
Tendências em Matemática Aplicada e Computacional, 3, No. 1 (2002), 183-192.

c© Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional.

First Steps in the Construction of the Geometric

Machine Model1

R.H.S. REISER2, A.C.R. COSTA3, G.P. DIMURO4, ESIN, UCPel, Cx.P. 402, 96010-
140 Pelotas, RS, Brazil.

Abstract. This work introduces the Geometric Machine (GM) – a computational
model for the construction and representation of concurrent and non-deterministic
processes, preformed in a synchronized way, with infinite memory whose positions
are labelled by the points of a geometric space. The ordered structure of the GM
model is based on Girard’s Coherence Spaces. Starting with a coherence space
of elementary processes, the inductive domain-theoretic structure of this model
is step-wise and systematically constructed and the procedure completion ensures
the existence of temporally and spatially infinite computations. A particular aim
of our work is to apply this coherence-space-based interpretation to the semantic
modelling parallelism and distributed computation over array structures.

1. Introduction

Inspired by the work of Scott [6], this work introduces a constructive and intuitive
machine model, with infinite memory, called Geometric Machine (GM). Over the
GM ordered structure, we obtain representations of (non-)deterministic processes,
labelled by positions of a geometric space, including two special types of parallelism
– the temporal and the spacial parallelism. Its most basic notion is that of a
coherence relation representing the admissibility of parallelism between two or more
basic operations (elementary processes). That relation defines a web over which a
coherence space [3] of parallel processes is step-wise and systematically built. In
the dual construction, the incoherence relation interprets the condition that models
non-determinism. The sequential product and the deterministic sum of parallel and
non-deterministic processes are endofunctors in the category CospLin of coherence
spaces with linear functions as morphisms.

This paper is divided in four sections. Section 3. introduces the Coherence Space
S of computational states of the GM model, and the Section 4. shows the inductive
construction of the machine model itself. The conclusion section presents further
work and possible applications of the model.

1This work receives financial support from CAPES, CNPq and FAPERGS.
2PPGC, II, UFRGS, CP 15064, 91501-970 Porto Alegre, RS, e-mail: reiser@atlas.ucpel.tche.br
3PPGC, II, UFRGS, CP 15064, 91501-970 Porto Alegre, RS, e-mail: rocha@atlas.ucpel.tche.br
4e-mail: liz@atlas.ucpel.tche.br.

184 Reiser et al.

2. The Idea of the Geometric Machine Model

Firstly, the memory states and possible programs in the GM model are specified.
Computational processes are then related to the notion of transformations between
computational states. In this paper we consider only uni-dimensional memories,
but the model can be easily generalized to consider multi-dimension memories. A
computational state is defined as a function s from labels to values, where labels
are intuitively understood as points of a geometric space, so that a computational
state is an assignment of values to points of the geometric space.

In the following, let I be the set of labels of a geometric space and V be the set
of values together with a distinguished element ♯.

Definition 1. A function s : I → V in the collection S = [I → V] is called a
computational state. If I = {in}n∈ω then S = {{s(in) = vn}{n∈ω} | s ∈ S}.

Definition 2. Let S = [I → V] be the set of all computational states, A = {p :
S → V | p(s) = v} be the set of computational actions and AI =

⋃

{An}in∈I be the
set of labelled actions. Then, a computational process p : S → S is given by
p(s) = {p(n)(s) | p(n) ∈ An ⊆ AI} = {vn}in∈I ∈ P

5.

If I = {in|n ∈ A = {0, 1, 2, . . . , n} ⊆ ω}, p is a spatially finite computational
process. If I = {in}n∈ω, p(s) = {p(n)(s)}n∈ω is represented in Figure 1 (a).

Definition 3. For i ∈ I, consider the labelled actions d(m), pr(m) : S → S ∈ Am

where pr(m)(s) = s(im). An elementary computational process d(n), visually
symbolized in the Figure 1 (b), is a set of labelled actions defined by

d(n) = {t(m)}im∈I , such that t(m)(s) =

{

pr(m)(s), if m 6= n,

d(n)(s), otherwise.

The function {pr(m)}im∈I : S → S defines the identity process, denoted by
skip and represented in the Figure 1 (c). D0 = {d(n)}in∈I ⊆ P is the set of all
non-identity elementary processes. In addition, D = D0

⋃

{skip}.

