ADSORÇÃO E PURIFICAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE *Kluyveromyces marxianus* CCT 7082 ATRAVÉS DE CROMATOGRÁFIA DE TROCA IÔNICA

FABIANA OLIVEIRA DE MEDEIROS

Profª. Drª. Susana Juliano Kalil
Orientadora

RIO GRANDE, RS
UNIVERSIDADE FEDERAL DO RIO GRANDE
DEPARTAMENTO DE QUÍMICA
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA E CIÊNCIA DE ALIMENTOS

ADSORÇÃO E PURIFICAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE
Kluyveromyces marxianus CCT 7082 ATRAVÉS DE CROMATOGRAFIA DE TROCA IÔNICA

Engª. Fabiana Oliveira de Medeiros

Dissertação apresentada como parte dos requisitos necessários para obtenção do título de Mestre em Engenharia e Ciência de Alimentos.

Profª. Drª. Susana Juliano Kalil
ORIENTADORA
Prof. Dr. Carlos André Veiga Burkert
CO-ORIENTADOR

RIO GRANDE, RS
2008
“No fim tudo dá certo, se não deu é porque ainda não chegou ao fim.”
AGRADECIMENTOS

A Deus, por me acompanhar e dar forças em todos os dias da minha vida, sem Ele nada seria possível.

À professora Susana, “profi”, por sua excelente orientação e principalmente pela sua amizade, que me deu força nos momentos em que mais precisei. Obrigada pela confiança e exemplo de vida.

Ao professor Carlos André Burkert, pela sua co-orientação e sugestões.

Às amigas Ana Sanzo e Elisane, pelo apoio técnico, e acima de tudo pelas conversas acolhedoras e amizade sincera.

Aos professores Helen Treichel, Marco Di Luccio e Débora de Oliveira, pela orientação e amizade no período de convivência em Erechim.

À Katiane e Renata, minhas primeiras colaboradoras, e à Marcela e Patrícia que chegaram depois...., obrigada pelo auxílio e por tudo que aprendi com vocês.

Aos amigos e colegas de laboratório Caroline, Ana Paula Manera, Fernanda, Cristiane, Célia, Cristiano, Ana Rafaela, Ana Paula Rosa, Guido, Luisa, Tiago, Kelin, Joanes, Liliane Dias, Liliane Graminho, Susan, Lidiane, Andréia e Mariano.

À minha mãe Luíza, meu porto seguro, pelas conversas reconfortantes, pelos conselhos e apoio incondicional.

Ao Eri, que com certeza veio pra ficar.... pelo carinho, companheirismo e incentivo em todos os momentos de nossas vidas, desde que nos conhecemos.

Aos Laboratórios de Engenharia de Bioprocessos, Tecnologia de Alimentos, Análise de Alimentos e Engenharia Bioquímica, e às pessoas que neles trabalham, pelo espaço físico e equipamentos necessários ao desenvolvimento do trabalho.

À CAPES pela concessão da bolsa de estudos.
1 INTRODUÇÃO ... 29

2 MATERIAL E MÉTODOS .. 31
 2.1 Microrganismo .. 31
 2.2 Inóculo ... 31
 2.3 Fermentação.. 31
 2.4 Extração da enzima ... 32
 2.5 Influência da relação biomassa:solvente na atividade enzimática 32
 2.6 Estabilidade da beta-galactosidase quanto à temperatura 32
 2.7 Estabilidade da beta-galactosidase quanto ao pH .. 33
 2.8 Avaliação da temperatura e pH de adsorção .. 33
 2.9 Efeito da velocidade de alimentação ... 33
 2.10 Métodos analíticos ... 34
 2.10.1 Determinação da atividade enzimática .. 34
 2.10.2 Determinação de biomassa .. 34

3 RESULTADOS E DISCUSSÃO ... 34
 3.1 Influência da relação biomassa:solvente na atividade enzimática 34
 3.2 Estabilidade da beta-galactosidase quanto à temperatura 37
 3.3 Estabilidade da enzima beta-galactosidase quanto ao pH 39
 3.4 Temperatura e pH de adsorção .. 43
 3.5 Velocidade de alimentação .. 46

4 CONCLUSÕES .. 46

5 REFERÊNCIAS BIBLIOGRÁFICAS ... 47

PURIFICAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE Kluyveromyces marxianus CCT 7082 POR CROMATOGRAFIA DE TROCA IÔNICA EM COLUNA DE LEITO FIXO .. 51

RESUMO ... 51

1 INTRODUÇÃO .. 51

2 MATERIAL E MÉTODOS .. 52
 2.1 Microrganismo .. 52
 2.2 Inóculo ... 53
 2.3 Fermentação .. 53
 2.4 Extração da enzima ... 53
 2.5 Purificação da enzima beta-galactosidase por cromatografia de troca iônica 54
 2.5.1 Ensaios de purificação na coluna de troca iônica 54
 2.5.2 Estudo das condições de desessorção da enzima beta-galactosidase 54
CAPÍTULO II
REVISÃO BIBLIOGRÁFICA
Tabela 1: Custo do processo de separação de proteínas com relação ao custo de produção..5
Tabela 2: Grupos funcionais usados em trocadores iônicos..11
CAPÍTULO III
CONCENTRAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE Kluyveromyces marxianus CCT 7082, AVALIAÇÃO DA SUA ESTABILIDADE E ADSORÇÃO EM RESINA DE TROCA IÔNICA
Tabela 1: Coeficiente de partição da enzima beta-galactosidase na resina de troca iônica Q Sepharose Fast FlowTM...45
Tabela 2: Capacidade de adsorção da resina Q Sepharose FF™ em função da velocidade de alimentação...46
PURIFICAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE Kluyveromyces marxianus CCT 7082 POR CROMATOGRAFIA DE TROCA IÔNICA EM COLUNA DE LEITO FIXO
Tabela 1: Matriz do planejamento experimental completo para estudo do pH de eluição e volume necessário para o gradiente linear salino..55
Tabela 2: Purificação da beta-galactosidase realizada com eluição em pH 5,5 e volume de 31,4 mL para o gradiente linear salino...58
Tabela 3: Purificação da beta-galactosidase, realizada com eluição em pH 7,5 e volume de 31,4 mL para o gradiente linear salino...60
Tabela 4: Purificação da beta-galactosidase realizada com eluição em pH 5,5 e volume de 94,2 mL para o gradiente linear salino...61
Tabela 5: Purificação da beta-galactosidase realizada com eluição em pH 7,5 e volume de 94,2 mL para o gradiente linear salino...62
Tabela 6: Purificação da beta-galactosidase realizada com eluição em pH 6,5 e volume de 62,8 mL para o gradiente linear salino...64
Tabela 7: Planejamento experimental completo para a purificação da enzima beta-galactosidase e as respostas em termos de rendimento e fator de purificação......65
Tabela 8: Coeficientes de regressão para o rendimento da beta-galactosidase.............67
Tabela 9: Coeficientes de regressão para o fator de purificação da beta-galactosidase...67
Tabela 10: Análise de variância para o rendimento ...68
Tabela 11: Análise de variância para o fator de purificação..68
Tabela 12: Purificação da beta-galactosidase realizada em pH 5,5 e volume de 62,8 mL para o gradiente linear salino..71
Tabela 13: Desvio relativo entre as respostas reais obtidas no ensaio de validação e aquelas previstas pelo modelo empírico de purificação. ...72
LISTA DE FIGURAS

CAPÍTULO II
REVISÃO BIBLIOGRÁFICA

Figura 1: Princípio de separação em purificação cromatográfica ..8
Figura 2: Princípio da cromatografia de troca iônica ..9
Figura 3: Influência exercida pelo pH na carga líquida da proteína e no tipo de trocador a ser usado na purificação por cromatografia de troca iônica10
Figura 4: Observação microscópica de células da levedura Kluyveromyces marxianus CCT 7082..20
Figura 5: Esquema operacional da metodologia utilizando beta-galactosidase modificada e imobilizada como biosensor para detecção de anticorpos anti-HIV21
Figura 6: Número de artigos publicados a cada quinquênio, que utilizaram planejamento experimental e análise de superfície de resposta ...25

CAPÍTULO III
CONCENTRAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE Kluyveromyces marxianus CCT 7082, AVALIAÇÃO DA SUA ESTABILIDADE E ADSORÇÃO EM RESINA DE TROCA IÔNICA

Figura 1: Média e desvio padrão para a concentração enzimática e rendimento de extração utilizando relações biomassa:solvente de 2,62 a 20 mg.mL⁻¹ ..35
Figura 2: Média e desvio padrão para a concentração enzimática e rendimento de extração utilizando relações biomassa:solvente de 20 a 50 mg.mL⁻¹ ...36
Figura 3: Estabilidade da enzima beta-galactosidase de Kluyveromyces marxianus CCT 7082 nas temperaturas de 4°C e -18°C ..37
Figura 4: Estabilidade da enzima beta-galactosidase de Kluyveromyces marxianus CCT 7082 nas temperaturas de 10°C e 25°C ...38
Figura 5: Influência do pH na estabilidade da enzima beta-galactosidase de Kluyveromyces marxianus CCT 7082 na temperatura de 37°C ...40
Figura 6: Influência do pH na estabilidade da enzima beta-galactosidase de Kluyveromyces marxianus CCT 7082 na temperatura de 25°C ...41
Figura 7: Influência do pH na estabilidade da enzima beta-galactosidase de Kluyveromyces marxianus CCT 7082 na temperatura de 10°C ...42
Figura 8: Influência do pH na estabilidade da enzima beta-galactosidase de Kluyveromyces marxianus CCT 7082 na temperatura de 4°C ...42
Figura 9: Adsorção de beta-galactosidase em resina de troca iônica Q Sepharose Fast Flow™ na temperatura de 10°C ...44
Figura 10: Adsorção de beta-galactosidase em resina de troca iônica Q Sepharose Fast Flow™ na temperatura de 4°C ..44

PURIFICAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE *Kluyveromyces marxianus* CCT 7082 POR CROMATOGRAFIA DE TROCA IÔNICA EM COLUNA DE LEITO FIXO

Figura 1: Síntese de tanques para obter o gradiente linear salino.........................56

Figura 2: Perfil cromatográfico de purificação de beta-galactosidase realizada com eluição em pH 5,5 e volume de 31,4 mL para o gradiente linear salino.......................58

Figura 3: Perfil cromatográfico da purificação de beta-galactosidase realizada com eluição em pH 7,5 e volume de 31,4 mL para o gradiente linear salino59

Figura 4: Perfil cromatográfico da purificação de beta-galactosidase realizada com eluição em pH 5,5 e volume de 94,2 mL para o gradiente linear salino60

Figura 5: Perfil cromatográfico da purificação de beta-galactosidase realizada com eluição em pH 7,5 e volume de 94,2 mL para o gradiente linear salino62

Figura 6: Perfil cromatográfico da purificação de beta-galactosidase realizada com eluição em pH 6,5 e volume de 62,8 mL para o gradiente linear salino63

Figura 7: Análise dos efeitos principais e suas interações sobre o rendimento da beta-galactosidase..66

Figura 8: Análise dos efeitos principais e suas interações sobre o fator de purificação da beta-galactosidase..66

Figura 9: Superfície de resposta e curva de contorno para o rendimento como função do pH de eluição e volume para o gradiente linear salino na purificação de beta-galactosidase ...69

Figura 10: Superfície de resposta e curva de contorno para o fator de purificação como função do pH de eluição e volume para o gradiente linear salino na purificação de beta-galactosidase ...69

Figura 11: Perfil cromatográfico da purificação de beta-galactosidase realizada com eluição em pH 5,5 e volume de 62,8 mL para o gradiente linear salino71
LISTA DE EQUAÇÕES

CAPÍTULO III
CONCENTRAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE *Kluyveromyces marxianus* CCT 7082, AVALIAÇÃO DA SUA ESTABILIDADE E ADSORÇÃO EM RESINA DE TROCA IÔNICA

Equação 1: Coeficiente de partição ...33
Equação 2: Capacidade de adsorção q da resina ...34

PURIFICAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE *Kluyveromyces marxianus* CCT 7082 POR CROMATOGRAFIA DE TROCA IÔNICA EM COLUNA DE LEITO FIXO

Equação 1: Rendimento ...57
Equação 2: Fator de purificação ..57
A beta-galactosidase é uma enzima utilizada industrialmente na hidrólise da lactose do leite gerando derivados lácteos destinados a pessoas intolerantes a este açúcar. Sua importância é salientada por sua atividade de galactosiltransferase, responsável pela síntese de galactooligosacarídeos, compostos com propriedades prebióticas. Quando produzida por leveduras do gênero Kluyveromyces, esta enzima é intracelular. Tendo em vista que as etapas de purificação, principalmente quando aplicadas a produtos intracelulares, são responsáveis por grande parte dos custos de produção, é importante estudar técnicas que possam ser aplicadas diretamente ao extrato bruto. A presente dissertação teve como principal objetivo estudar a adsorção e purificação da enzima beta-galactosidase de Kluyveromyces marxianus CCT 7082 através de cromatografia de troca iônica. A enzima foi produzida por fermentação submersa em frascos agitados a 30 ºC, 180 rpm por 96 horas. Primeiramente foi avaliado o uso de diferentes relações biomassa:solvente na extração da enzima utilizando ondas ultrassônicas. Foram testadas relações de 2,62 a 50 mg.mL⁻¹, avaliando a resposta em termos de atividade enzimática e rendimento de extração. Em seguida foi determinada a estabilidade da enzima quanto à temperatura e pH. No estudo da estabilidade à temperatura, a enzima foi incubada a -18°C, 4°C, 10°C e 25°C. A estabilidade ao pH foi avaliada para valores entre 4,6 e 8,6, nas temperaturas de 37°C, 25°C, 10°C e 4°C. A atividade residual foi acompanhada ao longo do tempo. A adsorção da enzima pela resina aniónica Q Sepharose Fast Flow™ foi estudada a 4°C e 10°C e em pH de 6,5 a 7,5, através de ensaios cinéticos em reatores agitados contendo a enzima e a resina, a 200 rpm por 360 minutos, onde foram determinados os coeficientes de partição da enzima no equilíbrio para cada condição. A capacidade de adsorção da resina, nas velocidades de alimentação da enzima de 20 cm.h⁻¹ e 40 cm.h⁻¹, foi determinada através da construção de curvas de ruptura em coluna de leito fixo de tipo C10/20. Na purificação da enzima foi avaliado o efeito das variáveis pH de eluição e volume necessário para o gradiente linear salino. Para isso, foi utilizado um planejamento experimental onde o pH variou de 5,5 a 7,5 enquanto que o volume para o gradiente salino variou de 10 a 30 vezes o volume de leito. Na etapa de concentração da enzima beta-galactosidase, a melhor condição foi o uso de uma suspensão celular contendo 40 mg.mL⁻¹, a qual proporcionou uma atividade de 42 U.mL⁻¹. A enzima foi mais estável nas temperaturas de 10°C e 4°C, para a faixa de pH de 6,6 a 8,6. A maior adsorção da enzima pela resina de troca iônica ocorreu em pH 7,5 e temperatura de 10°C, obtendo-se um coeficiente de partição de 61,2, assim como utilizando velocidade superficial de alimentação de 20 cm.h⁻¹ expressa pelo valor de q igual a 104,4 U.mL⁻¹. Foi possível obter e validar um modelo empírico linear para descrever o processo de purificação da enzima por cromatografia de troca iônica em termos de rendimento e fator de purificação. A melhor condição para purificação da beta-galactosidase foi pH de eluição de 5,5 e volume para o gradiente linear salino igual a vinte vezes o volume de leito, obtendo-se rendimento de 85,5% e fator de purificação de 12 vezes.

Palavras-chave: adsorção, concentração, estabilidade, purificação, troca iônica.
ABSTRACT

The beta-galactosidase is an enzyme industrially used in the hydrolysis of milk lactose, generating dairy products destined to people intolerant to this sugar. Its importance is pointed out by its galactosiltransferase activity, responsible for galactooligosaccharide synthesis, compounds with prebiotic properties. When produced by yeasts of the *Kluyveromyces* gender, this enzyme is intracellular. Considering that the purification steps, mainly when applied to intracellular products, are responsible for great part of the production costs, it is important to study techniques that can be directly applied to the crude extract. The present dissertation had as the main objective to study the adsorption and purification of the beta-galactosidase enzyme of *Kluyveromyces marxianus* CCT 7082 through ion exchange chromatography. The enzyme was produced by fermentation submerged in agitated flasks at 30 °C, 180 rpm for 96 hours. Firstly the use of different biomass:solvent ratios (from 2.62 to 50 mg.mL$^{-1}$) in the extraction of the enzyme using ultrasonic waves was evaluated. The response in terms of enzymatic activity and extraction yield was assessed. The stability of the enzyme in relation to the temperature and pH was them determined. In the study of the stability to the temperature, the enzyme was incubated at -18°C, 4°C, 10°C and 25°C. The pH stability was evaluated between 4.6 and 8.6, at temperatures of 37°C, 25°C, 10°C and 4°C. The residual activity was followed along the time. The adsorption of the enzyme for the anionic resin Q Sepharose Fast Flow TM was studied at 4°C and 10°C and in pH from 6.5 to 7.5, through kinetic assays in agitated reactors containing the enzyme and the resin, at 200 rpm for 360 minutes, where the coefficients of partition of the enzyme at equilibrium for each condition was determined. The adsorption capacity q of the resin, at flow rate of enzyme extract of 20 cm.h$^{-1}$ and 40 cm.h$^{-1}$, was determined through the construction of rupture curves in fixed-bed column of type C10/20. In the purification of the enzyme the effect of the elution variables pH and the necessary volume for the linear saline gradient was evaluated. Therefore, an experimental design was use, where the pH varied from 5.5 to 7.5, while the volume for the saline gradient varied from 10 to 30 times the bed volume. In the step of concentration of the enzyme beta-galactosidase, the best condition was the use of a cellular suspension containing 40 mg.mL$^{-1}$, which provided an activity of 42 U.mL$^{-1}$. the enzyme was more stable in the temperatures of 10°C and 4°C, for the pH range from 6.6 to 8.6. The largest adsorption of the enzyme for the ion exchange resin happened in pH 7.5 at 10°C, yielding a partition coefficient of 61.2, similar to that obtaining using flow rate of 20 cm.h$^{-1}$, expressed by value of q similar to 104.4 U.mL$^{-1}$. It was possible to obtain and to validate a linear model to describe the process of purification of the enzyme by chromatography of ionic change in terms of yield and purification factor. The best condition for purification of the beta-galactosidase was elution pH of 5.5 and volume for the linear saline gradient equal to twenty times the bed volume, obtaining a yield of 85.5% and purification factor of 12 times.

