
of Microcystis extracts exhibited a significant acute increase
in plasma cortisol levels, which suggested that MC elicited a
stress response in treated fish. The profiles of cortisol changes
in fish treated with MC appeared to be dose dependent,
indicating that fish in the high-dose group experienced
greater MC-induced disturbance [105].

In summary, behavioral response of fish may be a
promising biomarker of sublethal toxicity and water contam-
ination. Several behavioral endpoint measurements, espe-
cially locomotor activity and the time spent in the bottom
portion, may provide an effective assessment of MCs in
aquatic ecosystem.
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