
Electronic Notes in Theoretical Computer Science 84 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume84.html 12 pages

A Programming Language for the Interval
Geometric Machine

Renata Hax Sander Reiser 1 Antônio Carlos da Rocha Costa 2,4

Graçaliz Pereira Dimuro 3

Escola de Informática

Universidade Católica de Pelotas

Pelotas, 96010-000, Brazil

Abstract

This paper presents an interval version of the Geometric Machine Model (GMM)
and the programming language induced by its structure. The GMM is an abstract
machine model, based on Girard’s coherence space, capable of modelling sequential,
alternative, parallel (synchronous) and non-deterministic computations on a (possi-
bly infinite) shared memory. The processes of the GMM are inductively constructed
in a Coherence Space of Processes. The memory of the GMM, supporting a coher-
ence space of states, is conceived as the set of points of a three dimensional euclidian
space. The version of the GMM presented here operates with real intervals, and is
defined to model the semantics of algorithms of Interval Mathematics. Using the
programming language induced by such structure, simple interval algorithms are
presented, and their domain-theoretic semantics in the machine model is given.

1 Introduction

In this work, aspects of Domain Theory [1] and Concurrency Theory [4] are
connected in order to obtain a semantics for interval algorithms [5] involving
non-deterministic and synchronous parallel computations performed over ma-
trix structures, based on Girard’s Coherence Spaces [3]. The work presents an
interval version of the Geometric Machine Model (GMM) where the possibly
infinite set of memory positions are labelled by points of the three-dimensional
euclidian geometric space. This model is able to describe partial computations
and to formalize non-determinism and concurrency in the accesses to memory

1 Email: reiser@ucpel.tche.br
2 Email: rocha@ucpel.tche.br
3 Email: liz@ucpel.tche.br
4 PPGC, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

c©2003 Published by Elsevier Science B. V.

Reiser, Costa and Dimuro

positions. To define this model, the following ordered structures are consid-
ered: the domain of states S, the domain of boolean tests B and the domain of
processes D→∞. Also, the coherence space IIQ of rational intervals [2] is taken
into account, to model the data operated by the processes. The input and of
output data of the GMM are defined on the the extended set of real intervals
IR = IR

⋃

{(−∞,+∞)}. The interval version of the GMM is called Interval
Geometric Machine (IGM).

This paper is organized as follows. In Section 2 basic concepts of coherence
spaces and linear functions are considered together with the ordered structure
of the IGM model. Section 3 introduces the language L(D→∞) derived from
D→∞. The formal definition of the IGM model is presented in Section 5 and
the last section shows some intervals algorithms expressed in L(D→∞).

2 The Ordered Structure of the IGM Model

2.1 Coherence Spaces and Linear Functions

A web W = (W,≈W) is a pair consisting of a set W with a symmetric and
reflexive relation ≈W , called coherence relation. A subset of this web with
pairwise coherent elements is called a coherent subset. The collection of co-
herent subsets of the web W, ordered by the inclusion relation, is called a
coherence space, denoted by W ≡ (Coh(W),⊆) [10].

Linear functions are continuous functions in the sense of Scott [1] also
satisfying the stability and linearity properties that assure the existence of
least approximations in the image set [10]. Considering the coherence spaces
A and B, a linear function f : A → B is identified by its linear trace, a subset
of A × B given by ltr(f) = {(α, β) | β ∈ f(α)}. Let A (B = (A × B,≈

(
)

be the web of linear traces with the coherence relation given by (α, β) ≈
(

(α′, β′)↔ ((α ≈A α′ → β ≈B β′) and (β = β ′ → α = α′)).

The collection of coherent subsets of the web A (B, ordered by inclusion
relation, defines the domain A (B ≡ (Coh(A (B),⊆) of the linear traces
of functions from A to B.

In the following, we summarize the construction of the ordered structure
of the IGM model, based on coherence spaces and traces of linear functions.
For more details, see [6].