Keywords: adsorption, concentration, stability, purification, ion exchange.
CAPÍTULO I
INTRODUÇÃO GERAL
1. INTRODUÇÃO

Enzimas microbianas encontram grande aplicação na indústria alimentícia e farmacêutica, pois são substâncias naturais, apresentam elevada especificidade catalítica atuando em condições brandas de temperatura e pH, além de serem eficientes a baixas concentrações (SILVA et al., 1999).

A hidrólise enzimática de lactose em glicose e galactose pela enzima beta-galactosidase é um dos processos biotecnológicos mais antigos conhecidos pela humanidade. Pessoas intolerantes à lactose possuem restrições quanto à quantidade de lactose que podem ingerir diariamente. Devido a estes problemas a redução do conteúdo de lactose no leite e em produtos lácteos é de suma importância, e a enzima β-galactosidase é comercialmente utilizada para este propósito (DOMINGUES et al. 2005).

Os microrganismos usualmente associados à alta produção de beta-galactosidase são bactérias, como Escherichia coli, Bacillus megaterium, Bacillus stearothermophilus e bolores e leveduras, como Aspergillus oryzae e Kluyveromyces lactis, através de fermentação em estado sólido e fermentação submersa (BECERRA e GONZÁLEZ SISO, 1996).

O aperfeiçoamento dos processos de separação e purificação de beta-galactosidase de origem microbiana são interessantes para reduzir o custo das etapas de preparação da enzima, desde a extração, purificação e concentração, geralmente responsáveis por grande parte do custo total de produção (KULA, 1990).

De modo geral, existe uma grande necessidade de estudar técnicas de purificação eficientes e inovadoras, aplicáveis diretamente ao extrato enzimático obtido a partir de processos fermentativos, não somente para fins analíticos, mas que possam ser levadas à ampliação de escala com minimização dos custos de processo, sem perdas no rendimento.

Proteínas podem ser adsorvidas de maneira seletiva em vários tipos de fases sólidas. Técnicas de adsorção, quando adotadas em colunas cromatográficas, frequentemente resultam em etapas de purificação que aumentam a pureza da proteína, ou a atividade específica, no caso do isolamento de uma enzima (ROE, 2001).

A extração de bioprodutos obtidos a partir de processos fermentativos, como é o caso de muitas proteínas, invariavelmente envolve alguma forma de
Capítulo I

Cromatografia, e diferentes processos cromatográficos são disponíveis incluindo troca iônica, afinidade, interação hidrofóbica, e exclusão por tamanho, que são geralmente operados em uma coluna de leito fixo (HASHIM e CHU, 2007). A cromatografia de troca iônica é uma técnica amplamente utilizada para purificação de proteínas. É um método simples e rápido baseado na dessorção seletiva das proteínas que foram adsorvidas no suporte com diferentes forças. Os trocadores de íons comercialmente disponíveis são altamente ativados com grupos iônicos muitos fortes como QAE-agarose e Q Sepharose de modo que eles podem adsorver a máxima porcentagem de proteínas de um dado extrato. A adsorção seletiva de uma proteína alvo nestes tipos de matriz, entretanto, é um processo bastante complexo (PESSELA et al., 2004).

Muitos trabalhos envolvendo a produção de enzimas de interesse industrial são desenvolvidos através da seleção de novas cepas produtoras e otimização das condições de cultivo em meio sintético ou complexo. Entretanto, existe uma necessidade maior de estudar métodos de recuperação e purificação da enzima de interesse. Dependendo do método a ser aplicado, algumas informações a respeito da mistura protéica obtida via processo fermentativo e também relativas ao processo, precisam ser esclarecidas de modo a aproveitar e melhorar as condições de purificação. No caso da cromatografia de troca iônica, o conhecimento de características básicas, como a estabilidade da enzima quanto ao pH e à temperatura, e as condições que favoreçam a adsorção da enzima pela fase estacionária, são de fundamental importância. A viabilidade de mudanças no processo de extração da enzima, visando a sua concentração, e o estudo das condições de purificação, na etapa de dessorção da molécula de interesse também precisam ser considerados.

De acordo com o exposto acima, este trabalho avaliou as melhores condições para adsorção da enzima beta-galactosidase de Kluyveromyces marxianus CCT 7082 pela resina de troca aniônica Q Sepharose Fast Flow™ e sua purificação através de cromatografia de troca iônica em uma coluna de leito fixo.
1.1 OBJETIVOS

1.1.1 Objetivo geral

Estudar a purificação da enzima beta-galactosidase de *Kluyveromyces marxianus* CCT 7082 por cromatografia de troca iônica em coluna de leito fixo.

1.1.2 Objetivos específicos

- Avaliar a influência da relação biomassa:solvente na extração da enzima beta-galactosidase;
- Investigar a estabilidade da enzima quanto à temperatura e ao pH;
- Estabelecer as condições em termos de pH, temperatura e velocidade de alimentação para adsorção da enzima beta-galactosidase pela resina aniónica Q Sepharose Fast Flow™;
- Identificar as melhores condições de purificação da enzima por cromatografia de troca iônica em coluna de leito fixo, avaliando os parâmetros pH de eluição e volume para o gradiente linear salino através da técnica de planejamento experimental e análise de superfície de resposta.
CAPÍTULO II
REVISÃO BIBLIOGRÁFICA
1. REVISÃO BIBLIOGRÁFICA

1.1 Purificação de produtos biotecnológicos

O processamento de macromoléculas biológicas como proteínas e ácidos nucléicos exerce importância significativa na indústria de bioprocessos, onde cada vez mais se busca reduzir o impacto do processo de downstream na economia global do processo. Proteínas terapêuticas de alto valor podem ter seu custo de separação e purificação tão alto quanto 80% do custo total de produção (GHOSH, 2003). A Tabela 1 demonstra como o custo de isolamento e purificação pode ser uma fração substancial do custo total de produção de muitos produtos de origem biológica.

<table>
<thead>
<tr>
<th>Produto</th>
<th>Preço relativo aproximado</th>
<th>Custo de bioseparação como % do custo total de produção</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentos/aditivos</td>
<td>1</td>
<td>10 -30</td>
</tr>
<tr>
<td>Nutracêuticos</td>
<td>2 -10</td>
<td>30 – 50</td>
</tr>
<tr>
<td>Enzimas industriais</td>
<td>5 -10</td>
<td>30 – 50</td>
</tr>
<tr>
<td>Enzimas para diagnósticos</td>
<td>50 – 100</td>
<td>50 – 70</td>
</tr>
<tr>
<td>Enzimas terapêuticas</td>
<td>50 - 500</td>
<td>60 - 80</td>
</tr>
</tbody>
</table>

A separação e purificação de uma proteína de fermentações em larga-escala ou o sobrenadante da ruptura de células é um elemento crítico do processo biotecnológico moderno. Representa o principal custo industrial e então, a vantagem competitiva na produção dependerá não somente de inovações na biologia molecular, imunologia, e outras áreas da ciência biológica básica, mas também em inovação e otimização dos processos de recuperação e purificação (ASENJO, 1990).

Com o crescente interesse pela biotecnologia, a atenção tem sido dirigida para os avanços nos aspectos genéticos e técnicos da fermentação. No entanto, técnicas de extração e purificação de proteínas são partes inseparáveis do processo biotecnológico global (WISEMAN, 1991).

Avanços recentes em biotecnologia têm aberto numerosas possibilidades para produção em larga escala de muitas proteínas com importantes aplicações farmacêuticas e industriais. Muitas das enzimas obtidas a partir de diferentes tipos de
organismos podem ter um uso comercial, para o qual devem ser separadas das células em que são produzidas e purificadas (JIBBOURI, 2006).

As enzimas são proteínas, portanto os métodos para purificá-las estão baseados nas suas propriedades, sendo que as mais empregadas para separação de uma enzima a partir de uma mistura complexa são: solubilidade, densidade e distribuição de carga, grau de hidratação, tamanho, forma, grupo reativo específico e estabilidade relativa (FURLONG, 2000).

A purificação de produtos biotecnológicos produzidos por células microbianas ou células animais constitui etapa complexa do processo, dadas as variadas características dos meios e das biomoléculas de interesse, como ácidos orgânicos, antibióticos, polissacarídeos, hormônios, aminoácidos, peptídeos e proteínas (PESSOA e KILIKIAN, 2005).

Todas as etapas de extração e purificação de enzimas precisam ser monitoradas em termos de atividade enzimática e teor de proteína. Assim, além de métodos envolvendo proteínas e suas propriedades, outros grupamentos químicos podem ser analisados quanto à sua ocorrência, dependendo da reação que a enzima catalisa (FURLONG, 2000).

Não existe um método único ou um conjunto de métodos aplicáveis ao isolamento de todas as proteínas indistintamente, porém, para qualquer proteína, é possível escolher uma seqüência de etapas de separação que, dependendo da pureza desejada, podem resultar em aumento do custo e redução da produção (LIMA et al., 2002).

Correntes biológicas são geralmente diluídas com respeito à proteína-alvo, que necessita ser separada de um grande número de impurezas. O bioproduto de interesse poderia ser facilmente separado por um instrumento de alta resolução. Entretanto, técnicas de baixa resolução e alto rendimento são usadas primeiramente para reduzir o volume, seguidas de técnicas de alta resolução e baixa produtividade para obter a proteína-alvo pura (GHOSH, 2003).

Roe (2001) comenta que o número de etapas necessárias à purificação deve ser mínimo para assegurar alto rendimento, consistindo de no máximo três etapas. Uma recomendação geral é combinar técnicas cromatográficas como troca iônica, permeação em gel e interação hidrofóbica. A primeira etapa serve para isolar rapidamente a proteína alvo da solução, para concentrar, estabilizar eclarear a
solução alimentada de impurezas, principalmente proteases. A segunda etapa consiste em uma purificação intermediária com o objetivo de remover a maior parte de proteínas, ácidos nucléicos, endotoxinas e vírus. A terceira é uma etapa de polimento para remover traços de impurezas incluindo variantes estruturais da proteína-alvo. Dependendo das características da alimentação e da necessidade de pureza do produto, o número de etapas pode ser reduzido ou expandido.

1.2 Cromatografia

A denominação cromatografia vem do grego *chroma*, que significa cor, e *graphe*, que significa escrever, tendo sido assim denominada, pois as primeiras separações efetuadas no início do século XX, foram de pigmentos vegetais (PESSOA e KILIKIAN, 2005).

A cromatografia baseia-se na distribuição dos componentes a serem separados entre duas fases: uma estacionária, ou ligante, e uma fase móvel que conduz esses componentes pela fase estacionária. Em sua forma mais simples a fase estacionária consiste em um leito empacotado dentro de uma coluna. A mistura de componentes entra na coluna cromatográfica junto com a fase móvel e cada componente individual é fixado pelo sistema a diferentes taxas. A taxa de migração de um componente depende da sua interação com a fase estacionária bem como da vazão da fase móvel (GHOSH, 2003).

A extração de bioprodutos como proteínas a partir de um caldo fermentado invariavelmente envolve alguma forma de cromatografia. Diferentes formatos de processos cromatográficos são disponíveis para purificação de proteínas, incluindo troca iônica, afinidade, interação hidrofóbica e exclusão por tamanho, que são geralmente operados em uma coluna ou leito fixo (HASHIM e CHU, 2007).

A separação de proteínas com base na sua massa molar é a base da permeação em gel, ou cromatografia de exclusão molecular. A cromatografia de interação hidrofóbica é uma técnica baseada na interação hidrofóbica ou na associação entre proteínas e ligantes hidrofóbicos imobilizados em suporte sólido. O princípio da cromatografia de troca iônica é interação de moléculas carregadas da fase móvel com grupos opostamente carregados presentes na fase estacionária. A cromatografia de afinidade, por sua vez, explora afinidades biológicas conhecidas entre as moléculas. A interação entre a proteína alvo e a matriz não é baseada em propriedades gerais como ponto isoeletrico, mas em propriedades estruturais individuais, como a interação entre anticorpos e antígenos, enzima e substrato,
Capítulo II

hormônio e receptor; é um método tão eficiente, capaz de separar formas ativas e inativas do mesmo material (CUTLER, 2004). O princípio de cada uma destas técnicas está demonstrado na Figura 1.

![Figura 1: Princípio de separação em purificação cromatográfica](image)

Fonte: Amersham Biosciences (adaptado).

1.2.1 Cromatografia de troca iônica

Desde que sistemas biológicos são aquosos por natureza e em grande parte influenciados por interações iônicas, faz sentido que a troca de íons exerça um papel fundamental nos processos de downstream em biotecnologia. Praticamente, qualquer produto que seja produzido através de fermentação pode ser isolado ou purificado usando troca de íons. Isto tem sido amplamente demonstrado desde que uma resina de troca iônica foi primeiramente usada para purificar estreptomicina em 1949 (ASENJO, 1990).

O processo de troca iônica é baseado na afinidade que componentes de uma amostra têm com os sítios iônicos de uma matriz sólida. A fase estacionária, eletricamente carregada, tem a capacidade de reter solutos que estão na fase móvel e apresentam cargas de sinais opostos. Para ocorrer a adsorção dos íons da fase móvel na fase estacionária controlam-se fatores como pH e força iônica (BORZANI et al. 2001).

A cromatografia de troca iônica é uma das formas cromatográficas mais utilizadas, aplicada em pesquisas, análises e em processos de purificação de...
proteínas executados em grande escala, sendo ideal para separação inicial de proteínas devido à sua alta capacidade, custo relativamente baixo e sua habilidade para suportar rigorosos protocolos de limpeza (CUTLER, 2004). É utilizada para purificar moléculas de diferentes fontes (animais, vegetais e microbianas), tamanhos, formas, atividades biológicas e localizações, intracelulares ou extracelulares (PESSOA e KILIKIAN, 2005).

A Figura 2 mostra uma representação do processo de troca iônica utilizando gradiente salino de eluição. Inicialmente, é realizada a etapa de equilíbrio do trocador, pela passagem de solução tampão para estabelecer as condições de adsorção. Logo em seguida é feita a alimentação da amostra, onde proteínas são adsorvidas de acordo com a sua carga, moléculas que possuem a mesma carga do trocador não são adsorvidas, e podem ser removidas pela lavagem com tampão. Na etapa de eluição, as proteínas são dessorvidas do trocador pela mudança na composição do tampão, através do aumento na força iônica. Dessa forma, os componentes de interesse são removidos da coluna de acordo com a força de ligação, sendo que aqueles ligados mais fracamente são dessorvidos primeiro.

![Figura 2: Princípio da cromatografia de troca iônica](Fonte: Amersham Biosciences (adaptado).

Na troca iônica há uma etapa de adsorção reversível de moléculas de solutos eletricamente carregados a grupos com cargas opostas. Os solutos adsorvidos são subsequentemente eluídos após serem trocados por outros íons, com o mesmo tipo de carga, porém com maior afinidade pela fase estacionária. São os diferentes graus de afinidade eletrostática entre a fase estacionária e os íons da fase móvel que regem esse tipo de cromatografia (COLLINS, 1990).
A carga líquida em uma molécula de proteína dependerá da combinação de aminoácidos carregados positivamente na molécula. As cargas dos grupos de aminoácidos variam, dependendo da concentração de íon de hidrogênio da solução e, assim, a carga global em uma proteína varia de acordo com o pH. Quanto mais ácida a solução, mais grupos estarão positivamente carregados; quanto mais alcalina a solução, mais negativamente carregada a proteína se tornará (Figura 3). O pH no qual as cargas negativas em uma proteína são balanceadas pelas cargas positivas, e então, a carga global da proteína é igual a zero, é chamado ponto isoelétrico (pI) para aquela proteína (CUTLER, 2004).

![Figura 3: Influência exercida pelo pH na carga líquida total da proteína e no tipo de trocador a ser usado na purificação por cromatografia de troca iônica](Fonte: Amersham Biosciences (adaptado)).

Diferentes proteínas podem ser eluídas de acordo com seus pontos isoelétricos (pIs) individuais com as mudanças do pH de eluição, pois naqueles pontos próximo a seus pIs, as interações entre as proteínas diminuem (ZHANG et al., 2005).

1.2.2 Matriz e grupos trocadores

Um trocador iônico consiste de uma matriz em que grupos carregados estão covalentemente ligados. Os grupos carregados estão associados com contraiões móveis, os quais podem ser reversivelmente trocados por outros íons de mesma carga sem alteração da matriz. Trocadores carregados positivamente possuem contraiões carregados negativamente (ânions) e são chamados trocadores aniônicos. Trocadores carregados negativamente têm contra-íons positivamente carregados (cátions) e são chamados trocadores catiônicos (COLLINS et al., 1990).
A matriz pode ser baseada em compostos inorgânicos, resinas sintéticas ou polissacarídeos. As características da matriz determinam suas propriedades cromatógraicas como eficiência, capacidade e rendimento, assim como sua estabilidade química, força mecânica e propriedades de fluxo. A natureza da matriz também afeta seu comportamento com compostos biológicos e a manutenção de sua atividade biológica (PESSOA e KILIKIAN, 2005).

A presença de grupos carregados é a propriedade fundamental de um trocador iônico. O tipo de grupo determina a sua força e o número total e disponibilidade deles determinam a sua capacidade. Existe uma variedade de grupos que podem ser escolhidos para uso em trocadores, alguns deles são apresentados na Tabela 2.

Tabela 2: Grupos funcionais usados em trocadores iônicos

<table>
<thead>
<tr>
<th>Trocadores aniónicos</th>
<th>Grupo funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietilaminoetil (DEAE)</td>
<td>-O-CH₂-CH₂-N⁺H(CH₃)₂</td>
</tr>
<tr>
<td>Dietil-2-hidroxipropil aminoetil (QAE)</td>
<td>-O-CH₂-CH₂-N⁺(C₆H₅)₂-CH₂-CHOH-CH₃</td>
</tr>
<tr>
<td>Quaternário de amônio (Q)</td>
<td>-O-CH₂-CHOH-CH₂-CH₂-O-CH₂CHOH-CH₂-N⁺(CH₃)₃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trocadores catiónicos</th>
<th>Grupo funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboximetil (CM)</td>
<td>-O-CH₂-COO⁻</td>
</tr>
<tr>
<td>Sulfopropil (SP)</td>
<td>-O-CH₂-CHOH-CH₂-O-CH₂-CH₂-CH₂SO₃⁻</td>
</tr>
<tr>
<td>Metil sulfonato (S)</td>
<td>-O-CH₂-CHOH-CH₂-O-CH₂-CH₂SO₃⁻</td>
</tr>
</tbody>
</table>

Fonte: COLLINS et al. (1990).