Consider B = {T, F} as the Boolean set and let B ≡ [S → B] be the set of
all computational tests. A function t ∈ B, pictured in Figure 1 (d), is called a
computational test.

Suppose e, d ∈ A, ik, il ∈ I and d(k), e(k), e(l) ∈ D. Figure 2 presents a graphic
representation of the usual algebraic process constructors – deterministic (b) or
non-deterministic (c) sums and sequential (a) or parallel (d) products, which are
the basic compounding elementary processes operations.

5P denoted the set of all computational processes

GM Model 185

skip
dn

d(n)

s' = {v'
n
)}

s = {v
n
} v

0
v

1
... v

n
...

pr pr(1) ... d ...

v
1

... d(s) ...v
0

(a)

(b) (c) (d)

t

Figure 1: Computational elements.

dk el

ek

dk

t

dk

el

el

dk

(a) (b)

(c) (d)

Figure 2: Constructors of processes.

3. The Coherent Space of Computational States

A web W = (W,≈W) is a pair consisting of a set W with a symmetric and reflexive
relation ≈W , called coherence relation. A subset of this web with pairwise consistent
elements by the coherence relation ≈W is a coherent subset. The set of coherent
subsets of the web W, ordered by the inclusion relation, is called the coherence
space W ≡ (Coh(W),⊆).

The coherence space S introduced in this section provides a domain-theoretical
formalization for the set S of all computational states of the GM model. For that,
consider the flat domain I = (Coh(I),⊆) of the labels and let V = (V al,≈) be a
web defined by a set Val of value representations, together with a coherence relation
≈V. V ≡ (Coh(V),⊆) denotes the domain of the value representations. For any set
of values V we say that V represents V if ∅ ∈ Coh(V) represents the value ♯ ∈ V
and each nonempty coherence subset models a value v 6= ♯, v ∈ V .

Consider now S = {s : I → V} as the set of all strict, continuous, stable and
linear functions from I to V. The family of the linear traces [2, 7] of such functions
determines the coherence space that represents the set of all computational states of
the GM model. Let I ⊸ V = (|I|× |V|),≈⊸) be a web together with the coherence
relation ≈⊸ given by (i, v) ≈⊸ (i′, v′) ⇒ (v ∼=V v′ and (v = v′ ⇒ i = i′)).
The collection of coherence subsets of the web I ⊸ V, ordered under inclusion
defines the coherence space I ⊸ V ≡ (Coh(I ⊸ V),⊆) of the linear traces of
the linear functions from I to V. In particular, the empty set interprets the linear
function which graph is empty.

In the same way, starting with the domain I ⊸ V, we introduce now the def-
inition of the coherent space S of the computational states. A subset in I ⊸ V

interprets a consistent piece of information. Thus, a computational state can be
understood as a collection of linear traces related to linear functions.

The last idea is compatible with the interpretations of non-deterministic com-
putations, i. e. a subset of I ⊸ V models a possible outcome of a non-deterministic
computation. Thus,

Definition 4. Given the domain I ⊸ V and the trivial coherence relation, the
collection Coh(Coh(I ⊸ V),≈) ordered under inclusion is the coherence space
S of all computational states of the GM model.

186 Reiser et al.

Observe that, the identification S ≡ I ⊸ V is hold whenever only deterministic
computations are considered. In this case, an element in I ⊸ V can be modelled as
a memory state.

4. The Coherent Space of Computational Processes

The inductive construction of the coherence space D→∞ of all processes in P and the
corresponding completion procedure (see Figure 3) provides a domain-theoretical
structure for representations of computational processes involving concurrence and
non-determinism over the computational states defined in the previous section 6.

P
n

coherence space of

elementary processes

D
n+1

P
n
 P

n

D
n

coherence space of

comp. processes
D

ω completion

internal

constructors

D
n

D
n

 P
n

B
P

n

external

constructors

D
1

D
0

 basic level

D
n
- D

n+1
level

φ
n

(0) ,Φ
n

(0)

π
0
,Π

0

φ
n

(2) ,Φ
n

(2)φ
n

(1) ,Φ
n

(1)

λ
n

(0) ,Λ
n

(0)

λ
n

(1) ,Λ
n

(1)

ψ
n

(0) ,Ψ
n

(0)

ψ
n

(1) ,Ψ
n

(1)

λ
n

(0) ,Λ
n

(0)

λ
n

(2) ,Λ
n

(2)λ
n

(1) ,Λ
n

(1)
D

n+1

D
n

D
ω

D
1

D
0

π
0
,Π

0

π
n
,Π

n

temporal

interpretations

20 uct

21 uct

2n uct

2n+1uct

2ω uct...
...