2.2 The Coherence Space of Machine States

The notion of memory state in the IGM model is formalized as follows. Con-
sider the flat domain R3 ≡ (Coh(R3,=),⊆) of memory positions, representing
names of variables. Let IIQ ≡ (Coh(IQ),⊆) be the Bi-structured Coherence
Space of Rational Intervals [2], representing the values that can be assigned
to the variables. This domain is defined on the web IQ = (IQ,≈IQ), given by
the set of rational intervals with the coherence relation p ≈IQ q ↔ p ∩ q 6= ∅.
This representation of the computable real numbers and the real intervals was

2

Reiser, Costa and Dimuro

introduced in [2].

As suggested in [8], deterministic machine states are modelled as functions
from memory positions to values. Non-deterministic machine states are mod-
elled as families of deterministic machine states (with singletons modelling
deterministic states).

Definition 2.1 Let R3
(IIQ be the coherence space modelling deterministic

machine states, and S = (Coh(R3
(IIQ),≈S) be the web given by the set

of all coherent subsets of R3
(IIQ, together with the trivial (i.e., universal)

coherence relation ≈S. The collection of all coherent subsets of S, ordered by
inclusion, defines the coherence space that models the non-deterministic (and
the singleton deterministic) machine states, denoted by S ≡ (Coh(S),⊆).

A machine state is conceived then as a coherent set of linear traces of
strict, continuous, stable and linear functions from R3 to IIQ, one trace for
each deterministic component of the non-deterministic state.

2.3 The Set D0 of Elementary Processes

The intuitive notion of an elementary process, which modifies a single memory
position in a single unit of computational time (uct), can be described by
an elementary transition between deterministic memory states, given by a
linear function. Its intuitive representation in a one-dimensional machine is
in Fig. 1(a). It is a function d(k) satisfying:

Proposition 2.2 Let A ≡ [R3
(IIQ] (IIQ be the coherence space of the

so-called computational actions. If d, pr(k) ∈ A, with pr(k)(s) = s(k) then the
function d(k) ∈ [R3 → IIQ]→ [R3 → IIQ] given by

d(k)(s)(i) =







pr(i)(s) = s(i) if i 6= k,

d(s) if i = k

is a linear function.

Proof. Let s′, z′ ∈ [R → IIQ], i, k ∈ IIQ and s′ = d(k)(s), z′ = d(k)(z). We
show that, for all (s, s′), (z, z′) in the graph of the function d(k) the following
properties hold. (1) If s ≈

(
z then s′ ≈

(
z′: Suppose s ≈

(
z. If i 6= k

and d ∈ [R (IIQ] (IIQ then d(k)(s)(i) = s(i) ≈IQ z(i) = d(k)(z)(i). In
the other case, if i = k then d(k)(s)(k) = d(s) ≈

(
d(z) = d(k)(z)(k). Thus,

s′ ≈
(

z′. (2) If s′ = z′ then s = z: Suppose s′ = z′. When i 6= k and d ∈ A

is a linear function, s(i) = d(k)(s)(i) = s′(i) = z′(i) = d(k)(z)(i) = z(i) then
s = z. Otherwise, if i = k, d(k)(s)(i) = d(s)(k) = d(z)(k) = d(k)(z)(i) and
s = z based on the linearity of function d. Thus, in any case, s = z, and d(k)

is linear. 2

Fig. 1(b) schematically represents the elementary processes in d(k). The
identity function interprets the undefined process skip (Fig. 1(c)).

3

Reiser, Costa and Dimuro

skip

d
n

d
(
n
)

s'

s
 v

0

v

1

...
 v

n

...

pr
 pr
(1)
 ...
 d
 ...

v
1

...
 d
(s
)
 ...
v
0

(a)

(b)

(c)

(d)
t

d
k
 e
l

e
k

d
k

t

d
k

e
l

e
l

d
k

(g)

(h)

(e)
 (f)

Fig. 1. Diagrammatic representation of one-dimensional computational elements.