Os tipos de grupos ligados à matriz classificam os trocadores iônicos em fortes e fracos. Os termos forte e fraco referem-se à extensão da variação de ionização com a mudança do pH e não com a força de ligação. Trocadores fortes são completamente ionizados em uma ampla faixa de pH, enquanto que com trocadores fracos, o grau de dissociação, e consequentemente a capacidade de troca varia notavelmente com o pH (BORZANI et al. 2001).

Trocadores iônicos Sepharose Fast Flow™ são baseados em uma matriz de agarose 6% altamente constituída de ligações cruzadas com alta estabilidade química e física. O grupo é composto de trocadores fracos, como DEAE Sepharose Fast Flow e CM Sepharose Fast Flow, e trocadores fortes, como Q Sepharose Fast Flow™ e SP Sepharose Fast Flow. As características de alta resolução e taxas de vazão desses trocadores os tornam favoráveis como primeira escolha para separar
misturas complexas, como extratos enzimáticos, em um esquema de purificação, ideais para processos de purificação com elevada demanda e produtividade (Amersham Biosciences).

Staby et al. (2000) em um estudo comparativo sobre resinas fortemente aniónicas, classificaram a resina Q Sepharose Fast Flow™ como uma resina típica para ser usada em uma etapa de captura, caracterizada por ter um tamanho de partícula razoavelmente grande (90 µm) e alta capacidade de ligação, que pode concentrar a proteína alvo, remover água e evitar o entupimento da coluna por produtos da fermentação, a elevadas vazões.

1.2.3 Purificação através de cromatografia de troca iônica

Para Hardin e Ivory (2006), na cromatografia de troca iônica, a natureza exata da interação entre o soluto e os sítios carregados da resina é desconhecida. Os autores defendem a hipótese de que pequenos íons de eletrólitos fortes não se ligam especificamente aos sítios ativos da resina, mas são segurados na proximidade da sua superfície carregada por interações eletrostáticas. Todos os íons permaneceriam móveis em torno da resina e todos os sítios ativos da resina estariam o tempo todo disponíveis para interação.

A separação por cromatografia de troca iônica é um processo de purificação robusto. Ela é desenvolvida através de um screening de diferentes resinas e técnicas que visam selecionar aquelas mais apropriadas para uma investigação detalhada do comportamento de retenção e de dependência das variáveis do processo, que incluem tamanho de partícula, pH, tipo e concentração de sal, solventes, vazão, forma e comprimento do gradiente e temperatura de operação. A seleção das condições cromatográficas ideais, assim como as variáveis do processo, é frequentemente realizada pela combinação de experiência e métodos baseados na tentativa e erro (MOLLERUP et al., 2007).

Grande variedade de matrizes, grupos funcionais e condições de adsorção e desessorção estão disponíveis para ser empregados na purificação por troca iônica. A escolha dos fatores envolvidos deve ser feita de acordo com a finalidade a que se destina o produto final purificado (PESSOA e KILIKIAN, 2005).

Martim et al. (2005) colocam que o uso racional dos processos de cromatografia de troca iônica aplicado à purificação de proteínas requer o conhecimento da taxa em que as proteínas se ligam aos sítios do trocador, ou os
mecanismos que podem modificar a adsorção, e que embora muitos trabalhos avaliem a adsorção de diferentes proteínas, muito pouco se tem estudado com relação à adsorção de multicomponentes protéicos.

A adsorção de proteínas em resinas de troca iônica é influenciada por vários fatores como força iônica, pH, temperatura, massa molar e a carga total na superfície da molécula (VANKOVÁ et al. 2007).

Fatores críticos na cromatografia de troca iônica incluem a seleção do pH para, se possível, introduzir uma grande diferença de carga entre a proteína alvo e os contaminantes, o que promove maior seletividade e reduz mudanças em outros parâmetros. Outros fatores, que irão influenciar a separação são: a inclinação do gradiente ou a mudança da composição da fase móvel, a carga, isto é, a quantidade aplicada relativa a capacidade do adsorvente, o tamanho da partícula, o comprimento da coluna e a velocidade do fluido (ROE, 2001).

De acordo com Scopes (1988), dois métodos são geralmente utilizados na eluição de proteínas de trocadores iônicos: gradiente de pH e gradiente salino. O primeiro consiste na mudança do pH do tampão para um valor em que a ligação é enfraquecida, sendo utilizado menores valores de pH para trocador aniônico, ou maiores para um trocador catiônico. Na prática, este sistema não é muito eficiente, pois, a menos que exista uma capacidade tamponante muito alta, mudanças súbitas de pH quando as proteínas são eluídas resultam em pouca separação dos componentes individuais. Sob baixa força iônica, a capacidade tamponante é muito baixa, e a tentativa de mudar o pH pela aplicação de gradiente é frustrada pelo poder tamponante das proteínas adsorvidas na coluna, e no caso de adsorventes do tipo DEAE, o tamponamento de seus próprios grupos adsorventes. O gradiente salino, por sua vez, provoca aumento na força iônica, enfraquecendo a interação eletrostática entre a proteína e o adsorvente, sendo o método mais comum de eluição. A ação do sal ocorre de duas formas; pelo deslocamento da proteína, desde que os íons ocupam os sítios carregados e bloqueiam a religação da proteína, ou o sistema pode ser considerado como um equilíbrio em que as proteínas fortemente ligadas, quando dessorvidas por algum instante sofrem a ação dos íons, enfraquecendo assim a ligação entre a proteína e o adsorvente.

Grande número de trabalhos reportam a aplicação de gradiente salino na eluição de proteínas (KIM et al., 2004; NAKKAHARAT e HALTRICH, 2006; KATAPODIS et al., 2006; HAJJI et al., 2007; GOMES et al., 2007; MONTI et al., 2008),
em detrimento de poucos que relatam o uso de gradiente de pH (LIU et al., 2005; AHAMED et al., 2007).

Experimentos para avaliar as condições de adsorção são adequados para conhecer as condições para purificação por cromatografia de troca iônica. Makino et al. (2005) testaram a adsorção de inulinase de *Kluyveromyces marxianus* NRRL Y-7571 em resina Streamline DEAE em diferentes valores de pH e em diferentes concentrações iniciais. Os experimentos foram realizados em reatores agitados, com o objetivo de conhecer o melhor pH para adsorção da enzima pela resina, assim como o tempo necessário para ocorrer o equilíbrio de adsorção.

Scopes (1988) comenta que o microambiente de um trocador iônico não é o mesmo da solução tampão eluente, devido ao efeito Donnan, que pode repelir ou atrair prótons na matriz adsorvente. Em geral, o pH na matriz é uma unidade maior do que o pH do tampão em trocadores aniónicos e uma unidade menor em trocadores catiónicos. O efeito Donnan pode então, limitar severamente o intervalo de pH operacional de trocadores iônicos e causar a desnaturação de proteínas. Assim, é importante conhecer as características do trocador iônico e a estabilidade da enzima que se deseja purificar.

Kalil et al. (2005) verificaram o efeito Donnan ao purificarem a enzima inulinase de *Kluyveromyces marxianus* ATCC 16045 por cromatografia de troca iônica em leito expandido e utilizando a resina catiónica Streamline SP. Os autores constataram que nenhuma enzima era recuperada quando a eluição era realizada em pH 3,5. Provavelmente a queda no pH, devido ao efeito Donnan havia provocado a desnaturação da enzima. O problema foi solucionado com a mudança do pH de eluição para 4,1 e o acompanhamento do pH nas frações coletadas na eluição.

1.3 Enzimas

Enzimas são proteínas especializadas na catálise de reações biológicas. Elas estão entre as biomoléculas mais notáveis devido a sua extraordinária especificidade e poder catalítico, que são muito superiores aos dos catalisadores químicos. Possuem um alto grau de especificidade por seus substratos, acelerando reações químicas específicas sem a formação de produtos colaterais e funcionam em soluções aquosas diluídas em condições muito suaves de temperatura e pH. Poucos catalisadores não biológicos exibem todas essas propriedades (LEHNINGER, 1997).
Enzimas podem ser isoladas de diversos organismos; porém, a seleção da fonte para a produção de uma determinada enzima depende da consideração de fatores como: especificidade, pH, estabilidade, ativação, inibição, disponibilidade e custo (TREVAN, 1990).

O crescente interesse na aplicação de enzimas em processos industriais alavancou a procura por biocatalisadores novos ou com propriedades melhoradas. A viabilidade de processos de biotransformação utilizando enzimas depende em grande parte da manutenção da atividade catalítica ao longo do tempo, sendo que a desativação térmica é a principal causa da perda de atividade (CATANA et al., 2007).

As propriedades catalíticas efetivas das enzimas promoveram sua introdução em vários produtos e processos industriais. Avanços em biotecnologia, particularmente em áreas como engenharia de proteína e evolução dirigida, têm provido importantes ferramentas para a produção eficiente de novas enzimas. Isto tem resultado no desenvolvimento de enzimas com propriedades melhoradas para aplicações técnicas estabelecidas e em produção de novas enzimas para áreas completamente novas onde enzimas não tenham sido usadas previamente. O valor estimado do uso mundial de enzimas industriais cresceu de U$1 bilhão em 1995 para U$1.5 bilhões em 2000 (KIRK et al., 2002).

1.3.1 Estabilidade de enzimas

A estabilidade operacional de catalisadores é uma de suas características mais importantes, e torna-se o principal alvo para assegurar a viabilidade técnica e econômica de processos industriais. Enzimas são um tipo de catalisador muito estudado por sua alta atividade e seletividade em várias reações, em ambos meios aquosos e orgânicos. A estrutura polimérica da enzima, entretanto, é estabilizada por um grande número de ligações pouco energéticas, assim o rompimento e a sua desativação é relativamente fácil. Além disso, os aminoácidos presentes na enzima são propensos a várias reações, conduzindo a uma inativação total ou parcial da enzima (LADERO et al., 2006).

Os fenômenos envolvidos na inativação de uma enzima podem ser de natureza inter ou intramolecular. A inativação intramolecular inclui autólise e agregação, enquanto que os fenômenos intermolares são devido a interações da enzima com inibidores irreversíveis, solventes, surfactantes, reagentes oxidantes, sal, ou ainda valores extremos de pH ou temperatura. O mecanismo do processo de
inativação e a reversibilidade ou irreversibilidade das reações envolvidas são de grande importância para o entendimento e melhoria adicional das enzimas como biocatalisadores (JURADO et al., 2004).

Eijsink et al. (2005) comentam que a estabilidade de uma enzima é afetada por muitos fatores, como temperatura, pH, estresse oxidativo, solvente, ligação de íons ou co-fatores e a presença de surfactantes, e afirmam ser relativamente fácil fazer um screening para aquelas mais estáveis em determinadas condições.

Dentre todos os fatores, a estabilidade térmica é a mais estudada, desde que enzimas termoestáveis são também mais resistentes a outros fatores desnaturantes. A altas temperaturas, a maioria das enzimas é inativada, ou tem sua estrutura parcialmente desnovelada, perdendo sua atividade catalítica. A tolerância ao pH, entretanto, tem recebido especial atenção em vários trabalhos que tratam da seleção de enzimas com destino à aplicação industrial (EIJSINK et al., 2005).

A estabilidade de enzimas com relação ao pH e temperatura é avaliada em praticamente todos os trabalhos de produção, geralmente após seu isolamento e purificação parcial, sendo uma das análises mais importantes para sua caracterização. O objetivo principal desta avaliação é identificar enzimas com propriedades diferenciadas, obtidas a partir de novas cepas (HAJJI et al., 2007,) cepas termoestáveis (KATAPODIS et al., 2006; GOMES et al., 2007) ou ainda, enzimas intracelulares (KIM et al., 2004) enantiosseletivas (MONTI et al., 2008) ou imobilizadas (NUMANOGLU e SUNGUR, 2004).

1.3.2 Recuperação de enzimas intracelulares

O aumento na demanda de produtos intracelulares, como proteínas e enzimas pelas indústrias alimentícia e farmacêutica tem evidenciado a importância dos processos de extração e purificação desses produtos (PESSOA e KILIKIAN, 2005).

Diferentes métodos podem ser empregados para extração de proteínas intracelulares, os quais dependem da força física da parede celular dos microrganismos, localização dentro da célula, estabilidade e do uso desejado para o composto de interesse. Métodos mecânicos, físicos, químicos, enzimáticos e a combinação destes podem ser aplicados (MEDEIROS et al., 2008).

No caso de enzimas intracelulares, a eficiência do processo de ruptura deve ser principalmente acompanhada pelo rendimento da molécula alvo em sua forma ativa, através de ensaio de atividade enzimática. Além disso, após o
rompimento, a proteína de interesse pode se degradar por proteases. A redução da temperatura e a adição de inibidores de proteases, como o PMSF (fluoreto de fenil metil sulfonil) pode minimizar esse efeito. A adição de agentes redutores como o β-mercaptoetanol evita a oxidação de grupamentos sulfidriais livres no sítio ativo da enzima, que podem ser oxidados logo após o rompimento celular. A liberação de ácidos nucléicos e proteínas estruturais também pode aumentar a viscosidade da solução. Mudanças no pH ajudam a reduzir a viscosidade do homogeneizado celular (PESSOA e KILIKIAN, 2005).

Vários trabalhos relatam a adição de compostos para minimizar a desnaturação da proteína alvo sem esclarecer, no entanto, o efeito obtido com relação à preservação da sua atividade biológica. Nagy et al. (2001), utilizaram PMSF em uma concentração final de 3 mM, aplicado após o rompimento celular para extração de beta-galactosidase de *Penicillium chrysogenum*. Monti et al. (2008), ressuspenderam as células de *Kluyveromyces marxianus* em tampão contendo 1 µl.mL\(^{-1}\) do inibidor de protease Cocktail (Sigma) para extrair a enzima esterase. Ko et al. (2005) aplicaram sulfato de estreptomicina para precipitar ácidos nucléicos no sobrenadante após a etapa de extração com homogeneizador de alta pressão e ondas ultrassônicas.

Os protocolos de purificação de enzimas intracelulares incluem precipitação com sulfato de amônio, cromatografia de troca iônica, cromatografia de afinidade e permeação em gel como as técnicas mais aplicadas (NAGY et al., 2001; NAKKHARAT e HALTRICH, 2006; GUVEN et al., 2007). Em alguns casos utiliza-se a cromatografia de interação hidrofóbica após a troca iônica, em substituição à etapa de cromatografia de afinidade (MONTI et al., 2008). Entre uma etapa e outra, esses autores reportam a utilização de técnicas como diálise e ultrafiltração, para retirada de sal, após etapas de troca iônica e afinidade. O tratamento com estreptomicina também tem sido considerado como uma etapa dos protocolos de purificação de enzimas intracelulares (KO et al., 2005).

autores obtiveram fator de purificação e rendimento globais de 10 vezes e 37,8% de rendimento.

O protocolo de purificação utilizado por Katapodis et al. (2006) para purificar uma beta xilosidase intracelular envolveu precipitação com sulfato de amônio, e duas etapas de cromatografia de troca iônica (Q Sepharose e Mono Q). A coluna cromatográfica de Q Sepharose e Mono Q aumentaram a pureza em 3,2 e 17,3 vezes, com rendimentos de 52,7% e 72,8%, respectivamente.

Guven et al. (2007) conseguiram fator de purificação de 1,6 vezes e rendimento de 91% na etapa de troca iônica (DEAE-celulose) para purificação de beta-galactosidase da bactéria Alicyclobacillus acidocaldarius subsp. rittmannii. O processo de purificação aplicado envolveu precipitação com sulfato de amônio, permeação em gel (Superdex 200) troca iônica e afinidade (p-aminobenzil, 1-tio-β-D-galactopiranosídeo). Embora a tenha sido feita a retirada de sal da enzima logo após a troca iônica (diálise), a etapa de afinidade não foi bem sucedida, obtendo-se um aumento na atividade específica de apenas 3 vezes com 43% de rendimento.

Nagy et al. (2001) purificaram beta-galactosidase de Penicillium chrysogenum usando precipitação com sulfato de amônio (60% de saturação), diálise, troca iônica (DEAE Sephadex) com gradiente salino de 0,05 a 0,2 M, ultrafiltração e cromatografia de afinidade (p-aminobenzil, 1-tio-β-D-galactopiranosídeo). As etapas de diálise e ultrafiltração visavam apenas a retirada de sal. Na etapa de troca iônica, apenas 31,5% da enzima foi recuperada, com uma atividade específica 4 vezes maior. A etapa de afinidade por sua vez, recuperou 82,5% da enzima, mas não aumentou a pureza.

Dos trabalhos de Nakkharat e Haltrich (2006), Guven et al. (2007) e Nagy et al. (2001), pode-se supor que beta-galactosidases bacterianas e fúngicas não devem ser purificadas por cromatografia de afinidade. Existe ainda a possibilidade de que nesses casos específicos, tenha ocorrido problema com a imobilização do ligante bioespecífico à matriz, ou ainda, problemas de desnaturação que só poderiam ser resolvidos estudando esta etapa do protocolo. Guven et al. (2007) tentaram, sem êxito, várias alternativas para elevar o nível de purificação, como a adição de baixas concentrações de sal e a adição de 7,5% de lactose como indicado pelo fabricante.

Monti et al. (2008) purificaram uma esterase enantioseletiva de Kluveromyces marxianus CBS 1553 utilizando precipitação com sulfato de amônio, cromatografia de troca iônica (Fractogel DEAE) e cromatografia de interação
hidrofóbica (Phenyl Sepharose Fast Flow). As etapas de troca iônica e interação hidrofóbica renderam fatores de purificação de 15 e 9 vezes, e rendimentos de 85% e 30%, respectivamente.

Um processo de purificação composto por precipitação com sulfato de amônio e cinco etapas cromatográficas (Q Sepharose HP, Phenyl Superose HR, Superose 12, Mono Q e Superose 12) foi utilizado por Ramírez-Zavala et al. (2004) para obter aminopeptidase de *Kluyveromyces marxianus*. O fator de purificação global foi de aproximadamente 100 vezes e rendimento de 2,2%. O aumento da atividade específica em cada uma das etapas, entretanto, não passou de 4,3 vezes.