Figure 3: The inductive construction of the coherence space D→∞.

In the following, the definitions of the objects and morphisms related to the
basic level D0 − D1 of the inductive construction of D→∞ is introduced. For that, in

the rest of paper consider {d(k)} ≡ d(k).

Definition 5. Let D0 ≡ (D0,∼=) be a discrete web defined by the collection of
all elementary processes in D0 (Definition 3) together with the equality relation.
D0 = (Coh(D0),⊆) denotes the coherence space of elementary processes.

In this case, Coh(D0) = {∅} ∪ {d(k) | d(k) ∈ D0}. As each coherent subset

d(k) ∈ D0 represents the elementary process d(k) ∈ D0, the identity process is

6The symbol ∞ is denoted by ω in the figures.

GM Model 187

represented by the empty set, which constitutes the bottom of the domain D0. The
next coherence space in the construction, related with the family Coh(D0), gives
interpretation for concurrent computational processes with at most 1uct 7.

Definition 6. D̄0 ≡ (Coh(D̄0),⊆) denotes the domain of parallel products of
elementary processes. In the web D̄0 ≡ (D̄0,≈), the coherence relation is given

by d(k) ≈ e(l) ⇔ d(k) = e(l) or k 6= l. In particular, ∅ ≈ d(k), ∀d(k) ∈ D̄0.

Definition 7. The domain D̄⊥0 ≡ (Coh (D̄⊥0),⊆) of the non-deterministic sum
of elementary processes is defined over the complementary web D̄⊥0 ≡ (D̄0,≈⊥)
whose coherence relation ≈⊥ is the incoherence relation in D̄0.

By the incoherence relation in D̄0, d(k) 6∼ e(l) ⇔ k = l, d(k) and d(l) are said
to be incoherent tokens of the web D̄0, which means elementary processes in D0

that conflict in memory access. For instance, the coherent subsets {d(k), e(k)} ∈ D̄⊥0

and {∅}, {∅, f (n)} ∈ D̄0 interpret the partial processes | d(k), e(k) |, ‖ skip ‖ and
‖ skip, f (n) ‖, respectively. See a representation in the Figure 4.

Definition 8. Consider P0 ≡ D0

∐

D̄0

∐

D̄⊥0 ≡ (Coh(P0,≈∐), ⊆) as the amalga-

mated (smash) sum [7] of D0, D̄0 and D̄⊥0 . The web P0 ≡ (P0,≈∐) is defined by the

disjoint union P0 ≡ D0
˙⋃D̄0

˙⋃D̄0 = ({0}×D0)
⋃

({1}× D̄0)
⋃

({2}× D̄0) together
with the coherence relation ≈∐ . In this case, aα ≈∐ bβ means that
α = β = 0 and a ≈D0

b, or α = β = 1 and a ≈D̄0
b, or α = β = 2 and a ≈D̄⊥

0
b.

Definition 9. Let P0

∏

P0 be the web defined by the disjoint union (P0 ∪̇ P0) to-
gether with the relation ≈∏ given by aα ≈∏ bβ ⇔ α = β, a ≈∐ b or α 6= β,
∀a,b ∈ D0

⋃

D̄0. The direct product P0

∏

P0 is the coherence space of sequen-
tial product of two (parallel or non-deterministic) elementary processes,
whose execution is performed in 2uct.

Now, we assume a domain of Boolean tests since the deterministic sums of
processes are concerned with binary logic for tests. The model, however, admits a
more general version with multi-valued logics, which we don’t follow here.

Definition 10. Let B ≡ (B,∼=B) be the discrete web defined by the family B of all
Boolean tests. The coherence space of tests is denoted by B ≡ (Coh(B), ⊆). The
coherence space P0

∏

B
P0 of the deterministic sums of elementary pro-

cesses, performed in 2uct, is defined as the direct product between B and P0

∏

P0.
Thus, ∀a,b ∈ P0, the expression aα ≈∏

B
bβ means that

(a)α = β = 2 and a ≈B b, or (b)α = β = 1 and a ≈P0

∏

P0
b, or

(c)α = β = 0 and a ≈P0

∏

P0
b, or (d)α 6= β.