2.4 The Coherence Space of Boolean Tests

To represent the deterministic sums of processes, we consider the set B of
boolean tests related to the binary logic and assume the Coherence Space B

of Boolean Tests as the set of all coherent subsets of tests of the discrete web
B ≡ (B,=), ordered by the inclusion relation. The coherence space S (B

models the boolean tests t (see Figure 1(d)). Non-determinism enforces a
non-traditional treatment of tests. For each boolean test b capable of testing
a deterministic state s, we consider two forms for tests b on non-deterministic
states s:

(i) a universal form (b ∀(s) ≡ ∀s ∈ s . b(s)) and

(ii) an existential form (b∃(s) ≡ ∃s ∈ s . b(s)).

Both forms coincide with the simple test b when s is a deterministic singleton
set.

2.5 The Coherence Space of Processes D→∞

In this section, we summarize the main properties of the Coherence Space D→∞
of processes in the IGM model, inductively constructed 5 from the coherence
space D0 of elementary processes.

Following the methodology proposed in [9], each level in the inductive
construction is identified by a subspace Dn, which reconstructs all the ob-
jects from the level below it, preserving their properties and relations, and
constructs the new objects specific of this level, see Fig. 2. The constructive
relationship between the levels is expressed by linear functions called embed-
ding and projection functions, interpreting constructors and destructors of
processes, respectively.

In the next subsection, we summarized important aspects of each level of
such inductive construction.

2.5.1 The basic level of the inductive construction of D→∞
Let D0 ≡ (D0,=) be a discrete web defined by the set D0 of elementary
processes (2.3) with the equality relation. D0 = (Coh(D0),⊆) denotes the

5 The Coherence Spaces constructors used in the definition of D→

∞
can be found in [10].

4

Reiser, Costa and Dimuro

P
n

coherence space of

elementary processes

D
n+1

P
n
 P
n

D
n

coherence space of

comp. processes

D
ω
 completion

internal

constructors

D
n
 D
n

 P
n

B
P
n

external

constructors

D
1

D
0

 basic level

D
n
-
 D
n+1

level

0

D
n+1

D
n

D
ω

D
1

D
0

π
0
,Π
0

π
n
,Π
n

temporal

interpretations

2
0
uct

2
1
uct

2
n
uct

2
n+1
uct

2
ω
uct
...

...

1
 2

1

0

1

2

0
0

1

concurrent

processes

non deterministic

processes

Fig. 2. The inductive construction of the coherence space D→∞.

flat coherence space of elementary processes, with Coh(D0) = {∅} ∪ {d(k)}

where d(k) ≡ {d(k)} ∈ D0.

The next coherence space in the construction, related with the family
D̄0 ≡ Coh(D0), gives interpretation for concurrent sets of elementary pro-
cesses. The coherence relation between such processes models the admissi-
bility of parallelism between them and essentially says that two elementary
processes can be performed in parallel if they do not conflict, i. e., if they
do not access the same memory position. That relation defines also the web
over which the coherence space of the whole set of processes in the model
is step-wise and systematically build. The domain D̄0 ≡ (Coh(D̄0),⊆) is
thus the domain of parallel products of elementary processes, where the web
D̄0 ≡ (D̄0,≈) is given by the coherence relation d(k) ≈ e(l) ⇔ d(k) = e(l) or
k 6= l. See Fig. 1(e).

In the dual construction, D̄⊥0 ≡ (Coh (D̄⊥
0),⊆), where D̄

⊥
0 ≡ (D̄0,≈

⊥), jus-
tified by the presence of involutive negation ⊥ of coherence spaces [10], the in-
coherence relation x≈⊥y ⇔ x 6≈ y models the condition for non-determinism,
namely, the conflict of memory accesses. See Fig. 1(f).