1.3.3 Enzima beta-galactosidase

A enzima beta-galactosidase (β-D-galactohidrolase) hidrolisa as ligações galactosídicas β-D-1,4 da lactose, como também de cromógenos relacionados, α-nitrofenil-β-D-galactopiranosídeo (ONPG), p-nitrofenil-β-D-galactopiranosídeo (PNPG) e 6-bromo-2-naftil-galactopiranosídeo (BNG) (GUVEN et al., 2007). Esta enzima ocorre frequentemente na natureza, podendo ser encontrada em plantas e animais, assim como em uma ampla variedade de microrganismos, incluindo leveduras, fungos e bactérias (GÉKAS e LÓPEZ-LEIVA, 1985).

A levedura *Kluyveromyces lactis* constitui a maior fonte comercial de beta-galactosidase (KIM et al., 2006), apesar disso, a espécie *Kluyveromyces marxianus* (Figura 4) tem sido objeto de estudo em diversos trabalhos de produção da enzima (FURLAN et al., 2000; PINHEIRO et al., 2003; SANTIAGO et al., 2004; RAJOKA et al., 2004; CORTÉS et al., 2005; RECH e AYUB, 2007). Beta-galactosidases para aplicação em soro de queijo e leite são produzidas e comercializadas pelas empresas Amano e Novozymes (GALÁN et al., 2007).
A hidrólise da lactose formando glicose e galactose em diferentes alimentos como o leite e o soro de queijo constitui o uso industrial mais comum da beta-galactosidase, devido às várias aplicações de ingredientes com níveis reduzidos de lactose na indústria alimentícia e láctea, destinados a pessoas com síndrome de má absorção da lactose, disfunção que prevalece em mais da metade da população mundial (RINGS et al., 1994). Além de resultar em produtos mais doces, a hidrólise pode reduzir a cristalização indesejada da lactose em produtos concentrados e refrigerados (GREENBERG e MAHONEY, 1981; GÉKAS e LOPEZ-LEIVA, 1985). Entretanto, ambas as atividades de hidrolase e transferase da enzima beta-galactosidase podem ser usadas em aplicações industriais (NAKKAHARAT e HALTRICH, 2006; RUBIO-TEIXEIRA, 2006).

A hidrólise da lactose presente no soro de queijo, um efluente da indústria láctea, resulta em um aumento na solubilidade de 18 a 55% (m/v), com uma conversão de 80% e uma doçura correspondente a 70% em relação à sacarose, além de diminuição do ponto de congelamento, maior probabilidade para reações de escurecimento não-enzimáticas e processos fermentativos mais rápidos, em meios à base de lactose hidrolisada (NOVALIN et al., 2005).

A formação de oligossacarídeos, denominados galactooligossacarídeos, durante a hidrólise da lactose, foi demonstrada em 1950. Os oligossacarídeos são os produtos da transgalactosilação da lactose ou outros aceptores adequados como os produtos da reação, glicose e galactose, e foram, por muito tempo, considerados
subprodutos indesejáveis na hidrólise da lactose (BOON et al., 2000). Recentemente, os galactooligossacarídeos têm atraído considerável interesse de pesquisadores, devido aos efeitos benéficos proporcionados à saúde humana (GAUR et al., 2006; KIM et al., 2006; MARTÍNEZ-VILLALUENGA et al., 2008). Estes compostos são reconhecidos como prebióticos, pois podem estimular a proliferação de bactérias ácido lácticas e bifidobactérias no intestino humano, além de benefícios como diminuição do nível de colesterol no sangue, prevenção do câncer de cólon, aumento da absorção de cálcio e síntese de vitaminas do complexo B (SAKO et al., 1999; PERUGINO et al., 2004; TUOHY et al., 2005). Ferraz et al. (2007) demonstraram a viabilidade de análise qualitativa e semi-quantitativa de anticorpos anti-HIV com base na resposta alostérica de uma beta-galactosidase modificada e imobilizada, através de uma reação colorimétrica tendo ONPG como substrato, o que indica futuras aplicações da enzima na área médica como por exemplo, na formulação de kits para testes de detecção do vírus HIV. A Figura 5 ilustra o princípio desta metodologia.

Figura 5: Esquema operacional da metodologia proposta por Ferraz et al. (2007) utilizando beta-galactosidase modificada e imobilizada, como biosensor para detecção de anticorpos anti-HIV.
1.3.3.1 Estabilidade da enzima beta-galactosidase

Szczodrak (2000), em seu trabalho para avaliar a hidrólise da lactose em soro de queijo por beta-galactosidase imobilizada de *Kluyveromyces fragilis*, produziu e purificou a enzima através de uma etapa de cromatografia de afinidade alcançando um fator de purificação de 16 vezes e rendimento de 48%. Os autores, entretanto, não citam a concentração de células utilizadas no processo de extração da enzima, realizado por abrasão. As enzimas livre e imobilizada foram avaliadas quanto a diversos parâmetros, entre eles a estabilidade quanto ao pH, na faixa de 5,5 a 8,0, determinada pela incubação da enzima a 30°C por 12 horas, seguido pela medida da atividade enzimática na temperatura ótima. A enzima livre reteve 100% da atividade em pH 6,5 e 7,0. Nos valores de pH de 6,0 e 7,5, a enzima foi menos estável, retendo 65% e 40% da atividade, respectivamente. A enzima não foi estável em pH 5,5 e 8,0, onde reteve aproximadamente 10% e 30% da atividade, respectivamente. A imobilização da enzima tornou-a totalmente estável em pH de 5,5 a 6,5. Em pH 7,0, a enzima perdeu 20% da atividade. Em valores de pH de 7,5 e 8,0, a enzima imobilizada foi apenas um pouco mais estável que a enzima livre, retevendo aproximadamente 58% e 38% da atividade inicial.

Ladero *et al.* (2002) estudaram a estabilidade de beta-galactosidase de *Thermus* sp. e de *Kluyveromyces fragilis* (Lactozym 3000L HP-G, Novozymes). Com relação a estabilidade ao pH, a beta-galactosidase de *Kluyveromyces fragilis* manteve praticamente toda a atividade após o período de avaliação (3 horas a 20°C), na faixa de pH 7,0-8,0. Em pH 6,0 e 5,5, a enzima permaneceu com 80% e 40% da atividade inicial, respectivamente. Em pH 9,0 a enzima perdeu 40% da sua atividade inicial após 60 minutos de incubação.

Ladero *et al.* (2006) investigaram a estabilidade de uma beta-galactosidase industrial de *Kluyveromyces fragilis*, Lactozym da Novozymes, em vários tampões a base de fosfato, com e sem mercaptanol. Os autores incubaram a enzima em vários valores de pH a 25°C para estudar os efeitos do pH na estabilidade, e verificaram que existia diferença na estabilidade da enzima em pH 6,5 e 7,0, sendo que a mesma foi aproximadamente duas vezes mais estável em pH 7,0, em tampão contendo mercaptanol.

1.3.3.2 Recuperação e purificação de beta-galactosidase

A produção industrial de beta-galactosidase pode ser limitada devido aos elevados custos associados à produção e purificação. A literatura apresenta muitos

Alcântara et al. (2006) purificaram beta-galactosidase obtida de cotilédones de uma leguminosa a fim de verificar as propriedades e funções biológicas da enzima. Os autores utilizaram a seqüência precipitação, cromatografia de troca iônica, ultrafiltração e permeação em gel. Na etapa cromatográfica foi utilizada a resina DEAE-celulose, obtendo nesta etapa, um aumento de aproximadamente 6,4 vezes na atividade específica, com apenas 40% de recuperação.

Shaikh et al. (1999) purificaram e caracterizaram uma beta-galactosidase extracelular de *Rhizomucor* sp. A purificação incluiu precipitação com sulfato de amônio, e etapas sucessivas de cromatografia de troca iônica e permeação em gel. Os autores utilizaram a resina DEAE celulose, obtendo fatores de purificação de 2,5 e 1,3 vezes, na primeira e segunda etapa cromatográfica, respectivamente, o que demonstra que em processos de purificação, não existe vantagem em explorar repetidamente uma determinada propriedade do composto de interesse, como a carga da proteína neste caso, visto que essa conduta não aumenta a pureza, mas apenas prejudica o rendimento do processo, que diminuiu de 72% para 66% após a segunda etapa de troca iônica.

Yamamoto et al. (1987) purificaram um extrato bruto de beta-galactosidase de *Aspergillus oryzae* por cromatografia de troca iônica com resina DEAE e eluição do tipo degrau com NaCl 0,03M em pH 5,2 e 7,7. Os autores conseguiram um fator de purificação de 3,3 vezes com 95% de rendimento e concluíram que a enzima era fortemente adsorvida em uma coluna de troca iônica com o aumento do pH de 5,2 para 7,7.

Na tentativa de melhorar o processo de recuperação de beta-galactosidase intracelular de *Kluyveromyces marxianus* CDB 002, pela eliminação da etapa de clarificação do extrato para retirada de fragmentos de células, como ultrafiltração e
centrifugação, Artolozaga et al. (1998) estudaram a recuperação desta enzima pela técnica de cromatografia de troca iônica em leito expandido em uma coluna STREAMLINE de 25 cm, com a resina de troca aniônica STREAMLINE-DEAE. A coluna foi equilibrada com tampão fosfato de potássio 50 mM pH 7,5, com vazão aumentando de 60 até 250 cm.h\(^{-1}\). Primeiramente os autores aplicaram 100 mL do homogeneizado celular diluído 1:4 e eluição do tipo degrau com 0,14 M e 0,2 M de NaCl, obtendo fator de purificação de 3,7 vezes e 16,7% de rendimento. A aplicação do homogeneizado sem diluição causou distúrbio no escoamento, provavelmente devido à alta viscosidade. A fim de tornar o processo mais eficiente, os autores aplicaram 100 mL de um homogeneizado diluído 1:2, com eluição degrau com 0,2 M NaCl, resultando em fator de purificação de 3,2 vezes e rendimento de 71,5%. A melhor condição de purificação foi obtida pela aplicação de 200 mL de homogeneizado diluído 1:2 e eluição degrau com 0,2 M NaCl. Nesta condição foi possível elevar a atividade específica da enzima em 6 vezes e obter um rendimento de 63,3%. A respeito da alta viscosidade de extratos enzimáticos com células, Balasundaram e Harrison (2008) comentam que a influência das características físicas da alimentação na cromatografia usando leito expandido deve ser avaliada para otimizar as condições de ruptura celular.

De modo geral, a literatura apresenta poucos dados sobre a purificação e a estabilidade de beta-galactosidase obtida de leveduras do gênero *Kluyveromyces*. Não há relatos bibliográficos a respeito da purificação da enzima beta-galactosidase de *Kluyveromyces marxianus* por cromatografia de troca iônica em coluna de leito fixo.

1.4 Planejamento de experimentos

A metodologia de planejamento experimental e análise de superfície de resposta é considerada uma ferramenta eficaz e indispensável, tanto para o desenvolvimento de processos e produtos como para o melhoramento dos já existentes (RODRIGUES e IEMMA, 2005).

Planejamento experimental e técnicas de superfície de resposta são usados para determinar as ótimas condições de processos. Esta metodologia possibilita a análise dos efeitos sinergéticos ou antagônicos entre as variáveis, que só podem ser verificados pela determinação dos efeitos de interação entre as mesmas através de um planejamento fatorial (KALIL et al., 2000).
Rodrigues e Iemma (2005) comentam que, uma revisão da literatura, na base de dados do *Food Science and Technology Abstracts* (FSTA) mostrou que nos últimos anos houve um aumento crescente e exponencial do número de artigos que utilizaram análise de superfície de respostas e, consequentemente, planejamentos experimentais (Figura 6).

Figura 6: Número de artigos publicados a cada quinquênio, que utilizaram planejamento experimental e análise de superfície de resposta (Base de dados Food Science and Technology Abstracts – FSTA).

A técnica de planejamento experimental e superfície de resposta é frequentemente utilizada em muitos trabalhos para otimização da produção de enzimas microbianas via processo fermentativo (KALIL et al. 2001; SILVEIRA et al. 2006; MANERA, 2006).

As vantagens do planejamento experimental incluem a redução do número de experimentos, análise simultânea dos fatores que interferem no processo e a possibilidade de otimizar mais de uma resposta ao mesmo tempo (RODRIGUES e IEMMA, 2005).

1.5 Considerações gerais

A utilização de técnicas de planejamento experimental e superfície de resposta para avaliar a purificação de beta-galactosidase através de cromatografia de troca iônica não foi reportada em trabalhos científicos até o momento.
De acordo com a bibliografia apresentada, e tendo em vista a importância da enzima beta-galactosidase bem como o crescente interesse na obtenção de galactooligossacarídeos, é importante estudar técnicas de purificação desta enzima, como a cromatografia de troca iônica, estabelecendo parâmetros de processo que resultem em elevado fator de purificação sem perdas no rendimento.
CAPÍTULO III
DESENVOLVIMENTO DO TRABALHO
CONCENTRAÇÃO DA BETA-GALACTOSIDASE DE *Kluyveromyces marxianus* CCT 7082, AVALIAÇÃO DA ESTABILIDADE E ADSORÇÃO EM RESINA DE TROCA IÔNICA
CONCENTRAÇÃO DA BETA-GALACTOSIDASE DE *Kluyveromyces marxianus* CCT 7082, AVALIAÇÃO DA ESTABILIDADE E ADSORÇÃO EM RESINA DE TROCA IÓNICA

Fabiana Oliveira de Medeiros, Carlos André Veiga Burkert, Susana Juliano Kalil

Fundação Universidade Federal do Rio Grande (FURG) – Departamento de Química, CP 474, CEP 962001-900, Rio Grande, RS, Brasil – Telefone: (53) 3233-8754, *e-mail: dqmsjk@furg.br

RESUMO

Em sistemas biotecnológicos, a concentração do produto de interesse, assim como o conhecimento das suas características e seu comportamento frente a condições de processo e armazenamento é de suma importância para sua recuperação a partir de misturas complexas. Neste trabalho foi avaliada a utilização de diferentes relações biomassa:solvente na extração da enzima beta-galactosidase de modo a obter um extrato com elevada atividade enzimática sem prejuízo do rendimento no processo de extração. A estabilidade da enzima quanto à temperatura e ao pH, assim como sua adsorção pela resina de troca iônica Q Sepharose Fast Flow™, em termos de temperatura, pH e velocidade superficial de alimentação também foram avaliadas. O uso de uma suspensão celular contendo 40 mg.mL\(^{-1}\) resultou em uma atividade de 42 U.mL\(^{-1}\), sem perda no rendimento de extração (16 U.mg\(^{-1}\)). A enzima foi mais estável em pH 6,6 para todas as temperaturas avaliadas. Entretanto, a estabilidade aumentou com a diminuição da temperatura, mantendo até 90% e 82% da atividade inicial após 24 horas de incubação a 4°C e 10°C, respectivamente, para o intervalo de pH de 6,0 a 8,6. A temperatura de 10°C, pH de 7,5 e velocidade de alimentação de 20 cm.h\(^{-1}\) foram as condições que proporcionaram a maior adsorção da enzima beta-galactosidase pela resina de troca iônica Q Sepharose Fast Flow™.

Palavras-Chave: adsorção, estabilidade, extração, resina.

1 INTRODUÇÃO

Beta-galactosidase (E.C. 3.2.1.23) é a enzima responsável pela clivagem hidrolítica da lactose, produzindo glicose e galactose. Existe grande interesse industrial na sua aplicação, pois a mesma pode ser usada para solucionar problemas associados com a utilização e disposição de soro de queijo e também para evitar a
cristalização da lactose em produtos lácteos condensados e congelados. O problema de intolerância à lactose em crianças e adultos, deficientes nessa enzima intestinal pode também ser amenizado pelo uso de lactase na indústria láctea (ARTOLOZAGA et al. 1998).

O uso crescente de processos fermentativos para obter produtos específicos, incluindo diversas proteínas, enzimas ou fármacos têm gerado uma demanda crescente por sistemas eficientes para a recuperação do material intracelular de microrganismos. O rompimento celular é o primeiro estágio no processo de isolamento de materiais intracelulares. Ele constitui uma etapa essencial no processo de downstream, possuindo considerável influência não somente na quantidade total da proteína alvo recuperada, mas também na sua atividade biológica, sua associação com outros componentes celulares, a possível presença de degradação proteolítica e contaminantes que podem influenciar nas etapas de purificação subsequentes, e um processo de extração ótimo é necessário para a purificação de proteínas intracelulares (BECERRA et al., 2001, FARKADE et al., 2006).

Enzimas intracelulares estão protegidas dentro da célula, um ambiente natural com alta estabilidade, alta concentração protéica, baixa tensão de oxigênio e com presença de compostos redutores. Como consequência, enzimas localizadas dentro da célula são muito mais vulneráveis à desnaturação ou perda da atividade quando expostas ao ambiente extracelular, que se segue logo após o rompimento da célula (ROE, 2006).

A estabilidade de uma enzima é afetada por muitos fatores como temperatura, pH, estresse oxidativo, solvente, ions metálicos e cofatores (EIJSINK et al., 2005). O conhecimento da estabilidade de enzimas com relação a esses fatores pode ser determinante para a eficiência dos processos de recuperação e purificação aplicados.

A aplicação de técnicas de purificação como a cromatografia de troca iônica exige o conhecimento de parâmetros que vão desde a escolha da matriz até as propriedades do extrato biológico que se pretende purificar (PESSOA e KILIKIAN, 2005)

Existe uma insuficiência de estudos relacionados às propriedades da enzima beta-galactosidase na sua forma de extrato bruto, assim como do seu comportamento durante a sua adsorção em resinas de troca iônica. A concentração da enzima durante a etapa de extração, e a avaliação da sua estabilidade quanto à
temperatura e pH, assim como a escolha dos parâmetros para adsorção da enzima pela resina Q Sepharose Fast Flow™, visando sua purificação por cromatografia troca iônica foram objeto de estudo do presente trabalho.