We can put all the above together, to get:

Definition 11. The domain D1 ≡ (Coh(D1),⊆) is defined by the smash sum

D1 = P0

∐

(P0

∏

P0)
∐

(P0

∏

B
P0), and P0 = D0

∐

D̄0

∐

D̄⊥0 ,

7A unit of computational time is denoted by uct.

188 Reiser et al.

dk
gkhk

{dk

2
, hk

2
 , gk

2
}

el dk fn gk

...

{hk

2
} {gk

2
}

{ }

{dk

2
,hk

2
} {hk

2
 ,gk

2
} {dk

2
,gk

2
}

dk

gk

hk

gk

dk

hk

dk

{dk

2
}{gk

0
}{el

1
} {fn

1
}{dk

1
} {dk

0
}

dk

hk

gk

{dk

1
,fn

1
}

fn

dk dk

el

{dk

1
,el

1
}

{el
1
,fn

1
, dk

1
}

dk

el

fn

...
{ { }

2
}

Skip

Skip
el

{el
0
}

Skip

{ { }
1
}

Skip

fn

{{ }
1
, fn

1
}

parallel process ||dk ,el ||

parallel process ||fn , skip ||

num-deterministic sum | fk,dk,hk |

partial parallel product || skip||

_

elementary process dk

P
0

= D
0
 D

0
 D

0

Figure 4: A diagrammatic representation of the coherence space P0.

which encompasses the first step of the construction of the ordered structure of the
GM model and provides the representations for all GM computational processes
performed in at most 2uct.

The ideas presented until here can be generalized to the domain

Dn+1 = Pn

∐

(Pn

∏

Pn)
∐

(Pn

∏

B
Pn), Pn = Dn

∐

D̄n

∐

D̄⊥n (∗)

Each indexed token in such domain can present two or tree symbols in its index.
The leftmost symbol of an index indicates the one of the following constructors –
(0) (for the simple inclusion of an element of the previous level in the new one),
(1) (indicating the parallel product of elements existing in the previous level) or (2)
(indicating the non-deterministic sum of elements existing in the previous level).
The second and third symbols, if present, mean the following: that the element is
the first (02) or the second (12) summand in a deterministic sum, or that it is the
first (01) or the second (11) term in a sequential product. The position information
induced by I on the domain of elementary processes can be lifted to the coherent
sets of constructed domains by the position-function defined below, which defines
the concurrence and conflict relations in such domains.

Definition 12. Consider the index α ∈ {0, 1, 2}, the elementary position-function
Υ

D0
: D0 → ℘(I), Υ

D0
(x) = {ik | d

(k) ∈ x}, together with the following functions:

1. υ
P0

: P0 → ℘(I), υ
P0

(a0) = Υ
D0

(a) and υ
P0

(aα(α6=0)) = {ik|d(k) = a};
2. Υ

P0
: P0 → ℘(ω), Υ

P0
(x) = ∪υ

P0
(a), ∀aα ∈ x;

3. Υ
P0

∏

P0
: P0

∏

P0 → ℘(ω), Υ
P0

∏

P0
(x) = ∪Υ

P0
(a), ∀aα ∈ x;

4. Υ
B

: P0

∏

B
P0 → ℘(ω), Υ

B
(x) = ∪Υ

P0
(a), ∀aα(α6=2) ∈ x.

Then, Υ
D

n+1
: Dn+1 → ℘(I) is given by cases in the following expressions

GM Model 189

(a) Υ
D

n+1
(x) = ∪Υ

Pn

(a), ∀a0 ∈ x, or (b) Υ
D

n+1
(x) = ∪Υ

Pn

∏

Pn

(a), ∀a1 ∈ x, or

(c) Υ
D

n+1
(x) = ∪Υ

Pn

∏

B
Pn

(a), ∀a2 ∈ x.

Definition 13. Consider the indexes β ∈ {0, 1}, θ ∈ {0, 1, 2} to introduce the
embedding-functions and related projections (represented in the Figure 3)

1. (a)γ
(0)
n , γ

(1)
n , γ

(2)
n : Pn, Pn

∏

Pn, Pn

∏

B
Pn → Dn+1, γ

(θ)
n (x) = {aα |a ∈ x};

(b)Γ
(0)
n ,Γ

(1)
n ,Γ

(2)
n : Dn+1 → Pn,Pn

∏

Pn,Pn

∏

B
Pn, Γ

(θ)
n (x) = {a |aα ∈ x}.