For the construction of the sequential product and the deterministic sum,
consider P0 ≡ D0

∐

D̄0

∐

D̄⊥0 as the amalgamated (smash) sum of D0, D̄0 and
D̄⊥0 . The direct product P0

∏

P0 is the coherence space of sequential products
of two (parallel, non-deterministic or elementary) processes, whose execution
is performed in 2uct. See Fig. 1(g).

The coherence space P0

∏

B
P0 of the deterministic sums of (parallel, non-

deterministic or elementary) processes, performed in 2uct, is defined as the
direct product between B and P0

∏

P0. See Fig. 1(h).

5

Reiser, Costa and Dimuro

We can put all the above together, in order to obtain the domain

D1 = P0

∐

(P0

∏

P0)
∐

(P0

∏

B

P0), where P0 = D0

∐

D̄0

∐

D̄⊥0 .

The coherence space D1 encompasses the first step of the construction of the
ordered structure of the IGM model and provides the representations for all
IGM computational processes performed in at most 2uct. Each element in the
web of such domain is indexed by two or tree symbols. The leftmost symbol
of an index indicates one of the following constructors – (0) (for the simple
inclusion of an element of the previous level in the new one), (1) (indicating the
parallel product of elements existing in the previous level) or (2) (indicating
the non-deterministic sum of elements existing in the previous level). The
second and third symbols, if present, mean the following: that the element is
the first (02) or the second (12) summand in a deterministic sum, or that it
is the first (01) or the second (11) term in a sequential product.

2.5.2 The Dn − Dn+1 level of the construction of D→∞.

The ideas presented until above be generalized to the equation

Dn+1 = Pn
∐

(Pn
∏

Pn)
∐

(Pn
∏

B

Pn),Pn = Dn

∐

D̄n

∐

D̄⊥n(1)

The memory position information induced by R3 on the domain of elementary
processes Υ

D0
: D0 → ℘(R3), Υ

D0
(x) = {k | d(k) ∈ x} can be lifted to the co-

herent sets of the constructed domains by the position-function defined below,
which defines the concurrency and conflict relations in them.

Definition 2.3 Let α ∈ {0, 1, 2} and

υ
P0

:P0 → ℘(R3), υ
P0
(a0) = Υ

D0
(a), and υ

P0
(aα(α6=0)) = {k|d(k) = a}

Υ
P0
:P0 → ℘(R3),Υ

P0
(x) = ∪υ

P0
(a),∀aα ∈ x

Υ
u
:P0

∏

P0 → ℘(R3),Υ
u
(x) = ∪Υ

P0
(a),∀aα ∈ x

Υ
u

B
:P0

∏

B

P0 → ℘(R3),Υ
u

B
(x) = ∪Υ

P0
(a),∀aα(α6=2) ∈ x.

Then, Υ
Dn+1

: Dn+1 → ℘(R3) is given by: Υ
Dn+1

(x) = ∪Υ
Pn
(a), ∀a0 ∈ x or

Υ
Dn+1

(x) = ∪Υ
u
(a), ∀a1 ∈ x or Υ

Dn+1
(x) = ∪Υ

u
B
(a), ∀a2 ∈ x.

Let Coh(Dn) be the collection of coherent subsets of Dn and x, y ∈ Coh(Dn).
In the web D̄n ≡ (Coh(Dn),≈), the coherence relation defined by x ≈ y ≡
ΥDn

(x)
⋂

ΥDn
(y) = ∅ models the concurrence relation. That means, the pair

(x, y) verifying such coherence relation represents concurrent computational
processes whose execution is performed in 2n uct.

By the other side, over the complementary web defined by the incoher-
ence relation in D̄n is constructed the coherence space of non-deterministic
computational processes performed at most 2n uct, denoted D̄⊥n .