2 MATERIAL E MÉTODOS

2.1 Microrganismo

A levedura Kluyveromyces marxianus CCT 7082, gentilmente cedida pelo laboratório de Engenharia de Bioprocessos da FEA/UNICAMP, foi empregada para produção da enzima beta-galactosidase. Esta levedura foi selecionada por Manera et al. (2008), dentre 7 linhagens de Kluyveromyces, como a maior produtora de beta-galactosidase. A levedura foi repicada em ágar extrato de malte e levedura, composto por (g.L⁻¹): extrato de malte (3,0), extrato de levedura (3,0), peptona (5,0), glicose (10,0) e ágar (20,0), e crescida por 4 dias a 25°C. A cultura foi inoculada em caldo extrato de malte e levedura, e incubada a 30°C, 180 rpm por 24 h. Após este período, uma alíquota de 5 mililitros desta suspensão foi transferida assepticamente para tubos de ensaio contendo o mesmo volume de uma solução de glicerol 20%, previamente esterilizada. Esses tubos foram armazenados sob congelamento, a -18°C (PINHEIRO et al., 2003).

2.2 Inóculo

O inóculo foi preparado em frascos erlenmeyers de 500 mL contendo 90 mL do meio de cultura composto por (g.L⁻¹): lactose (10,0), KH₂PO₄ (5,0), (NH₄)₂SO₄ (1,2), MgSO₄.7H₂O (0,4), extrato de levedura (1,0), preparado em tampão fosfato de potássio 0,2 M pH 6,0 (PINHEIRO et al., 2003). A cultura em glicerol, previamente descongelada, foi adicionada em uma concentração de 10% (v/v). As condições de cultivo foram 30°C, 180 rpm por 14 horas.

2.3 Fermentação

A enzima beta-galactosidase foi produzida por fermentação submersa, utilizando o meio de cultura otimizado por Manera et al. (2008) e composto por (g.L⁻¹): lactose (28,2), KH₂PO₄ (5,0), (NH₄)₂SO₄ (8,8), MgSO₄.7H₂O (0,4), extrato de levedura (17,0), preparado em tampão fosfato de potássio 0,2 M pH 6,0. A fermentação foi iniciada com 10% (v/v) de inóculo, e mantida a 30°C, 180 rpm por 96 horas.
2.4 Extração da enzima

A enzima beta-galactosidase obtida de leveduras do gênero *Kluyveromyces* é produzida intracelularmente, sendo necessária uma etapa específica para sua extração. A enzima foi extraída pelo uso conjugado de ondas ultrassônicas e pérolas de vidro (MEDEIROS *et al.*, 2008). Para cada mililitro de suspensão celular foram adicionadas 1,1 g de pérolas de vidro com diâmetro entre 0,6 e 0,8 mm. A suspensão foi sonificada por 40 minutos em banho ultrassônico, sendo a água mantida a 4°C. A suspensão celular foi submetida à centrifugação refrigerada (4700xg, 10 min). O sobrenadante, livre de células, constituiu o extrato bruto de beta-galactosidase.

2.5 Influência da relação biomassa:solvente na atividade enzimática

O uso de diferentes relações biomassa:solvente durante a etapa de extração foi avaliado. O caldo fermentado foi centrifugado sob refrigeração a 4700xg durante 10 minutos. O sobrenadante foi descartado, e as células ressuspensadas com tampão fosfato de potássio 50 mM pH 6,6, de modo a fornecer as diferentes relações biomassa:solvente. Foram realizados dois ensaios; no primeiro deles foram estudadas as seguintes concentrações celulares: 2,62; 10,0; 15,0; e 20,0 mg.mL\(^{-1}\), e no segundo, as concentrações celulares de 20,0; 30,0; 40,0 e 50,0 mg.mL\(^{-1}\). Foi realizada uma fermentação para cada conjunto de ensaios. A extração da enzima beta-galactosidase para cada relação foi realizada em triplicata, utilizando 3 mL de suspensão celular. As respostas para a influência da relação biomassa:solvente empregada na extração foi a atividade enzimática (U.mL\(^{-1}\)) e o rendimento de extração (U.mg\(^{-1}\)). Os dados foram tratados estatisticamente por análise de variância e teste de diferença de médias (Teste de Tukey), utilizando o Software Statistica 5.0 (Statsoft, 2001).

2.6 Estabilidade da beta-galactosidase quanto à temperatura

A enzima foi avaliada quanto a sua estabilidade para as temperaturas de -18°C, 4°C, 10°C e 25°C, sendo armazenada sob congelamento a -18°C e em banho de recirculação, nas temperaturas de 4°C, 10°C e 25°C. Todo o extrato enzimático utilizado nesses ensaios foi obtido a partir da mesma fermentação. Os ensaios foram realizados em duplicata, e a atividade residual foi acompanhada por cerca de 1300 horas para as temperaturas de 4°C e -18°C e por 240 horas para as temperaturas de 10°C e 25°C.
2.7 Estabilidade da beta-galactosidase quanto ao pH

A influência do pH na estabilidade da enzima foi determinada para as temperaturas de 37°C, 25°C, 10°C e 4°C, para um intervalo de pH variando de 4,6 a 8,6. Foram utilizados tampão acetato de sódio, citrato de sódio, fosfato de potássio e tris-HCl, na concentração de 0,2 M. O extrato enzimático foi diluído em tampão (1:10) e incubado nas diferentes temperaturas de avaliação. Os ensaios foram realizados em duplicata para cada valor de pH. A atividade enzimática residual foi acompanhada ao longo do tempo, por um período de 10 horas para as temperaturas de 37°C e 25°C, e por um período de 24 horas para as temperaturas de 10°C e 4°C.

2.8 Avaliação da temperatura e pH de adsorção

Para determinar as melhores condições de adsorção da enzima beta-galactosidase pela resina aniônica Q Sepharose Fast Flow™ foram realizados ensaios cinéticos nas temperaturas de 4°C e 10°C, e em valores de pH de 6,5; 7,0 e 7,5. Os experimentos foram realizados em reatores agitados (180 rpm), contendo 20 mL de extrato enzimático e 2 mL de uma suspensão resina:tampão (1:4). A resina Q Sepharose Fast Flow™ foi previamente equilibrada no pH desejado utilizando tampão fosfato de potássio 25 mM. O pH do extrato enzimático também foi ajustado pela adição de NaOH ou HCl 1N. Também foi realizado um branco para cada condição de temperatura e pH, ao qual não era adicionada a resina.

A determinados intervalos de tempo, durante um período de 360 minutos, foram coletadas amostras sendo imediatamente filtradas para retirada da resina, e então determinada a atividade enzimática em solução. Ao atingir-se o equilíbrio, o coeficiente de partição foi calculado conforme Harsa e Furusaki (1994), de acordo com a Equação 1:

\[f = \frac{Q^*}{C^*} \]

Onde Q* e C* referem-se às atividades enzimáticas no equilíbrio da enzima adsorvida e livre, respectivamente.

2.9 Efeito da velocidade de alimentação

Para verificar a influência da velocidade superficial de alimentação na adsorção da enzima pela resina em uma coluna de troca iônica, duas velocidades foram estudadas: 20 cm.h\(^{-1}\) e 40 cm.h\(^{-1}\). Para cada um dos experimentos, o extrato
enzimático foi alimentado pela parte superior da coluna, sendo coletadas todas as frações de saída, e determinada a atividade enzimática em cada uma delas. A alimentação foi interrompida quando na saída da coluna atingia-se uma atividade enzimática igual a 5% da atividade de alimentação, através da construção de curvas de ruptura (CRUZ e SANTANA, 1996). Após cada ensaio, a coluna foi lavada com tampão, eluída e regenerada. A avaliação dos dados foi realizada comparando-se a capacidade de adsorção (q) da resina para cada velocidade de alimentação, conforme Equação 2:

$$q = \frac{A_0 (V_f - V_m) - \int_{V_m}^{V_f} A dV}{V_{ads}}$$

onde:

- A_0 é a atividade enzimática inicial, em U.mL$^{-1}$
- V_f é o volume de solução injetado na coluna, em mL
- V_m é o volume morto do sistema, em mL
- V_{ads} é o volume de resina, em mL

2.10 Métodos analíticos

2.10.1 Determinação da atividade enzimática

A atividade enzimática foi determinada usando o-nitrofenil-β-D-galactopiranosídeo (ONPG) (INCHAURRONDO et al., 1994). Uma unidade de atividade enzimática (U) foi definida como a quantidade de enzima necessária para liberar 1µmol de o-nitrofenol por minuto, sob as condições do ensaio.

2.10.2 Determinação de biomassa

A concentração celular foi estimada por leitura da absorbância a 620 nm, e convertida para massa de célula seca conforme curva padrão (RECH et al., 1999).

3 RESULTADOS E DISCUSSÃO

3.1 Influência da relação biomassa:solvente na atividade enzimática

A variação da relação biomassa:solvente utilizada na extração da enzima beta-galactosidase foi realizada com o objetivo de concentrar a enzima obtendo o máximo em atividade enzimática sem prejuízo no rendimento de extração.
Em todas as figuras apresentadas com resultados dos ensaios de concentração da enzima, letras iguais indicam que não há diferença significativa e letras distintas indicam diferença significativa a 95% de confiança entre as médias da atividade enzimática.

As médias e os desvios padrão para os ensaios de extração com relação biomassa:solvente variando de 2,62 a 20 mg.mL\(^{-1}\), e a resposta da atividade enzimática (U.mL\(^{-1}\)) e rendimento de extração (U.mg\(^{-1}\)), respectivamente, estão apresentados na Figura 1.

![Figura 1](image_url)

Figura 1: Média e desvio padrão para a concentração enzimática (a) e rendimento de extração (b), utilizando relação biomassa:solvente de 2,62 a 20 mg.mL\(^{-1}\).

Para relações biomassa:solvente no intervalo de 2,62 a 20 mg.mL\(^{-1}\), o uso crescente de biomassa na etapa de extração da enzima, proporcionou um aumento da atividade enzimática (U.mL\(^{-1}\)). Entretanto, para o rendimento de extração (U.mg\(^{-1}\)) não houve diferença significativa ao nível de 95% de confiança, como pode ser observado na Figura 1(b), demonstrando que não houve perdas na extração. Assim, foi possível utilizar relações de biomassa:solvente superiores a esta faixa realizando-se um segundo ensaio com o objetivo de aumentar a atividade enzimática até um valor máximo possível sem que houvesse perdas no rendimento da extração. Neste ensaio, foi utilizado caldo de uma nova fermentação, repetindo, entretanto, o último ponto avaliado no primeiro ensaio (20 mg.mL\(^{-1}\)).

Balasundaram e Harrison (2008) frisam que a obtenção de um alto grau de purificação para produtos intracelulares observando, por exemplo, mudanças no
processo de extração, para torná-lo mais eficiente ou seletivo, é uma estratégia atrativa em termos de custo e rendimento em produto.

A Figura 2 apresenta os gráficos contendo as médias e os desvios padrão para as respostas avaliadas, atividade enzimática e rendimento de extração, obtidas nos ensaios de extração com relações biomassa:solvente variando de 20 a 50 mg.mL\(^{-1}\).

Da Figura 2(a) observa-se que a atividade enzimática aumentou quando a concentração de biomassa passou de 20 para 30 mg.mL\(^{-1}\) permanecendo igual estatisticamente no intervalo de 30 a 50 mg.mL\(^{-1}\). Pela Figura 2(b) pode-se notar que para as relações biomassa:solvente de 20 a 40 mg.mL\(^{-1}\) o rendimento de extração foi igual estatisticamente. O uso da relação 50 mg.mL\(^{-1}\), entretanto, resultou em perda no rendimento de extração. Medeiros et al. (2008) verificaram que a eficiência da extração aumenta com o tempo de ruptura em banho ultrassônico para uma dada concentração de células. Assim para a relação biomassa:solvente de 50 mg.mL\(^{-1}\), o tempo de 40 minutos de rompimento não foi suficiente para extração total da enzima intracelular. O rompimento não foi homogêneo, levando à perdas na extração, que pode ser verificado pelo alto desvio padrão.

Fukuki et al. (2003) observaram, durante a extração de ficoceânina de S. platensis com energia ultrassônica, que a concentração de ficoceânina obtida era maior quando menores volumes de amostra eram extraídos, para um mesmo tempo de exposição. Para avaliar a influência da relação biomassa:solvente no presente
trabalho, a enzima foi extraída a partir de um volume de suspensão celular mínimo (apenas 3 mL), o suficiente para que, após a centrifugação, fosse determinada a atividade enzimática, de modo que não houvesse erro experimental provocado pelo método de extração aplicado.

A relação biomassa:solvente de 40 mg.mL\(^{-1}\) foi a que proporcionou a maior concentração da enzima beta-galactosidase, tendo em vista a atividade enzimática superior, aproximadamente 42 U.mL\(^{-1}\), sem perdas na extração (16 U.mg\(^{-1}\)), além de um rompimento mais homogêneo caracterizado por menor desvio padrão.

O rendimento de extração obtido neste trabalho, com o uso de uma relação de 40 mg.mL\(^{-1}\), foi aproximadamente 6 vezes superior ao obtido por Numanoglu e Sungur (2004), que extraíram beta-galactosidase de *Kluyveromyces lactis* usando uma suspensão celular de 2,62 mg.mL\(^{-1}\), obtendo rendimento de aproximadamente 2,75 U.mg\(^{-1}\).

3.2 Estabilidade da beta-galactosidase quanto à temperatura

Os resultados da estabilidade da enzima beta-galactosidase para as temperaturas de 4°C e -18°C estão apresentados na Figura 3.

Figura 3: Estabilidade da enzima beta-galactosidase de *Kluyveromyces marxianus* CCT 7082 nas temperaturas de 4°C e -18°C.

A estabilidade da enzima nas temperaturas de 4°C e -18°C foi acompanhada com o objetivo de verificar a possibilidade de armazenamento após a
sua extração, principalmente a -18°C, pois alguns trabalhos reportam o armazenamento de enzimas intracelulares nesta temperatura até o momento do processo de purificação (NAGY et al. 2001; MONTI et al., 2008).

Conforme se observa na Figura 3, a enzima beta-galactosidase perdeu 90% da sua atividade inicial após 1300 horas de armazenamento a -18°C. De acordo com Strambini e Gonnelli (2007), a formação de gelo pode resultar em uma agregação irreversível da proteína e a consequente perda da atividade catalítica da enzima. Assim, a enzima não pode ser armazenada sob estas condições. Na temperatura de 4°C a enzima reteve aproximadamente 65% da atividade após o período de armazenamento, e manteve aproximadamente 88% da sua atividade nas primeiras 24 horas.

A Figura 4 apresenta os resultados da estabilidade da enzima beta-galactosidase para as temperaturas de 10°C e 25°C.

Figura 4: Estabilidade da enzima beta-galactosidase de *Kluyveromyces marxianus* CCT 7082 nas temperaturas de 10°C e 25°C.

De acordo com a Figura 4, nas primeiras 24 horas de acompanhamento, a enzima manteve aproximadamente 85% da atividade inicial para as duas temperaturas avaliadas. Ao longo do período avaliado, entretanto, a enzima mostrou-se mais estável na temperatura de 10°C, retendo quase 80% de sua atividade inicial após 10 dias de acompanhamento, em detrimento da temperatura de 25°C, onde a atividade residual para o mesmo período foi de 60%.
A estabilidade da enzima pode ser explicada principalmente pela sua localização intracelular. O estresse a que a enzima é submetida quando da sua extração, assim como a liberação de outras enzimas, principalmente proteases, que outrora se encontravam dentro de organelas específicas e que a partir do rompimento celular passam a estar em contato com a beta-galactosidase pode ter sido o fator determinante para a perda da sua atividade catalítica.

A partir dos resultados observados, após a sua extração, a enzima beta-galactosidase poderia ser armazenada na temperatura de 4°C, e para fins de purificação, um processo não muito demorado, a depender do número de etapas, o mesmo poderia ser realizado na temperatura de 10°C, sem perdas significativas da atividade catalítica da enzima.

Cabe salientar ainda, a importância de estudar temperaturas maiores do que a temperatura de refrigeração, como a temperatura de 25°C no presente trabalho, sempre visando vantagens econômicas que podem ser obtidas quando não se faz necessário o uso de baixas temperaturas.

3.3 Estabilidade da enzima beta-galactosidase quanto ao pH

O conhecimento da estabilidade de uma determinada enzima ao pH permite, por exemplo, que a mesma possa ser adequadamente armazenada quando da sua produção e extração. Além disso, quando se deseja purificar essa biomolécula, essa informação torna-se de suma importância, quando a técnica a ser aplicada para sua purificação é a cromatografia de troca iônica. Assim, neste trabalho, a estabilidade da beta-galactosidase quanto ao pH foi avaliada com o objetivo de conhecer a faixa de pH tanto para armazenar a enzima tão logo ela seja extraída, e principalmente, conhecer as condições mais favoráveis para operar na etapa de purificação posterior.

A estabilidade da enzima beta-galactosidase de Kluveromyces marxianus CCT 7082 foi determinada em quatro temperaturas. Os resultados referentes a temperatura de 37°C estão apresentados na Figura 5.
Figura 5: Influência do pH na estabilidade da enzima beta-galactosidase de *Kluyveromyces marxianus* CCT 7082 na temperatura de 37°C.

A temperatura de 37°C foi escolhida como uma das temperaturas para avaliação da estabilidade ao pH da enzima beta-galactosidase pois MANERA (2006), caracterizando parcialmente esta enzima, encontrou esta como sendo a sua temperatura ótima de atuação. É importante conhecer a estabilidade ao pH de uma enzima na temperatura ótima de atuação, visando a sua aplicação em processos industriais específicos.

Através da Figura 5 observa-se que a enzima perdeu quase totalmente a sua atividade em pH 4,6 após os primeiros 10 minutos de incubação. A enzima foi mais estável em pH 6,6, mantendo aproximadamente 45% da sua atividade inicial após 10 horas de incubação a 37°C. Por tratar-se de uma enzima produzida por *Kluyveromyces marxianus*, sua estabilidade neste pH era esperada, pois beta-galactosidas produzidas por leveduras geralmente são ativas em valores de pH próximos da neutralidade, sendo mais aplicadas em leite e soro “doce”, enquanto aquelas produzidas por fungos são ativas em pH ácido e usadas para hidrolisar lactose em soro ácido (GEKAS e LÓPEZ-LEIVA, 1985).

A Figura 6 mostra os resultados da avaliação da estabilidade da enzima ao pH para a temperatura de 25°C.
Figura 6: Influência do pH na estabilidade da enzima beta-galactosidase de Kluyeromyces marxianus CCT 7082 na temperatura de 25°C.