2. (a) φ
(0)
n , φ

(1)
n , φ

(2)
n : Dn, D̄n, D̄

⊥ → Pn, φ
(θ)
n (x) = {aθ|a ∈ x};

(b) Φ
(0)
n ,Φ

(1)
n ,Φ

(2)
n : Pn → Dn, D̄n, D̄

⊥, Φ
(θ)
n (x) = {a|aθ ∈ x}.

3. (a) ψ
(β)
n : Dn → Pn

∏

Pn, ψ
(β)
n (x) = {aβ |a ∈ x};

(b) Ψ
(β)
n : Pn

∏

Pn → Dn, Ψ
(β)
n (x) = {a |aβ ∈ x}.

4. (a) λ
(0)
n , λ

(1)
n , λ

(2)
n : Pn,Pn,B→ Pn

∏

B
Pn, λ

(θ)
n (x) = {aθ |a ∈ x}.

(b) Λ
(0)
n ,Λ

(1)
n ,Λ

(2)
n : Pn

∏

B
Pn → Pn,Pn,B, Λ

(θ)
n (x) = {a |aθ ∈ x}.

Definition 14. Let θ ∈ {0, 1, 2} be an index and consider 8

� π
→(0)
n , π

←(0)
n ; π

→(1)
n , π

←(1)
n ; π

→(2)
n , π

←(2)
n : Dn; D̄n; D̄⊥n → Dn+1, and

� Π
→(0)
n ,Π

←(0)
n ; Π

→(1)
n ,Π

←(1)
n ; Π

→(2)
n ,Π

←(2)
n : Dn+1 → Dn; D̄n; D̄⊥n ,

as embedding-functions and related projections, whose definitions are given by

1. if x ∈ γ
(0)
n [Pn] then

(a)π
→(θ)
n+1 (x) = γ

(0)
n ◦ φ

(θ)
n = π

←(θ)
n+1 (x), (b)Π

→(θ)
n+1 (x) = Φ

(θ)
n ◦ Γ

(0)
n = Π

←(θ)
n+1 (x);

2. if x ∈ γ
(1)
n [Pn

∏

Pn] then

(a)π
→(θ)
n+1 = γ

(1)
n ◦ ψ

(0)
n ◦ φ

(θ)
n , π

←(θ)
n+1 = γ

(1)
n ◦ ψ

(1)
n ◦ φ

(θ)
n , and

(b)Π
→(θ)
n+1 = Φ

(θ)
n ◦Ψ

(0)
n ◦ Γ

(1)
n , Π

←(θ)
n+1 = Φ

(θ)
n ◦Ψ

(1)
n ◦ Γ

(1)
n ;

3. if x ∈ γ
(2)
n [Pn

∏

B
Pn] then

(a)π
→(θ)
n+1 (x) = γ

(2)
n ◦ ψ

(0)
n ◦ φ

(θ)
n , π

←(θ)
n+1 (x) = γ

(2)
n ◦ ψ

(1)
n ◦ φ

(θ)
n and

(b)Π
→(θ)
n+1 (x) = Φ

(θ)
n ◦Ψ

(0)
n ◦ Γ

(2)
n , Π

←(θ)
n+1 (x) = Φ

(θ)
n ◦Ψ

(1)
n ◦ Γ

(2)
n .

When n = 0, π
→ (θ)
0 = π

← (θ)
0 = {aθ0|a ∈ x} and Π

→(θ)
0 = Π

←(θ)
0 = {a|aθ0 ∈ x}.

In particular, π
→ (θ)
n (∅) = π

← (θ)
n (∅) = ∅ and Π

→ (θ)
n (∅) = Π

← (θ)
n (∅) = ∅.

Proposition 1. The embedding and projection-functions presented in Definitions
13, 14 are linear functions.9 In addition, (Dn,Dn+1) is a projection-pair in the
category CospLin, that is π→n ◦Π→n ⊆ Dn+1 and Π→n ◦ π

→
n = Dn hold.

In the end of this section, the completion of the domain D→∞ is presented.

8The notations π
→ (0)
n ≡ πn and Π

→ (0)
n ≡ Πn are assumed.