6

Reiser, Costa and Dimuro

2.5.3 The Completion of D→∞

Definition 2.4 The coherence space D→∞ of processes in the IGM model is
defined as the least fixed point for the equation 1 6 . That is,

D→∞ = P→∞
∐

(P→∞
∏

P→∞)
∐

(P→∞
∏

B
P→∞), P→∞ = D→∞

∐

D̄→∞
∐

D̄→⊥
∞ .

The inductive construction of the coherence space D→∞ and the correspond-
ing completion procedure provides a domain-theoretical structure for the rep-
resentation of the set of all computational processes involving concurrency
(and non determinism) and assures the existence of the least fixed point of
the recursive equations defined by (possibly infinite) compositions of the above
process constructors.

In order to express the indexed tokens of the coherent subsets in D→∞, the
follow denotation is considered:

(i) : 00 ≡ 00.00.00 . . . related to finite processes;

(ii) : 001 ≡ 001.001.001 . . . related to infinite sequential processes; and

(iii) : 002 ≡ 002.002.002 . . . related to infinite deterministic sums.

Based on the extension of the position function presented in Definition 2.3,
indicated by Υ

D
→
∞

, the concurrence relation between (infinity) computational

processes is formalized in [7]. For instance, let d(k), e(l) ∈ [R3 → IIQ]→ [R3 →
IIQ] be linear functions as presented in Proposition 2.2 and k 6= l. That

means, Υ
D

→
∞

({d
(k)
:00}) = {k}

⋂

{l} = Υ
D

→
∞

({e
(l)
:00}) = ∅. The related parallel

product between these elementary processes is represented as a partial objet
given by the coherent subset

{d(k)
01:00, e(l)

01:00} ∈ D→∞.

3 The Language Derived from D→
∞

We take use of D→∞ to obtain a programming language for implementing par-
allel and non-deterministic interval algorithms.

Let K be the set of constant symbols given by the union K = IP
⋃

IT ,
where IP and IT denote the set of symbols representing elementary processes
(including the skip process) and boolean tests of D→∞, respectively. In addi-
tion, let FOp = {Id, ‖ , |, · , + } denote the set of symbols representing the
constructors of processes of D→∞, where

(i) Id ∈ IP is the identity elementary process.

(ii) ‖, |, · : IP×IP → IP are binary symbols representing the parallel product,
sequential product and non deterministic sum;

(iii) + : IP × IP × IT → IP is a 3-arity symbol representing the deterministic
sum, with ∀b ∈ IT , +b : IP × IP → IP .

6 See [6] for a proof that such fixpoint exists.

7

Reiser, Costa and Dimuro

The set L(D→∞) of expressions of the language of D→∞ is defined by:

(i) Variables and the above constant symbols are expressions of L(D→∞).

(ii) If ∗ ∈ {‖ , | , · , +b} and t0, t1, . . . , tn, tn+1, . . . b ∈ L(D
→
∞) then ∗0

i=n+1(ti) =
tn+1 ∗ tn ∗ . . . ∗ t0 and ∗n+1

i=0 (ti) = t0 ∗ . . . ∗ tn ∗ tn+1 are (finite) expressions
of L(D→∞);

(iii) If t0, t1, . . . , tn, tn+1, . . . ∈ L(D
→
∞) then ∗∞n=0tn = t0 ∗ t1 ∗ . . . ∗ tn+1 ∗ . . . is

an (infinite) expression of L(D→∞).

We say that each expression of L(D→∞) is a representation of a process of
D→∞, and that the process is the interpretation of the expression.

4 The Machine Model and its Computations

We define the IGM model and its computations following [8].

Definition 4.1 The IGM model is defined as a tuple of functions M =
(MI,MD→

∞
,MB,MO) such that, for input and output values taken in the

set IR of real intervals, represented in the center-radius form [ac, ar], and us-
ing s[i, j, k] for s((i, j, k)):

(i) MI : IR→ S is the input function. When I = {i00},

M{i00}([ac, ar]) = {s}, s(i) =



















xac
∈ IIQ, if i = (0, 0, 0),

xar
∈ IIQ, if i = (0, 0, 1),

∅, otherwise.

where xac
and xar

are the coherent sets of IQ that best approximate ac
and ar, see [2].