Na temperatura de 25°C a enzima apresentou boa estabilidade no intervalo de pH de 6,0 a 7,0, mantendo mais de 80% da atividade inicial após o período de incubação de 10 horas. A faixa de pH na qual a enzima mantém sua estabilidade não variou da temperatura de 37°C para a temperatura de 25°C, mas a atividade residual foi maior para esta última. É interessante conhecer a estabilidade de extratos enzimáticos em temperaturas próximas à temperatura ambiente, principalmente para enzimas intracelulares. Os custos com refrigeração nas etapas de extração e purificação podem ser sensivelmente reduzidos caso estas etapas possam ser realizadas à temperatura ambiente.

As Figuras 7 e 8 apresentam os resultados da avaliação da estabilidade ao pH para a enzima beta-galactosidase a 10°C e a 4°C.
Figura 7: Influência do pH na estabilidade da enzima beta-galactosidase de *Kluyeromyces marxianus* CCT 7082 na temperatura de 10°C.

Figura 8: Influência do pH na estabilidade da enzima beta-galactosidase de *Kluyeromyces marxianus* CCT 7082 na temperatura de 4°C.

É possível observar nas Figuras 7 e 8 que quando a enzima foi incubada a 10°C e a 4°C, a faixa de pH em que a enzima se mantém mais estável foi ampliada, para o intervalo de 6,0 a 8,6, sendo que a enzima reteve até 90% da atividade inicial após 24 horas de incubação a 4°C, e até 82% da atividade inicial a 10°C, após o mesmo período de incubação.
Não foram encontrados dados literários sobre a estabilidade da enzima beta-galactosidase na sua forma bruta com relação a baixas temperaturas e ao pH, apenas para propriedades e parâmetros cinéticos (ZHOU e CHEN, 2001). Na verdade, tais informações não são encontradas para enzimas brutas em geral. Germano et al. (2003) avaliaram a estabilidade de proteases brutas de *Penicillium* sp. produzida por fermentação em estado sólido, entretanto o objetivo era avaliar a viabilidade da utilização de farelo de soja desengordurado como substrato e sua influência nas propriedades da enzima.

A beta-galactosidase de *Kluyveromyces marxianus* é uma enzima intracelular, logo, quando a célula da levedura é rompida, muitas outras enzimas, responsáveis por catalisar todas as reações metabólicas que ocorrem no interior da célula, também são extraídas e liberadas para o meio. Dentre estas enzimas, pode haver proteases, que num meio adequado, podem continuar atuando. Assim, a maior estabilidade da beta-galactosidase com a diminuição da temperatura pode ser atribuída também ao fato de que em uma temperatura inferior, as proteases não poderiam atuar, e a beta-galactosidase manter-se-ia mais estável. Além disso, a diminuição da temperatura também pode ter minimizado o efeito desnaturante do pH.

3.4 Temperatura e pH de adsorção

A partir dos resultados de estabilidade da beta-galactosidase quanto à temperatura e ao pH, optou-se por avaliar o comportamento cinético de adsorção da enzima pela resina aniónica Q Sepharose Fast Flow™ a 10°C e 4°C, temperaturas na qual a enzima foi mais estável. Embora nestas temperaturas a faixa de estabilidade ao pH seja bem ampla, apenas os valores de pH de 6,5, 7,0 e 7,5 foram escolhidos para os estudos de adsorção. Esta decisão baseou-se principalmente no fato de que em valores de pH inferiores, a molécula de enzima estaria menos carregada, dificultando assim a sua adsorção pela resina. Além disso, de acordo com Scopes (1988), trocadores aniónicos, como a resina Q Sepharose Fast Flow™, durante a etapa de eluição, tendem a formar um microambiente em seu entorno com pH de até 1 unidade acima do pH de eluição, devido a liberação de íons hidroxilas, condição caracterizada pelo autor como efeito Donnan. Desta forma, a utilização de pH maior que 7,5 nos estudos de adsorção também não foi considerada, pois se tal fenômeno ocorresse, a estabilidade da enzima em valores de pH maiores que 8,6, por exemplo, não seria conhecida.
As Figuras 9 e 10, respectivamente, mostram o comportamento da atividade enzimática adimensionalizada da beta-galactosidase ao longo do tempo para os ensaios cinéticos de adsorção realizados nas temperaturas de 10°C e 4°C, em valores de pH 6,5, 7,0 e 7,5.

Figura 9: Adsorção de beta-galactosidase em resina de troca iônica Q Sepharose Fast Flow™ na temperatura de 10°C.

Figura 10: Adsorção de beta-galactosidase em resina de troca iônica Q Sepharose Fast Flow™ na temperatura de 4°C.
Observa-se que em ambos os experimentos o equilíbrio foi atingido após 180 minutos, onde não há mais variação da atividade enzimática em solução. Através da Figura 10, e também na Figura 9, onde não está claro devido à temperatura, que ocorreu o fenômeno de dessorção da enzima no sistema em pH 6,5, e a seguir nova adsorção. Isto pode ter ocorrido devido à presença de outras proteínas no extrato que também possuam afinidade pela resina e podem ter ocupado o seu sítio de ligação, ocorrendo assim uma adsorção competitiva entre a beta-galactosidase e outras proteínas presentes no meio. Para ambas as temperaturas analisadas, observa-se ainda que em pH 6,5, a adsorção foi menor, indicando que neste pH, a molécula estaria menos carregada negativamente.

A partir dos dados de adsorção no equilíbrio, foram calculados os coeficientes de partição da enzima para ambos os valores de temperatura e pH estudados, conforme a Equação 1. Os resultados estão apresentados na Tabela 1.

Tabela 1: Coeficiente de partição da enzima beta-galactosidase na resina de troca iônica Q Sepharose Fast Flow™ para temperaturas de 4°C e 10°C e em valores de pH 6,5 a 7,5.

<table>
<thead>
<tr>
<th>Temperatura (°C)</th>
<th>pH 6,5</th>
<th>pH 7,0</th>
<th>pH 7,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>17,4</td>
<td>37,0</td>
<td>46,8</td>
</tr>
<tr>
<td>10</td>
<td>34,0</td>
<td>62,0</td>
<td>61,2</td>
</tr>
</tbody>
</table>

Os maiores coeficientes de partição da enzima foram obtidos na temperatura de 10°C, independentemente do pH de adsorção, o que indica que a reação química de adsorção pode ocorrer com absorção de energia. Assim, o aumento da temperatura de 4°C para 10°C favoreceu o processo de adsorção da enzima beta-galactosidase. Nota-se que praticamente não há diferença entre os valores do coeficiente de partição em pH 7,0 e 7,5 para a temperatura de 10°C. Desse modo, optou-se pela escolha da temperatura de 10°C e o pH de 7,5 como sendo as melhores condições para adsorção da enzima, visto que, se houver oscilação da temperatura para valores inferiores a 10°C a adsorção seria menos prejudicada em pH 7,5 do que em pH 7,0.
3.5 Velocidade de alimentação

A capacidade de adsorção da resina foi avaliada através da influência da velocidade de alimentação da amostra, conduzida até que se obtivesse 5% da atividade inicial na saída da coluna.

A partir das curvas de ruptura, que descrevem a relação entre a atividade enzimática adimensionalizada e o volume de extrato coletado na saída da coluna, determinou-se a capacidade de adsorção (q) da resina para cada velocidade de alimentação, conforme Equação 2. Estes resultados estão apresentados na Tabela 2.

<table>
<thead>
<tr>
<th>Velocidade de alimentação (cm.h(^{-1}))</th>
<th>Capacidade de adsorção (U.mL(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,0</td>
<td>104,4</td>
</tr>
<tr>
<td>40,0</td>
<td>78,8</td>
</tr>
</tbody>
</table>

Da Tabela 2 observa-se que com a adsorção da enzima pela resina foi favorecida ao utilizar a menor velocidade de alimentação, já que para atingir a relação A/A\(_0\) de 5% foi necessário um volume maior de amostra. Este é um dado importante, uma vez que CHASE (1984) coloca que é prática comum interromper a alimentação na coluna quando o nível de adsorbado na saída sobe acima de certo nível, pois se a alimentação continua, uma quantidade considerável do composto de interesse pode passar sem ser adsorvido. Assim, a velocidade superficial de alimentação que propiciou a maior adsorção da beta-galactosidase pela resina aniônica Q Sepharose Fast Flow\(^{TM}\) foi a velocidade de 20 cm.h\(^{-1}\).

Moraes (2005), estudando a adsorção de ficocianina na mesma resina Q Sepharose Fast Flow\(^{TM}\), verificou que a maior capacidade de adsorção ocorria na velocidade de 40 cm.h\(^{-1}\), embora o valor encontrado não tenha diferido muito das demais velocidades avaliadas (8 e 80 cm.h\(^{-1}\)). Provavelmente, no presente trabalho, a maior velocidade de alimentação, 40 cm.h\(^{-1}\), favoreceu a adsorção de outras proteínas contaminantes em detrimento da proteína de interesse, no caso a beta-galactosidase.

4 CONCLUSÕES

Dentre as relações biomassa:solvente avaliadas na etapa de extração da enzima beta-galactosidase, a utilização de uma suspensão celular contendo 40
mg.mL\(^{-1}\) foi a que proporcionou a maior concentração da enzima, 42 U.mL\(^{-1}\), sem perdas no rendimento de extração, 16 U.mg\(^{-1}\).

A enzima beta-galactosidase foi mais estável na temperatura de 4°C, mantendo 80% da atividade após 10 horas de incubação, seguida pela temperatura de 10°C. A faixa de pH em que a enzima é estável aumentou com a diminuição da temperatura, sendo que a 37°C a enzima foi mais estável em pH 6,6, a 25°C na faixa de pH de 6,0 a 7,5 e nas temperaturas de 10°C e 4°C a faixa de estabilidade foi de a 6,0 a 8,6. A melhor condição para adsorção da enzima pela resina de troca iônica Q Sepharose Fast Flow\(^{TM}\) foi temperatura de 10°C e pH 7,5, condição que resultou em coeficiente de partição de 61,2. A velocidade superficial de alimentação de 20 cm.h\(^{-1}\) proporcionou a maior capacidade de adsorção q da resina, igual a 104,4 U.mL\(^{-1}\).

Agradecimentos

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

5 REFERÊNCIAS BIBLIOGRÁFICAS

PURIFICAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE *Kluyveromyces marxianus* CCT 7082 POR CROMATOGRAFIA DE TROCA IÔNICA EM COLUNA DE LEITO FIXO
PURIFICAÇÃO DA ENZIMA BETA-GALACTOSIDASE DE *Kluyveromyces marxianus* CCT 7082 POR CROMATOGRAFIA DE TROCA IÔNICA EM COLUNA DE LEITO FIXO

Fabiana Oliveira de Medeiros, Carlos André Veiga Burkert, Susana Juliano Kalil

Fundação Universidade Federal do Rio Grande (FURG) – Departamento de Química, CP 474 CEP 962001-900, Rio Grande, RS, Brasil – Telefone: (53) 3233-8754

E-mail: dqmsjk@furg.br

RESUMO

A enzima beta-galactosidase produzida por *Kluyveromyces marxianus* CCT 7082 via fermentação submersa foi purificada por cromatografia de troca iônica em uma coluna de leito fixo. Foram estudadas as condições de eluição da enzima, pH e volume para o gradiente linear salino, utilizando um planejamento experimental completo com 2^2 ensaios mais 3 pontos centrais. As respostas avaliadas foram o rendimento e o fator de purificação da enzima. Através da análise de variância foi possível obter um modelo válido para descrever o processo de purificação da enzima, tanto para o rendimento quanto para o fator de purificação. O menor volume de eluição aplicado favoreceu grandemente o rendimento para a faixa de pH de 5,5 a 7,5, entretanto, o maior volume de eluição, realizado em pH 5,5 proporcionou elevado fator de purificação da enzima. A melhor condição para ambas as respostas foi a utilização de um volume de eluição equivalente a 20 vezes o volume do leito e em pH 5,5. Nessas condições, obteve-se 85 % de recuperação da enzima com um fator de purificação de 12 vezes.

Palavras-chave: beta-galactosidase, cromatografia de troca iônica, purificação.

1 INTRODUÇÃO

Enzimas microbianas possuem vasta aplicação no setor alimentício e farmacêutico por serem substâncias naturais, apresentarem elevada especificidade catalítica, atuarem em condições brandas de temperatura e pH e serem eficientes a baixas concentrações (SILVA et al., 1996).

A beta-galactosidase (β-D-galactosideo galactohidrolase, EC 3.2.1.23) ou lactase é uma importante enzima utilizada industrialmente na hidrólise da lactose de leite e soro de queijo gerando produtos destinados às pessoas intolerantes à lactose (GÉKAS e LÓPEZ-LEIVA, 1985). Sua importância é realçada por sua atividade de
galactosiltransferase responsável pela síntese de galactooligosacarídeos que atuam como alimentos funcionais, promovendo efeitos benéficos para seus consumidores (YANG e SILVA, 1995).

O grande interesse na geração de novos produtos biotecnológicos utilizando tecnologia eficiente e que possa ser levada à ampliação de escala é cada vez mais evidente. Um processo típico para recuperação primária de proteínas intracelulares envolve o uso de operações convencionais de rompimento celular, centrifugação e ultrafiltração. A purificação, entretanto, é frequentemente alcançada por múltiplas etapas cromatográficas. A natureza multi-etapas dos processos convencionais de purificação para produtos biotecnológicos é vista como uma desvantagem significativa (AGUILAR et al., 2006).

Para contornar algumas das desvantagens atribuídas aos processos já estabelecidos para produção de proteínas, diferentes caminhos têm sido propostos, envolvendo desde a redução de etapas cromatográficas até a sua substituição por técnicas alternativas.

A cromatografia de troca iônica é amplamente usada em bioseparações, desde peptídeos, proteínas, ácidos nucléicos e biopolímeros que possuam moléculas ionizáveis tornando-os susceptíveis ao aumento ou a reversão de cargas como uma função do pH (LEVISON, 2003). É um método simples e rápido para separação baseado na dessorção seletiva das proteínas que foram adsorvidas no suporte com forças iônicas distintas. Trocadores iônicos disponíveis comercialmente são altamente ativados com grupos iônicos muito fortes como Q Sepharose, capazes de adorver a máxima porcentagem de proteínas de um extrato bruto. A adsorção seletiva de uma proteína alvo neste tipo de matriz é um processo complexo (PESSELA et al., 2004).

O objetivo do presente trabalho foi purificar a enzima beta-galactosidase por cromatografia de troca iônica, em coluna de leito fixo utilizando a resina Q Sepharose Fast Flow™, avaliando os parâmetros de eluição, pH e volume para o gradiente linear salino, a fim de obter elevado fator de purificação sem prejuízo no rendimento.

2 MATERIAL E MÉTODOS

2.1 Microrganismo

A levedura *Kluyveromyces marxianus* CCT 7082, gentilmente cedida pelo laboratório de Engenharia de Bioprocessos da FEA/UNICAMP, foi empregada para
produção da enzima beta-galactosidase. Esta levedura foi selecionada por Manera et al. (2008) dentre 7 linhagens de *Kluyveromyces*, como a maior produtora de beta-galactosidase. A levedura foi replicada em ágar extrato de malte e levedura, composto por \((g.L^{-1})\): extrato de malte (3,0), extrato de levedura (3,0), peptona (5,0), glicose (10,0) e ágar (20,0), e crescida por 4 dias a 25°C. A cultura foi inoculada em caldo extrato de malte e levedura, e incubada a 30°C, 180 rpm por 24 h. Após este período, uma alíquota de 5 mililitros desta suspensão foi transferida assepticamente para tubos de ensaio contendo o mesmo volume de uma solução de glicerol 20%, previamente esterilizada. Esses tubos foram armazenados sob congelamento, a -18°C (PINHEIRO et al., 2003).

Esta metodologia de armazenamento da levedura *Kluyveromyces marxianus* CCT 7082 possibilitou que todas as fermentações para obtenção de biomassa contendo a enzima beta-galactosidase a ser utilizada no trabalho fossem obtidas a partir da mesma cultura inicial.

2.2 Inóculo

O inóculo foi preparado em frascos erlenmeyers de 500 mL contendo 100 mL do meio de cultura composto por \((g.L^{-1})\): lactose (10,0), KH\(_2\)PO\(_4\) (5,0), (NH\(_4\))\(_2\)SO\(_4\) (1,2), MgSO\(_4\).7H\(_2\)O (0,4), extrato de levedura (1,0), preparado em tampão fosfato de potássio 0,2 M pH 6,0 (PINHEIRO et al., 2003). A cultura armazenada em glicerol foi adicionada em uma concentração de 10% v/v. As condições de cultivo foram 30°C, 180 rpm por 14 h.

2.3 Fermentação

A enzima beta-galactosidase foi produzida por fermentação submersa, em frascos agitados, utilizando o meio de cultura otimizado por Manera et al. (2008) e composto por \((g.L^{-1})\): lactose (28,2), KH\(_2\)PO\(_4\) (5,0), (NH\(_4\))\(_2\)SO\(_4\) (8,8), MgSO\(_4\).7H\(_2\)O (0,4), extrato de levedura (17,0), preparado em tampão fosfato de potássio 0,2 M pH 6,0, acrescidos de 10% (v/v) de inóculo. As condições de cultivo foram 30°C, 180 rpm, por 96 h.

2.4 Extração da enzima

A enzima beta-galactosidase obtida de leveduras do gênero *Kluyveromyces* é produzida intracelularmente, sendo necessária uma etapa específica para sua extração. A enzima foi extraída pelo uso conjugado de ondas ultrassônicas e
pérolas de vidro (MEDEIROS et al., 2008). Para cada mililitro de suspensão contendo 40 mg de células foram adicionadas 1,1 g de pérolas de vidro com diâmetro entre 0,6 e 0,8 mm. Porções de 15 mL desta suspensão foram sonificadas por 40 min, em banho ultrassônico, sendo a água mantida a 4°C. A suspensão celular foi centrifugada sob refrigeração (4700xg, 10 min). O sobrenadante, livre de células, constituiu o extrato enzimático de beta-galactosidase.