9The proves of propositions and theorems of this paper can be found in [4].

190 Reiser et al.

Definition 15. The coherence space D→∞ of computational processes of the GM
model is defined as the least fixed point for the equation (∗). That is,

D→∞ = P→∞
∐

(P→∞
∏

P→∞)
∐

(P→∞
∏

B
P→∞), P→∞ = D→∞

∐

D̄→∞
∐

D̄→⊥∞ .

In order to prove that (∗) has a least fixed point, consider the notation a:θ ≡
aθ.θ. ... and the following. Let K→ be a diagram defined by the family of coherence
spaces {Dn}n∈ω and projections Π→n : Dn+1 → Dn, represented by

D0

Π→

1←− D1 ←− . . . ←− Dn

Π→

n+1

←− Dn+1 ←− . . .

By Definition 14, for each wn+1 ∈ Dn+1, there is wn = Π→n (wn+1) ∈ Dn. In the
next definition, for each subset {wn}n∈ω there is another {xn}n∈ω ⊆ D→∞,

x =
⋃↑

n∈ω{xn} ⇔ x0 ⊆ x1 ⊆ . . . ⊆ xn ⊆ . . . ⊆ x and Π→∞,n(xn) = wn.

Definition 16. π→n,∞ : Dn → D→∞ is given by π→0,∞(x) = {a:00 |a ∈ x}, and

(a) π→n+1,∞(x) = {a:00 |a ∈ x}, if x ∈ γ
(0)
n [Pn],

(b) π→n+1,∞(x) = {a:001 |a ∈ x}, if x ∈ γ
(1)
n [Pn

∏

Pn],

(c) π→n+1,∞(x) = {a:002 |a ∈ x}, if x ∈ γ
(2)
n [Pn

∏

B
Pn].

Now, let x =
⋃↑

m∈ω{xm |xm ∈ π→m,∞[Dm]} be a directed subset of finite approxi-
mations of x. The projection-function Π→∞,n : D→∞ → Dn is given by Π∞,n+1(x) =
⋃↑

m∈ω {Πm,n ◦Π→∞,m (xm)} where Π→∞,0(xm) = {dk |dk
:00 = xm} and

(a) Π→∞,m(xm) = {a |a:00 ∈ xm}, if xm ∈ (π→m,∞ ◦ γ
(0)
m−1)[Pm−1],

(b) Π→∞,m(xm) = {a |a:001 ∈ xm}, if xm ∈ (π→m,∞ ◦ γ
(1)
m−1)[Pm−1

∏

Pm−1],

(c) Π→∞,m(xm) = {a |a:002 ∈ xm}, if xm ∈ (π→m,∞ ◦ γ
(2)
m−1)[Pm−1

∏

B
Pm−1].

Proposition 2. The projection and embedding-functions Π→∞,n and π→∞,n are linear
functions. Moreover, Π→∞,n◦π

→
∞,n = Dn and π→∞,n◦Π

→
∞,n ⊆ D→∞, which guarantees

(D→∞,Dn) as a projection-pair in the CospLin category.

Theorem 1. The pair (D→∞,Π
→
∞,n : D→∞ → Dn) is a limit cone for diagram K→.

According Theorem 1, the domain D→∞ is the least fixed point of the equation
(∗) that defines the representation of finite processes. The inductive nature of the
model and its completion procedure ensure the existence of the interpretation for
the recursive constructors. Therefore, this model is able to interpret processes that
have no restrictions related to memory size, and it can be completed for temporally
infinite sequential processes. The latter can be done in many different ways, gen-
erating many different time-lines, such as the usual 0, 1, . . . +∞, −∞ . . . ,−1, 0,
−∞ . . . ,−1, 0,+1, . . . +∞, but also ones such as 0, 1, . . . − 2,−1. That corres-
ponds to the use of transfinite ordinals to represent time.

In this sense, the Figure 5 (a) shows the representation of partial objets in the
related coherence spaces D→∞, D←∞, D→←∞ and D↔∞. The domains D→∞ and D←∞ contain
the prefixed and suffixed sequential constructions, respectively. In the same way,
the coherence space D↔∞ contains infixed sequential constructions.