(ii) MD→
∞

: L(D→∞) ((S (S) is the program interpretation function, such
thatMD→

∞
(p) = x interprets the program p as the process x, as such process

is defined in section 2.5 (see examples below).

(iii) MB : IT ((S (B) is the test interpretation function, such that
MB(b) = t interprets the symbol b as the test t, as it is defined in 2.4.

(iv) MO : S → IR is the output function. When O = {oij}, then

M{oij}(s) = {[ac, ar] | s[i, j, 0] = xac
, s[i, j, 1] = xar

∈ IIQ, s ∈ s}.

The computation of a program p with an input data in results in the
production of the output data out =MO ◦MD→

∞
(p) ◦MI(in).

5 Sample Interval Algorithms Expressed in L(D→
∞)

The next result follows from the definition of interval arithmetic operations
found in [5], using the center-radius form of intervals.

Proposition 5.1 Consider a, b ∈ IR and M = {A,B,C,D} with

8

Reiser, Costa and Dimuro

A = ac · bc + ar · bc + ac · br + ar · br, B = ac · bc − ar · bc + ac · br − ar · br,

C = ac · bc + ar · bc − ac · br − ar · br, D = ac · bc − ar · bc − ac · br + ar · br.

The arithmetic operations +,−, ·, / : IR2 → IR are given by

a+ b = [ac + bc, ar + br], a · b = [
(max(M) + min(M))

2
,
(max(M)−min(M))

2
],

a− b = [ac − bc, ar + br], a/b =







a · [bc
b2c−b

2
r
, br
b2c−b

2
r
] if |bc| > br,

undefined if |bc| ≤ br.

An interval stored in the memory of the IGM machine is labelled by a
reference position (l, i) ∈ R2 and a third index indicating its center (0) and
radius (1), so s[l, i, 0], s[l, i, 1] respectively represent the center and the radius
of an interval stored in reference position (l, i).

Some expressions of elementary processes (assignment statements) and
their corresponding interpretation in the domain D→∞ are given in Table 1,
where α = s[m, j, 0] · s[n, k, 0], β = s[m, j, 1] · s[n, k, 0], γ = s[m, j, 1] · s[n, k, 0]
and θ = s[m, j, 1] · s[n, k, 1].

Table 1
Expressions of elementary processes and their domain interpretations

L(D→∞) D→∞

sum c(l,m, n, i, j, k) ≡ (s[l, i, 0] := s[m, j, 0] + s[n, k, 0]) {sum c
(li0)
:00 }

sum r(l,m, n, i, j, k) ≡ (s[l, i, 1] := s[m, j, 1] + s[n, k, 1]) {sum r
(li1)
:00 }

sub c(l,m, n, i, j, k) ≡ (s[l, i, 0] := s[m, j, 0]− s[n, k, 0]) {sub c
(li0)
:00 }

sub r(l,m, n, i, j, k) ≡ (s[l, i, 1] := s[m, j, 1]− s[n, k, 1]) {sub r(li1)
:00 }

p 2(l,m, n, i, j, k, u) ≡ (s[l, i, u+ 2] := α + β + γ + θ) {p 2
(l,i,u+2)
:00 }

p 3(l,m, n, i, j, k, u) ≡ (s[l, i, u+ 3] := α− β + γ + θ) {p 3
(l,i,u+3)
:00 }

p 4(l,m, n, i, j, k, u) ≡ (s[l, i, u+ 4] := α + β − γ + θ) {p 4
(l,i,u+4)
:00 }

p 5(l,m, n, i, j, k, u) ≡ (s[l, i, u+ 5] := α− β − γ + θ) {p 5
(l,i,u+2)
:00 }

In the following, we illustrate the representation of some compound (non
elementary) processes. Let F(10) : D→∞ u D→∞ → D→∞ be the parallel product
operator of D→∞, represented by the symbol ‖ in L(D→∞).