2.5 Purificação da enzima beta-galactosidase por cromatografia de troca iônica

2.5.1 Ensaios de purificação na coluna de troca iônica

Em todos os ensaios de purificação utilizou-se uma coluna C10/20 empaçotada com 4 cm de leito da resina Q Sepharose Fast Flow™ (GE Healthcare), equivalente a um volume de 3,14 mL. Todos os experimentos foram realizados a 10°C. A resina foi previamente equilibrada com tampão fosfato de potássio 25 mM pH 7,5, e a coluna de troca iônica foi alimentada com 15 mL de extrato enzimático com atividade inicial de aproximadamente 10 U.mL⁻¹, a uma velocidade de 20 cm.h⁻¹. Foram coletadas frações de 3 mL na saída da coluna. Todas as frações foram analisadas quanto à atividade enzimática e absorbância a 280 nm. Na etapa de eluição, as frações mais concentradas também foram analisadas quanto à proteína total.

2.5.2 Estudo das condições de dessorção da enzima beta-galactosidase

Foram avaliadas as melhores condições para purificação da enzima por cromatografia de troca iônica, sendo estudadas as variáveis mais importantes da etapa de eluição, que são o pH e volume necessário para o gradiente linear salino.

Ishihara et al. (2006) defendem o uso da relação entre o volume necessário para o gradiente linear salino (V₉) e o volume do leito na coluna (CV). Neste trabalho, os experimentos de eluição com gradiente linear salino foram realizados para concentração de sal variando de 0 a 1 M com diferentes valores para V₉, de modo que o volume do gradiente fosse 10, 20 ou 30 vezes o volume do leito, que no presente trabalho foi de 3,14 mL.

Estas variáveis foram estudadas através de um planejamento experimental com 2² ensaios mais 3 pontos centrais, resultando em 7 ensaios de purificação. Assim, os níveis -1, 0 e +1 da variável volume de eluição correspondem a 10, 20 e 30 vezes o volume de leito, respectivamente. A Tabela 1 apresenta a matriz do planejamento,
contendo os valores codificados e reais para as variáveis estudadas na etapa de desorção da enzima beta-galactosidase em coluna de troca iônica.

Tabela 1: Matriz do planejamento experimental completo para estudo do pH de eluição e volume necessário para o gradiente linear salino.

<table>
<thead>
<tr>
<th>Ensaio</th>
<th>pH (codificado)</th>
<th>pH (real)</th>
<th>Volume eluição (codificado)</th>
<th>Volume eluição (real) mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>5,5</td>
<td>-1</td>
<td>31,4</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>7,5</td>
<td>-1</td>
<td>31,4</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>5,5</td>
<td>+1</td>
<td>94,2</td>
</tr>
<tr>
<td>4</td>
<td>+1</td>
<td>7,5</td>
<td>+1</td>
<td>94,2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6,5</td>
<td>0</td>
<td>62,8</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6,5</td>
<td>0</td>
<td>62,8</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>6,5</td>
<td>0</td>
<td>62,8</td>
</tr>
</tbody>
</table>

2.5.3 Sistema para a eluição com gradiente linear salino

Para realizar a eluição na forma de gradiente linear salino, foi montado um sistema conforme mostrado na Figura 1. A solução de NaCl 2 M em tampão fosfato de potássio existente no tanque C1 é bombeada continuamente para o tanque C2, contendo inicialmente tampão fosfato de potássio 25 mM. Este segundo tanque é mantido sob agitação e, a partir dele alimenta-se a coluna cromatográfica. A vazão do primeiro tanque (F1) é mantida sempre a metade do segundo tanque (F2). A partir do balanço de massa do sistema é possível determinar a concentração salina que está sendo aplicada no leito. A Figura 1 demonstra o esquema que foi montado por Kalil (2000) para realização do gradiente linear salino. As soluções dos tanques C1 e C2 possuíam pH de acordo com o ensaio do planejamento experimental.
2.6 Métodos analíticos

2.6.1 Determinação da atividade enzimática

A atividade enzimática foi determinada usando como substrato o-nitrofenil-β-D-galactopiranósídeo (ONPG) de acordo com Inchaurrondo et al. (1994). Uma unidade de atividade enzimática (U) foi definida como a quantidade de enzima necessária para liberar 1 µmol de o-nitrofenol por minuto, sob as condições do ensaio.

2.6.2 Determinação de biomassa

A concentração celular foi estimada por leitura da absorbância a 620 nm, e convertida para massa de célula seca conforme curva padrão (RECH et al., 1999).

2.6.3 Determinação de proteína total

A concentração de proteínas foi determinada pelo método de Lowry et al. (1951), utilizando albumina de soro bovino (BSA) como proteína padrão.

2.6.4 Determinação da absorbância a 280 nm

O acompanhamento da quantidade de proteína total das frações coletadas na saída da coluna, durante todo o ensaio de purificação, foi realizado utilizando espectrofotômetro, marca Cary 100 conc UV visible-spectrophotometer – Varian.

2.7 Determinação do rendimento e do fator de purificação

A eficiência do processo de purificação da enzima beta-galactosidase de Kluyveromyces marxianus CCT 7082 por cromatografia de troca iônica foi avaliada através do rendimento, obtido pela razão entre quantidade de enzima recuperada e adsorvida durante a alimentação, respectivamente (Equação 1) e do fator de
purificação, que considera o aumento na atividade específica da enzima após a etapa de purificação (Equação 2):

\[\% R = \left[\frac{\sum (A_F \times V_F)}{(A_E \times V_E)} \right] \times 100 \quad (1) \]

\[FP = \left[\frac{\sum (A_F \times V_F) / \sum (P_F \times V_F)}{(A_E \times V_E) / (P_E \times V_E)} \right] \quad (2) \]

Onde:
A\(_F\) é a atividade enzimática das frações coletadas na eluição (U.mL\(^{-1}\));
V\(_F\) é o volume das frações coletadas na eluição (mL);
P\(_F\) é a concentração de proteína das frações coletadas na eluição (mg.mL\(^{-1}\));
A\(_E\) é a atividade enzimática do extrato enzimático alimentado (U.mL\(^{-1}\));
V\(_E\) é o volume de extrato enzimático alimentado (mL);
P\(_E\) é a concentração de proteína do extrato enzimático (mg.mL\(^{-1}\)).

3. RESULTADOS E DISCUSSÃO

3.1 Purificação da enzima beta-galactosidase por cromatografia de troca iônica

Foram realizados 7 ensaios, aplicando na coluna cromatográfica o extrato bruto de beta-galactosidase. Diferentes condições para eluição da beta-galactosidase adsorvida na resina de troca iônica Q Sepharose Fast Flow\(^{TM}\) foram testadas e avaliadas quanto ao rendimento e ao fator de purificação.

No primeiro ensaio a etapa de eluição foi realizada em pH 5,5 e volume de eluição de 31,4 mL para o gradiente linear salino passar de 0 a 1 M. O perfil cromatográfico e os resultados da purificação estão apresentados na Figura 2 e na Tabela 2, respectivamente.
Figura 2: Perfil cromatográfico de purificação de beta-galactosidase de *Kluyveromyces marxianus* CCT 7082, realizado com eluição em pH 5,5 e volume de 31,4 mL para o gradiente linear salino.

Tabela 2: Resultados de purificação da beta-galactosidase obtidos no ensaio 1, realizado com eluição em pH 5,5 e volume de 31,4 mL para o gradiente linear salino:

<table>
<thead>
<tr>
<th>Etapa (i)</th>
<th>A_i (U)</th>
<th>P_i (mg)</th>
<th>AE (U/mg)</th>
<th>Rendimento (%)</th>
<th>Fator de Purificação (vezes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato enzimático</td>
<td>158,88</td>
<td>86,65</td>
<td>1,83</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Coluna de troca íônica</td>
<td>136,86</td>
<td>9,10</td>
<td>15,04</td>
<td>86,1</td>
<td>8,2</td>
</tr>
</tbody>
</table>

A_i – atividade total da etapa i, P_i – proteína total da etapa i, AE – atividade específica.

Observa-se através da Figura 2 que saíram 3 frações contendo a enzima beta-galactosidase, frações 4, 5 e 6, eluídas na faixa de concentração salina de 0,28 e 0,45 M.

A leitura das frações em espectrofotômetro a 280 nm permitiu o acompanhamento da quantidade de proteínas totais na saída da coluna. Os valores da leitura a 280 nm mantêm-se elevados no momento da alimentação, pois nem toda proteína alimentada é adsorvida, entretanto, no início da lavagem, a quantidade de proteína na saída da coluna diminui, indicando que esta etapa foi eficiente para remoção das proteínas não adsorvidas, e aumenta novamente no início da eluição,
pois muitas proteínas saem junto com a enzima. É interessante notar que há um pico de leitura a 280 nm após a eluição da beta-galactosidase, o que é bastante favorável, pois parte das proteínas contaminantes deixam de sair com a beta-galactosidase, aumentando a atividade específica da enzima.

As três frações contendo a beta-galactosidase foram analisadas quanto a proteína total, e quando consideradas as frações 4 e 5, foi possível obter um rendimento de 86,1% e fator de purificação de 8,2 vezes. Quando considerada apenas a fração 5 (35 U.mL\(^{-1}\)), é possível obter um fator de purificação de 12 vezes, mas o rendimento entretanto diminui para 67%. Nagy et al. (2001) recuperaram apenas 31% da enzima na etapa de troca iônica quando purificaram beta-galactosidase de *Penicillium chrysogenum*, sem ganho expressivo da atividade específica da enzima, que aumentou em 4 vezes.

O perfil cromatográfico referente ao segundo ensaio de purificação, com eluição em pH 7,5 e volume de 31,4 mL para o gradiente linear salino, está apresentado na Figura 3. Os resultados da purificação estão apresentados na Tabela 3.

![Perfil cromatográfico](image)

Figura 3: Perfil cromatográfico da purificação de beta-galactosidase de *Kluyveromyces marxianus* CCT 7082, realizado com eluição em pH 7,5 e volume de 31,4 mL para o gradiente linear salino.
Tabela 3: Resultados de purificação da beta-galactosidase, obtidos no ensaio 2, realizado com eluição em pH 7,5 e volume de 31,4 mL para o gradiente linear salino.

<table>
<thead>
<tr>
<th>Etapa (i)</th>
<th>A<sub>i</sub> (U)</th>
<th>P<sub>i</sub> (mg)</th>
<th>AE (U/mg)</th>
<th>Rendimento (%)</th>
<th>Fator de Purificação (vezes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato enzimático</td>
<td>183,74</td>
<td>86,65</td>
<td>2,12</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Coluna de troca iônica</td>
<td>154,68</td>
<td>8,6</td>
<td>17,98</td>
<td>84,2</td>
<td>8,5</td>
</tr>
</tbody>
</table>

A_i – atividade total da etapa i, P_i – proteína total da etapa i, AE – atividade específica.

Neste ensaio a enzima foi recuperada nas frações 5, 6 e 7, mas apenas as 2 primeiras foram consideradas por serem mais concentradas, recuperando-se 84,2% da enzima com um fator de purificação de 8,5 vezes. Ao considerar apenas a fração 5, o rendimento cai para 49,4% e o fator de purificação para 8,3 vezes. Os resultados da Tabela 3 mostram que a mudança no pH de eluição não favoreceu a purificação da enzima.

A Figura 4 apresenta o perfil cromatográfico do ensaio 3, com eluição em pH 5,5 e volume de 94,2 mL para o gradiente linear salino. Os resultados de purificação estão mostrados na Tabela 4.

Figura 4: Perfil cromatográfico da purificação de beta-galactosidase de *Kluyveromyces marxianus* CCT 7082, realizado com eluição em pH 5,5 e volume de 94,2 mL para o gradiente linear salino.
Tabela 4: Resultados de purificação da beta-galactosidase obtidos no ensaio 3, realizado com eluição em pH 5,5 e volume de 94,2 mL para o gradiente linear salino.

<table>
<thead>
<tr>
<th>Etapa (i)</th>
<th>A_i (U)</th>
<th>P_i (mg)</th>
<th>AE (U/mg)</th>
<th>Rendimento (%)</th>
<th>Fator de Purificação (vezes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato enzimático</td>
<td>176,71</td>
<td>86,65</td>
<td>2,04</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Coluna de troca iônica</td>
<td>116,19</td>
<td>3,66</td>
<td>31,76</td>
<td>65,8</td>
<td>15,6</td>
</tr>
</tbody>
</table>

A_i – atividade total da etapa i, P_i – proteína total da etapa i, AE – atividade específica.

Observa-se pela Figura 4, comparativamente aos dois primeiros ensaios, que quando se utiliza um volume maior para o gradiente linear salino, é possível recuperar várias frações contendo a enzima, embora a atividade em cada uma delas seja menor. Isto se deve principalmente ao fato de que a variação da concentração de sal ocorre muito lentamente. Logo, o volume necessário para que essa variação ocorra é maior, o que faz com que a enzima seja encontrada em várias frações durante a eluição. O comportamento da leitura a 280 nm também se mostrou bem diferente neste caso, não havendo um pico de proteína total tão elevado nas frações de saída em torno da beta-galactosidase, já que o gradiente mais lento fez com que muitas proteínas contaminantes que diferem muito pouco da enzima de interesse com relação à força iônica, fossem eluídas anteriormente. Da Figura 4, também está claro que um gradiente mais suave permitiu maior purificação, desde que o pico de proteínas contaminantes está mais separado do pico de beta-galactosidase.

A enzima foi recuperada nas frações 8, 9, 10 e 11. Quando tomadas as frações 9 e 10 foi possível obter um fator de purificação de 15,6 vezes, com 65,8% de recuperação da enzima alimentada. Os resultados obtidos neste ensaio foram tão altos que podem ser comparados àqueles obtidos por Szczodrak (2000), que produziu e purificou beta-galactosidase de *Kluyveromyces fragilis* através de uma etapa de cromatografia de afinidade, alcançando um fator de purificação de 16 vezes e rendimento de 48%.

Considerando todas as 4 frações, obtém-se um rendimento de 87,5% com fator de purificação de aproximadamente 11 vezes. Evidentemente, o aumento no volume de eluição promoveu maior purificação da enzima beta-galactosidase.

Silveira (2005) ao estudar a purificação da ficocianina de *Spirulina platensis* utilizando coluna de leito fixo com a resina Q Sepharose Fast Flow™ também observou que a purificação era influenciada significativamente pelo volume necessário.
para o gradiente salino de eluição. A mudança no volume de eluição de 18 mL para 36 mL promoveu um aumento no fator de purificação de em média 2,4 vezes, a 93% de confiança.

A Figura 5 mostra o perfil cromatográfico do ensaio 4, realizado com eluição em pH 7,5 e volume de 94,2 mL para o gradiente linear salino. Os resultados de purificação estão mostrados na Tabela 5.

Figura 5: Perfil cromatográfico da purificação de beta-galactosidase de *Kluyveromyces marxianus* CCT 7082, realizada com eluição em pH 7,5 e volume de 94,2 mL para o gradiente linear salino.

Tabela 5: Resultados de purificação da beta-galactosidase obtidos no ensaio 4, realizado com eluição em pH 7,5 e volume de 94,2 mL para o gradiente linear salino

<table>
<thead>
<tr>
<th>Etapa (i)</th>
<th>A_i (U)</th>
<th>P_i (mg)</th>
<th>AE (U/mg)</th>
<th>Rendimento (%)</th>
<th>Fator de Purificação (vezes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato enzimático</td>
<td>161,61</td>
<td>86,65</td>
<td>1,86</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Coluna de troca íônica</td>
<td>93,25</td>
<td>4,23</td>
<td>22,05</td>
<td>57,7</td>
<td>11,9</td>
</tr>
</tbody>
</table>

A_i – atividade total da etapa i, P_i – proteína total da etapa i, AE – atividade específica.

Quando a enzima foi eluída em pH 7,5, saíram 5 frações contendo beta-galactosidase (10, 11, 12, 13 e 14), entretanto foram consideradas apenas as frações mais concentradas, 11 e 12, que proporcionaram 57,7% de rendimento e um fator de...
purificação de 11,9 vezes. Quando consideradas as frações 11, 12 e 13, o rendimento obtido foi de 72,2% com 10,8 vezes de fator de purificação, resultados inferiores aos obtidos quando a eluição foi realizada em pH 5,5. O aumento do volume para o gradiente linear salino em pH 7,5 não foi, portanto, tão favorável ao processo de purificação quanto em pH 5,5, mostrando que ao utilizar maiores volumes para o gradiente linear salino e em pH menor, o processo de purificação é favorecido, principalmente com relação ao fator de purificação.

A Figura 6 mostra o perfil cromatográfico dos ensaios 5, 6 e 7 (pontos centrais), com eluição realizada em pH 6,5 e volume de 62,8 mL para o gradiente linear salino. Os resultados de purificação estão mostrados na Tabela 6.

Figura 6: Perfil cromatográfico da purificação de beta-galactosidase de *Kluyveromyces marxianus* CCT 7082, realizado com eluição em pH 6,5 e volume de 62,8 mL para o gradiente linear salino.
Tabela 6: Resultados de purificação da beta-galactosidase obtidos nos ensaios 5, 6 e 7, realizados com eluição em pH 6,5 e volume de 62,8 mL para o gradiente linear salino.

<table>
<thead>
<tr>
<th>Etapa (i)</th>
<th>A_i (U)</th>
<th>P_i (mg)</th>
<th>AE (U/mg)</th>
<th>Rendimento (%)</th>
<th>Fator de Purificação (vezes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato enzimático</td>
<td>155,28</td>
<td>86,65</td>
<td>1,79</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Coluna de troca iônica (5)</td>
<td>116,54</td>
<td>6,20</td>
<td>18,80</td>
<td>75,0</td>
<td>10,5</td>
</tr>
<tr>
<td>Coluna de troca iônica (6)</td>
<td>113,18</td>
<td>5,93</td>
<td>19,08</td>
<td>72,9</td>
<td>10,6</td>
</tr>
<tr>
<td>Coluna de troca iônica (7)</td>
<td>112,70</td>
<td>5,45</td>
<td>20,68</td>
<td>72,6</td>
<td>11,5</td>
</tr>
</tbody>
</table>

A_i – atividade total da etapa i, P_i – proteína total da etapa i, AE – atividade específica.

Este ensaio consiste em um dos 3 pontos centrais do planejamento. Neste experimento foram recuperadas 3 frações contendo a enzima beta-galactosidase, 7, 8 e 9. Entretanto, assim como nos outros dois ensaios que fazem parte dos pontos centrais, foram consideradas apenas as duas frações mais concentradas.

O fator de purificação e rendimento utilizando pH 6,5 e gradiente salino de 62,8 mL foram de aproximadamente 10,8 vezes e 73,5% de rendimento.