GM Model 191

dk

{dk
:001

} {dk
: 001; 001

,dk
:011; 011

}

...dk

... ...

t
ω

t
-1

dk

... ...

t
-1

dk

t
0

dk

...

t
0

t
 ω

dk

{dk
:011

} {dk
: 011; 001

,dk
:001; 011

}

t
ω

t
- ω

t
-1

t
0

D
ω

D
ω

D
ω

D
ω

(a)

(b)

(c)

(d)

Figure 5: Exemplifications of objects in different ordered structures of GM models.

In the following, we note that the concurrence relation defined over the processes
in D→∞ is induced by the position-function ΥD→

∞
, presented in the next definition.

Definition 17. Consider x such that x =
⋃↑

i∈ω{xi} ∈ D→∞, xi ∈ πn,∞[Dn] and
the function ΥDn

in the Definition 12. The position-function ΥD→
∞

: D→∞ → ℘(ω) is

defined as ΥD→
∞

(x) =
⋃

ΥDn
[Π∞,n(x)] =

⋃

ΥDn
[
⋃↑

i∈ω Π∞,n(xi)].

Definition 18. Let I be the set of labels of a geometric space, V be the set of values
and A be the set of action. The GM model is defined by the system

GM ≡ (S, D→∞ , B),

where S is the coherence space of computational states, D→∞ is the coherence space
of computational processes and B is the coherence space of computational text, pre-
viously presented in the above sections.

5. Conclusions

The inductive nature of the model and its completion ensure the existence of the
interpretation for recursive constructors, both in the conceptual and in the temporal
senses of such construction. Therefore, this model is able to interpret processes
without restrictions related to memory space, and it can be completed for temporary
infinite processes.

In addition, the study of the behavior of the modelled processes can be charac-
terized the semantics of this model, based on the analysis of objects and morphism
in the category CospLin. The related language, inherent to the representations in
D∞, gives the operational representation of the usual algebraic process constructors.

A more generic version of GM model can be also constructed, with a transfinite
global memory shared by synchronized processes distributed over an enumerable set
of geometric machines. That model is formalized by the coherence space of trans-
finite computational processes, defined over a web of tokens indexed by transfinite
ordinal numbers.

Finally, this model can be applied, to various kinds of computations involving
array structures, such as matrix computations and cellular automata. Following
this approach, it is possible to introduce the interval version the de GM model,

192 Reiser et al.

where the set of values in the GM memory is represented by the coherence space
of rational intervals IQ [1], a constructive computational representation of the the
space of real intervals. In particular, a semantic modelling of interval algorithms
related to the arithmetic operations can be obtained as an application algebraic
process constructors.

Resumo. Este trabalho introduz a Máquina Geométrica (MG) - um modelo
computacional para construção e representação de processos concorrentes e não-
determińısticos, executados de forma sincronizada, com memória infinita cujas
posições são rotuladas por pontos de um espaço geométrico. A estrutura orde-
nada do modelo MG é formalizada como um Espaço Coerente de Girard. A partir
do espaço coerente de procesos elementares, a estrutura indutiva deste domı́nio
é sistematicamente constrúıda em etapas e o procedimento de completação asse-
gura a existência de computações temporal e espacialmente infinitas. Um especial
objetivo deste trabalho é aplicar esta representação baseada em espaços coerentes
na modelagem semântica de computações paralelas e distribúıdas, definidas sobre
estruturas matriciais.

References

[1] G.P. Dimuro, A.C.R. Costa and D.M. Claudio, A coherence space of rational
intervals for a construction of IR, Journal of Reliable Computing, 6 (2000),
139-178.

[2] J.-Y. Girard, The system F of variable types, fifteen years later, Theoretical
Computer Science, 45 (1986), 159-192.

[3] J.-Y. Girard, Linear logic, Theoretical Computer Science, 1 (1987), 187-212.

[4] R.H.S. Reiser, “The Geometric Machine - a Computational Model for Con-
currence and Non-determinism Based on Coherence Spaces”, Ph.D. Thesis (in
portuguese), PPGC, UFRGS, Porto Alegre, RS, Brazil, 2002. (avaliable in
http://gmc.ucpel.tche.br/imqd)

[5] D. Scott, Some definitional suggestions for automata theory, Journal of Com-
puter and System Sciences, 188 (1967), 311-372.

[6] D. Scott, The lattice of flow diagrams, Lecture Notes in Mathematics, 188
(1971), 311-372.

[7] A.S. Troeltra, Lectures on Linear Logic, in “CSLI Lecture Notes”, Vol. 29,
1992.