(i) sum(l,m, n, i, j, k) ≡ (sum c(l,m, n, i, j, k) ‖ sum r(l,m, n, i, j, k))
is the expression of the sum of two intervals, labelled by positions (m, j)
and (n, k), with the result placed in the (l, i) position, and with the sum
of the centers and the radiuses performed in parallel, 1uct. Its interpre-

9

Reiser, Costa and Dimuro

tation

xi = {sum c(li0)10:00, sum r(li1)
10:00} ∈ D→∞

can be computed from the interpretation of each element in the expres-
sion, by

F(10)({sum c(li0)10:00} u {sum r(li1)
10:00}).

Analogous considerations can be done for the subtraction:
sub(l,m, n, i, j, k) ≡ (sub c(l,m, n, i, j, k) ‖ sum r(l,m, n, i, j, k)).

(ii) If sum row(l,m, n, i) ≡ (sum(l,m, n, i, i, i) ‖ sum row(l,m, n, i + 1), the
expression sum row(l,m, n, 0) represents the process that executes in par-
allel the addition of the sequence of intervals stored in the m-th and n-th
rows, and assigns the result to the corresponding positions in the l-th
row, in 1uct. The coherent subset

x = {sum c(li0)10:00, sum r(li1)
10:00}i∈ω

represents this process in D→∞. This means that x is the least fixed point
of the (spatial) recursive equation xn+1 = F(10)(xi u x0).
In the same way, the corresponding subtraction is defined by:
sub row(l,m, n, i) ≡ (sub(l,m, n, i, i, i) ‖ sub row(l,m, n, i+1, i+1, i+1).

(iii) Let Qli be the interval algorithm performed in 2i−1uct, defined by






sum row(l, 0) ≡ skip

sum row(l, i) ≡ (sum row(l, i− 1); sum(l, l, l, i− 1, i, i− 1))

In this case, Q02 is represented in D→∞ by the subset

{sum c(010)101:00, sum r(011)
101:00, sum c(000)111:00, sum r(001)

111:00}

The same analysis can be applied to the next process:






sum col(0, i) := skip

sum col(l, i) := sum col(l − 1, i); sum(l − 1, l, l − 1, i, i, i).

(iv) The process P that executes, simultaneously, the process Q in the first
l-th rows can be given by






sum row(0, i) ≡ skip

sum row(l, i) ≡ (sum row(l, i) ‖ sum row(l − 1, i))

(v) Consider the processes:
(a) the parallel product:

p par(l,m, n, i, j, k)≡ p 2(l,m, n, i, j, k, 2) ‖

p 3(l,m, n, i, j, k, 2) ‖

p 4(l,m, n, i, j, k, 2) ‖

p 5(l,m, n, i, j, k, 2)

(b) the recursive process related to a minimal element:

10

Reiser, Costa and Dimuro







Min(l, i, 0) := skip

Min(l, i, u) := mini(l, i, u− 1); Min(l, i, u− 1)

when
mini(l, i, 0) = mini(l, i, 1) = mini(l, i, 2) ≡ skip and
mini(l, i, u+ 3) ≡ (s[l, i, u+ 2] := min(s[l, i, u+ 2], s[l, i, u+ 3])).