Em todos os ensaios do planejamento experimental, o pH das frações de saída da coluna, desde a alimentação até a eluição, foi acompanhado. Entretanto não houve variação do pH na etapa de eluição. Hardin e Ivory (2006) avaliaram o efeito da concentração de sal no pH da resina Q Sepharose Fast Flow, e concluíram que o mesmo pode ser até 1,1 maior que o pH do tampão para concentrações de até 20 mM de NaCl, sendo que esta variação no pH da resina diminui com o aumento da concentração de sal. Todas as frações coletadas nos ensaios de purificação da enzima beta-galactosidase foram eluídas com concentrações de sal superiores a 0,2 M NaCl.

De modo geral, os resultados aqui obtidos estão de acordo com aqueles geralmente obtidos quando se utiliza a técnica de cromatografia de troca iônica. Kalil et al. (2005), utilizaram cromatografia de troca iônica em leito expandido para purificar a enzima inulinase, obtendo fator de purificação de 10,3 vezes e rendimento de 78%. Sendo a beta-galactosidase uma enzima intracelular, e purificada diretamente como extrato bruto através de uma etapa de troca iônica, as respostas obtidas para o rendimento e para o fator de purificação da enzima podem ser consideradas...
satisfatórias. Os resultados do presente trabalho também são muito superiores aqueles obtidos por Artolozaga et al. (1998), que purificaram beta-galactosidase de *Kluyveromyces marxianus* CDB 002 utilizando leito expandido e resina Streamline-DEAE e obtiveram fator de purificação de 6 vezes e rendimento de 63%.

Bonnerjea et al. (1986) fizeram uma revisão bibliográfica com cerca de 100 artigos onde o fator médio de purificação para cromatografia de troca iônica está ao redor de 10. Desta forma, os resultados de purificação da enzima beta-galactosidase apresentados neste trabalho alcançaram valores superiores àqueles encontrados na literatura.

3.2 Planejamento experimental completo

As condições experimentais do planejamento experimental e os resultados do fator de purificação e rendimento da enzima beta-galactosidase estão mostrados na Tabela 7.

Tabela 7: Planejamento experimental completo para a purificação da enzima beta-galactosidase e as respostas em termos de rendimento e fator de purificação.

<table>
<thead>
<tr>
<th>Ensaio</th>
<th>pH (cod.)</th>
<th>pH (real)</th>
<th>Vol.eluição (cod.)</th>
<th>Vol. eluição (real) mL</th>
<th>Rendimento (%)</th>
<th>Fator de Purificação</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>5,5</td>
<td>-1</td>
<td>31,4</td>
<td>86,1</td>
<td>8,2</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>7,5</td>
<td>-1</td>
<td>31,4</td>
<td>84,2</td>
<td>8,5</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>5,5</td>
<td>+1</td>
<td>94,2</td>
<td>65,8</td>
<td>15,6</td>
</tr>
<tr>
<td>4</td>
<td>+1</td>
<td>7,5</td>
<td>+1</td>
<td>94,2</td>
<td>57,7</td>
<td>11,9</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6,5</td>
<td>0</td>
<td>62,8</td>
<td>75,0</td>
<td>10,5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6,5</td>
<td>0</td>
<td>62,8</td>
<td>72,9</td>
<td>10,6</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>6,5</td>
<td>0</td>
<td>62,8</td>
<td>72,6</td>
<td>11,5</td>
</tr>
</tbody>
</table>

Verifica-se que os resultados obtidos nos ensaios do planejamento experimental variaram de 57,7% a 86,1% para o rendimento e de 8,2 a 15,6 vezes para o fator de purificação.

A partir destes dados, foi avaliado o efeito de cada uma das variáveis independentes, pH e volume para o gradiente salino na eluição, sobre as respostas, rendimento e fator de purificação, variáveis dependentes. Estes resultados estão apresentados nas Figuras 7 e 8, respectivamente.
Figura 7: Análise dos efeitos estimados e suas interações sobre o rendimento da beta-galactosidase. * significativo a p < 0,05.

Figura 8: Análise dos efeitos estimados e suas interações sobre o fator de purificação da beta-galactosidase. * significativo a p < 0,05.

A estimativa dos efeitos possibilitou observar a influência das variáveis estudadas sobre as respostas. Através das Figuras 7 e 8, observa-se que a variável volume de eluição é a mais importante no processo de purificação da beta-galactosidase. O valor do efeito estimado para a variável volume de eluição (-23,5 e 5,4) é relevante, quando comparado à média para as duas respostas, rendimento e fator de purificação, respectivamente, demonstrando que essa variável exerce efeito fortemente negativo sobre o rendimento em detrimento do efeito positivo sobre o fator
de purificação, e denota a dificuldade em obter valores ótimos para as duas respostas na faixa avaliada.

A partir dos resultados da Tabela 7, foi realizada uma análise de variância (ANOVA) para as respostas rendimento e fator de purificação, de modo a obter um modelo que descrevesse a purificação da enzima beta-galactosidase de *K. marxianus* CCT 7082 por cromatografia de troca iônica. As Tabelas 8 e 9 mostram os coeficientes de regressão para o rendimento e fator de purificação da enzima beta-galactosidase, respectivamente.

Tabela 8: Coeficientes de regressão para o rendimento da beta-galactosidase.

<table>
<thead>
<tr>
<th>Fator</th>
<th>Coeficiente de regressão</th>
<th>Desvio padrão</th>
<th>t(2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>73,47</td>
<td>0,4156</td>
<td>176,78</td>
<td><0,0001</td>
</tr>
<tr>
<td>pH (1)</td>
<td>-2,50</td>
<td>0,5498</td>
<td>-4,54</td>
<td>0,0199*</td>
</tr>
<tr>
<td>Vol. eluição (2)</td>
<td>-11,72</td>
<td>0,5498</td>
<td>-21,31</td>
<td>0,0002*</td>
</tr>
<tr>
<td>(1) x (2)</td>
<td>-1,52</td>
<td>0,5498</td>
<td>-2,77</td>
<td>0,0693</td>
</tr>
</tbody>
</table>

* significativo a p < 0,05.

Tabela 9: Coeficientes de regressão para o fator de purificação da beta-galactosidase.

<table>
<thead>
<tr>
<th>Fator</th>
<th>Coeficiente de regressão</th>
<th>Desvio padrão</th>
<th>t(2)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>10,96</td>
<td>0,1793</td>
<td>61,16</td>
<td><0,0001</td>
</tr>
<tr>
<td>pH (1)</td>
<td>-0,86</td>
<td>0,2371</td>
<td>-3,65</td>
<td>0,0353*</td>
</tr>
<tr>
<td>Vol. eluição (2)</td>
<td>2,67</td>
<td>0,2371</td>
<td>11,29</td>
<td>0,0014*</td>
</tr>
<tr>
<td>(1) x (2)</td>
<td>-1,01</td>
<td>0,2371</td>
<td>-4,27</td>
<td>0,0235*</td>
</tr>
</tbody>
</table>

* significativo a p < 0,05.

Os resultados da ANOVA para o rendimento e o fator de purificação estão apresentados nas Tabelas 10 e 11, respectivamente. O coeficiente de correlação (0,97 para o rendimento e 0,98 para o fator de purificação) e o teste F (relação \(F_{cau}/F_{tab} \)) foram muito bons (12,8 e 5,7 vezes maior, respectivamente, que o valor tabelado) a 95% de confiança. Desta forma, foi possível obter um modelo codificado para descrever as respostas (rendimento e fator de purificação) em função das variáveis analisadas, pH (\(X_1 \)) e volume de eluição (\(X_2 \)) para o gradiente linear salino (Equações 4 e 5).
Rendimento (%) = 73,47 – 2,5.X₁ – 11,72.X₂ \hspace{1cm} (4)

F.Purificação (vezes)= 10,96 – 0,86.X₁ + 2,67.X₂ – 1,01.X₁.X₂ \hspace{1cm} (5)

Tabela 10: Análise de variância para o rendimento.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>Soma Quadrática</th>
<th>Graus de Liberdade</th>
<th>Média Quadrática</th>
<th>Teste F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressão</td>
<td>574,44</td>
<td>2</td>
<td>287,22</td>
<td>88,9</td>
</tr>
<tr>
<td>Resíduo</td>
<td>12,92</td>
<td>4</td>
<td>3,23</td>
<td></td>
</tr>
<tr>
<td>Falta de Ajuste</td>
<td>9,30</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro Puro</td>
<td>3,62</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>587,36</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de correlação R = 0,97
\(F_{0,95; 2,4} = 6,94 \)

Tabela 11: Análise de variância para o fator de purificação.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>Soma Quadrática</th>
<th>Graus de Liberdade</th>
<th>Média Quadrática</th>
<th>Teste F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressão</td>
<td>35,78</td>
<td>3</td>
<td>11,92</td>
<td>53,0</td>
</tr>
<tr>
<td>Resíduo</td>
<td>0,675</td>
<td>3</td>
<td>0,225</td>
<td></td>
</tr>
<tr>
<td>Falta de Ajuste</td>
<td>0,03</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erro Puro</td>
<td>0,645</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>36,46</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de correlação R = 0,98
\(F_{0,95; 3,3} = 9,28 \)

Os modelos para o rendimento e o fator de purificação foram utilizados para construir as superfícies de resposta (Figuras 9 e 10), onde é possível analisar quais as melhores condições para eluição da enzima que proporcionam as maiores respostas.
Figura 9: Superfície de resposta e curva de contorno para o rendimento como função do pH de eluição e volume para o gradiente linear salino na purificação de beta-galactosidase.

Figura 10: Superfície de resposta e curva de contorno para o fator de purificação como função do pH de eluição e volume para o gradiente linear salino na purificação de beta-galactosidase.

As Figuras 9 e 10 demonstram o que foi previamente observado na análise dos efeitos, a grande influência do volume de eluição sobre o rendimento e o fator de purificação.
As variáveis pH e volume de eluição influenciaram principalmente o fator de purificação, sendo necessário para o gradiente, no mínimo, um volume correspondente a 20 vezes o volume do leito e pH de no máximo 6,5 para obter um fator de purificação da ordem de 10 vezes; geralmente esperado para esta técnica de purificação. O rendimento, entretanto, é dependente exclusivamente do volume de eluição, para qualquer valor de pH na faixa de 5,5 a 7,5.

Desta forma, para trabalhar favorecendo a obtenção de elevado fator de purificação sem prejuízo considerável do rendimento é necessário realizar a eluição em pH 5,5 e volume para o gradiente salino igual a 20 vezes o volume de leito. Nesta condição pode-se obter fatores de purificação para a enzima beta-galactosidase da ordem de 12 vezes, e rendimento em torno de 80%.

3.3 Validação do modelo empírico obtido para purificação da beta-galactosidase por cromatografia de troca iônica

Com o objetivo de validar o modelo obtido, foi realizado um ensaio adicional, nas condições mais favoráveis à purificação da enzima, quais sejam pH de eluição de 5,5 e volume para o gradiente linear salino de 20 vezes o volume de leito (62,8 mL). A Figura 11 mostra o perfil cromatográfico referente a este experimento.
Figura 11: Perfil cromatográfico da purificação de beta-galactosidase de *Kluyveromyces marxianus* CCT 7082, ensaio de validação, realizado com eluição em pH 5,5 e volume de 62,8 mL para o gradiente linear salino.

Observa-se através da Figura 11 que houve perda de enzima durante a etapa de alimentação. Isto se deve principalmente ao fato de que o extrato utilizado foi obtido a partir de uma nova fermentação, e possuía uma atividade enzimática superior. Apesar disso, optou-se por alimentar a coluna com o mesmo volume de extrato dos experimentos anteriores (15 mL), mantendo assim a mesma condição experimental utilizada nos ensaios do planejamento. Os resultados deste ensaio de purificação estão apresentados na Tabela 12.

Tabela 12: Resultados de purificação da beta-galactosidase obtidos no ensaio de validação, realizado em pH 5,5 e volume de 62,8 mL para o gradiente linear salino.

<table>
<thead>
<tr>
<th>Etapa (i)</th>
<th>A_i (U)</th>
<th>P_i (mg)</th>
<th>AE (U/mg)</th>
<th>Rendimento (%)</th>
<th>Fator de Purificação (vezes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato enzimático</td>
<td>224,37</td>
<td>98,50</td>
<td>2,3</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Coluna de troca iônica</td>
<td>112,28</td>
<td>4,05</td>
<td>27,7</td>
<td>50,0</td>
<td>12,0</td>
</tr>
</tbody>
</table>

A_i – atividade total da etapa i, P_i – proteína total da etapa i, AE – atividade específica.

Observa-se da Tabela 12 que enzima apresentou um aumento na atividade específica de 12 vezes. O rendimento, entretanto, foi de apenas 50,0%. A partir das equações que descrevem o modelo empírico para purificação da enzima...
beta-galactosidase em função das variáveis pH de eluição e volume necessário para o
gradiente linear salino, foi possível calcular os desvios relativos entre as respostas
reais e aquelas previstas pelo modelo (Equações 4 e 5). A Tabela 13 apresenta estes
resultados.

Tabela 13: Desvio relativo entre as respostas reais obtidas no ensaio de validação e
aquelas previstas pelo modelo empírico de purificação.

<table>
<thead>
<tr>
<th>Resposta</th>
<th>Modelo</th>
<th>Real</th>
<th>Desvio relativo (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimento (%)</td>
<td>78,4</td>
<td>50,0</td>
<td>56,8</td>
</tr>
<tr>
<td>F. de purificação (vezes)</td>
<td>11,8</td>
<td>12,0</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Conforme a Tabela 13, a comparação entre os dados experimentais e
aqueles previstos pelo modelo codificado mostrou um desvio relativo de apenas 1,7%
para a resposta fator de purificação, sendo então considerada válida a melhor
condição estabelecida pelo modelo codificado obtido.

Para o rendimento, entretanto, o desvio foi bem superior (56,8%) e isto
deve-se principalmente à perda de enzima durante a etapa de alimentação do extrato
na coluna de troca iônica, que totalizou 93U. Neste caso específico, optou-se por
recalcula a recuperação considerando a enzima que efetivamente foi adsorvida pela
resina (131,36U), ao invés daquela total alimentada, e obteve-se um rendimento de
85,5%, o que corresponde a um desvio relativo de apenas 9,0% quando comparado
àquele previsto pelo modelo codificado.

As frações de beta-galactosidase purificadas no ensaio de validação foram
reunidas e o pH determinado (5,7). A enzima purificada foi armazenada a 4°C durante
48 horas, mantendo 100% da sua atividade. A maior estabilidade da enzima neste pH
pode ser devido à remoção de proteases durante a purificação. Desse modo, é
possível utilizar o pH de 5,5 na eluição sem prejuízo da estabilidade da enzima tanto
pelo pH quanto pela presença do sal, podendo ser aplicada uma etapa de diálise ou
diafiltração após a etapa de cromatografia de troca iônica.

4 CONCLUSÕES

As condições para purificação da enzima beta-galactosidase por
cromatografia de troca iônica foram estabelecidas de modo a obter-se elevado fator de
purificação sem prejuízo do rendimento. Para isso, as condições de eluição escolhidas
foram pH de 5,5 e volume para o gradiente salino de vinte vezes o volume de leito, o
equivalente a 62,8 mL. Nesta condição, e de acordo com os modelos codificados que predizem as respostas, a beta-galactosidase apresentou um fator de purificação de 12 vezes, com 85,5% de rendimento.

Agradecimentos
À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

5 REFERÊNCIAS BIBLIOGRÁFICAS

CAPÍTULO IV
CONCLUSÕES GERAIS E SUGESTÕES
1. CONCLUSÕES GERAIS

A concentração da enzima beta-galactosidase durante a etapa de extração foi alcançada pela utilização de uma suspensão celular contendo 40 mg.mL\(^{-1}\). A enzima extraída usando esta relação biomassa:solvente apresentou a maior atividade enzimática, 42 U.mL\(^{-1}\), sem prejuízo do rendimento de extração, 16 U.mg\(^{-1}\).

A avaliação da estabilidade da enzima quanto à temperatura mostrou que a mesma deve ser armazenada a 4°C, pois manteve 65% da atividade inicial após 50 dias de armazenamento. A etapa de purificação, entretanto, pode ser realizada na temperatura de 10°C, temperatura em que a enzima manteve 80% de sua atividade inicial após 10 dias de incubação.

A influência do pH na estabilidade da enzima variou de acordo com a temperatura. A 37°C a enzima foi mais estável em pH 6,6. A faixa de estabilidade ao pH a 25°C foi de 6,0 a 7,0. A maior estabilidade da enzima, entretanto foi verificada nas temperaturas de 10°C e 4°C, quando em pH variando de 6,0 a 8,6, a enzima manteve no mínimo 82% e 90% da atividade inicial, respectivamente, após 24 horas.

A adsorção da enzima pela resina de troca aniônica Q Sepharose Fast Flow\(^{TM}\) foi favorecida em pH 7,5 e temperatura de 10°C. Nesta condição obteve-se um coeficiente de partição de 61,2. A velocidade superficial de alimentação de 20 cm.h\(^{-1}\) possibilitou a maior capacidade de adsorção da enzima pela resina, sendo de 104,4 U.mL\(^{-1}\).

A utilização da técnica de planejamento experimental e análise de superfície de resposta para estudar a purificação da enzima beta-galactosidase mostrou o volume necessário para o gradiente salino foi a variável que mais influenciou as respostas rendimento e fator de purificação. Foi possível obter e validar um modelo para descrever a purificação da enzima em função das variáveis pH de eluição e volume necessário para o gradiente salino.

As melhores condições para purificação da enzima beta-galactosidase utilizando a resina aniônica em coluna de leito fixo são pH de eluição de 5,5 e volume para o gradiente salino igual a 20 vezes o volume de leito. Desta forma é possível obter rendimento de 85,5% e fator de purificação de 12 vezes.
2. SUGESTÕES PARA TRABALHOS FUTUROS

- Caracterizar a enzima purificada, após uma etapa de diálise;
- Avaliar a purificação da enzima por cromatografia de troca iônica utilizando a precipitação com sulfato de amônio e ultrafiltração como etapas anteriores;
- Determinar a curva de ruptura completa para velocidades menores e iguais às estudadas no presente trabalho;
- Avaliar a capacidade de adsorção da resina Q Sepharose Fast Flow™ após sucessivas regenerações a fim de reduzir os custos de purificação.
CAPÍTULO V
REFERÊNCIAS BIBLIOGRÁFICAS
1. REFERÊNCIAS BIBLIOGRÁFICAS