(c) the recursive process related to a maximal element:






Max(l, i, 0) := skip

Max(l, i, u) := maxi(l, i, u− 1); Max(l, i, u− 1).

when
maxi(l, i, 0) = maxi(l, i, 1) = maxi(l, i, 2) ≡ skip and
maxi(l, i, u+ 3) ≡ (s[l, i, u+ 2] := max(s[l, i, u+ 2], s[l, i, u+ 3])),

(d) the recursive process:

p(l,m, n, i, j, k)≡ (p par(l,m, n, i, j, k);

(p c(l,m, n, i, j, k) ‖ p r(l,m, n, i, j, k))),

when

p c(l,m, n, i, j, k)≡ (s[l, i, 0] := (Max(l, i, 5) +Min(l, i, 5))/2)

p r(l,m, n, i, j, k)≡ (s[l, i, 1] := (Max(l, i, 5)−Min(l, i, 5))/2)

in order to obtain the recursive expression

prod row(l,m, n, i) ≡ (p(l,m, n, i, i, i) ‖ prod row(l,m, n, i+ 1))

interpreting the parallel product of corresponding intervals labelled by
positions (m, i) and (n, i) with the results placed in the (l, i) position,
i ∈ ω.

sum
0, i-1
 sum
0, i-2
sum
0,i
 sum
00

...

...

...

...

sum
1,i
 sum
1, i-1
 sum
1, i-2
 sum
1,0

sum
l,i
 sum
1, i-1
 sum
1, i-2

t
0
 t
1
 t
2
 t
i
...

sumc
1,0

sumr
1,0

sum
l,0

sumc
l,1

sumr
1,1

sumc
1,0

sumr
1,0

Processo Computacional P
 Processo Computacional Q
02

t
0
 t
1

sum
1,0

Fig. 3. Diagrammatics representations of processes in the IGM model.

11

Reiser, Costa and Dimuro

6 Conclusions

In this work we described the main characteristics of the IGM model. Also,
we defined a programming language extracted from D→∞, and we presented
some examples of programs, as well as their representation in D→∞. The IGM
model is an abstract machine, with infinite memory and constant memory
access time that can be use to analyze the logic and ordered structure of
interval algorithms, including partial, concurrent and non-deterministic ones.
In this sense, the development of algorithms in the IGM model may happen to
improve the analysis of algorithms for interval applications. The application
of that analysis to concrete problems is work in progress.

Acknowledgement

This work is partially supported by the Brazilian funding agencies CNPq,
CAPES and FAPERGS. The authors are very grateful to them.

References

[1] Abramsky, S., and A. Jung, Domain Theory, in: Handbook of Logic in Computer
Science, Clarendon Press, 1994.

[2] Dimuro, G. P., A. C. R. Costa, and D. M. Claudio, A Coherence Space of Rational

Intervals for a Construction of IR, Reliable Computing 6 (2) (2000), 139-178.

[3] Girard, J. -Y., Linear logic, Theoretical Computer Science 1 (1987), 187-212.

[4] Milner, R., Communication and Concurrency, Prentice Hall, Engl. Cliffs, 1990.

[5] Moore, R. E., Methods and Applications of Interval Analysis, SIAM, 1979.

[6] Reiser, R. H. S., A. C. R. Costa and G. P. Dimuro, First steps in the construction

of the Geometric Machine, in: Seleta XXIV CNMAC, E.X.L. de Andrade et al.
(eds.), TEMA 3(1) (2002), 183-192.

[7] Reiser, R. H. S., The Geometric Machine - a computational model for

concurrence and non-determinism based on the coherence spaces, Ph.D. thesis,
CPGCC/UFRGS, Porto Alegre, 2002.

[8] Scott, D., Some Definitional Suggestions for Automata Theory, Journal of
Computer and System Sciences 188 (1967), 311-372.

[9] Scott, D., The lattice of flow diagrams, Lect. Notes in Math. 188 (1971), 311-372.

[10] Troelstra, A. S., Lectures on Linear Logic, CSLI Lecture Notes 29 (1992).

12

	Introduction
	The Ordered Structure of the IGM Model
	Coherence Spaces and Linear Functions
	The Coherence Space of Machine States
	The Set D0 of Elementary Processes
	The Coherence Space of Boolean Tests
	The Coherence Space of Processes D

	The Language Derived from D
	The Machine Model and its Computations
	Sample Interval Algorithms Expressed in L(D)
	Conclusions
	Acknowledgement
	References

