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Background:  Major  and  accessory  drug  resistance  mutations  have  been  recently  characterized  in  the  C-
terminal RT  subdomains  of  HIV-1,  connection  and  RNase  H.  However,  their  presence  in  treatment-naïve
patients  infected  with  HIV-1  non-B  subtypes  remains  largely  unknown.
Objectives:  To  characterize  the  patterns  of  primary  resistance  at the  C-terminal  RT subdomains  of  HIV-1
infecting  subjects  in the  southern  region  of  Brazil,  where  HIV-1  subtypes  B and  C co-circulate.
Study  design:  Plasma  viral  RNA  was  extracted  from  patients  recently  diagnosed  for  HIV infection
(2005–2008).  The  protease  and  reverse  transcriptase  regions  were  PCR-amplified  and  sequenced.
Infecting  HIV  subtypes  were  assigned  by  phylogenetic  inference  and  drug  resistance  mutations  were
determined  following  the  IAS  consensus  and  recent  reports  on  C-terminal  RT  mutations.
Results:  The  major  mutation  to  NNRTI  T369I/V  was  found  in  1.8%  of  patients,  while  A376S  was  present  in
another  8.3%.  In the  RNase  H  domain,  the  compensatory  mutation  D488E  was  more  frequently  observed
in subtype  C  than  in  subtype  B (p  =  0.038),  while  the  inverse  was observed  for  mutation  Q547K  (p  <  0.001).

The  calculated  codon  genetic  barrier  showed  that  22%  of  subtype  B  isolates,  but  no subtype  C,  carried
T360,  requiring  two  transitions  to change  into  the  resistance  mutation  360V.
Conclusions:  Major  resistance-conferring  mutations  to  NNRTI  were  detected  in 10%  of  RT connection
domain  viral  sequences  from  treatment-naïve  subjects.  We  showed  for the  first  time  that  the  presence  of
specific  polymorphisms  can  constrain  the  acquisition  of  definite  resistance  mutations  in the  connection
and  RNase  H  subdomains  of  HIV-1  RT.

© 2011 Elsevier B.V. All rights reserved.
. Background

The human immunodeficiency virus type 1 (HIV-1) is classified
nto four groups, M-P, and HIV-1M can be further divided into nine
ubtypes (A–D, F–H, J and K), in addition to circulating recombi-
ant forms (CRFs) and unique mosaics.1–3 HIV-1M is responsible

or the AIDS pandemic and its distribution is characterized by

egional founder events.4,5 The most prevalent HIV-1M subtype
s C, accounting for nearly 50% of infections in 2007.5Despite the
se of successful highly active antiretroviral therapy, HIV acquires
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drug resistance mutations (DRM) to all clinically approved drugs
available.6 Both classes of reverse transcriptase (RT) inhibitors,
nucleoside (NRTI) and non-nucleotide (NNRTI), act in the viral
RT N-terminal polymerase domain, where all DRM were initially
characterized. A new mechanism of RT resistance was  recently pro-
posed, in which mutations in the RNase H (RNH) and connection
(CN), the C-terminal RT subdomains, increase resistance to thymi-
dine analogues by decreasing RNH enzymatic activity.7,8 A dual
role of CN mutations N348I and T369I/V for both NRTI and NNRTI
has also been demonstrated.9–12 Mutations A376S and Q509L were
shown to confer major resistance to NVP,12 while other mutations
only potentiate the resistance conferred by TAMs.12,14–17
Currently, CN and RNH subdomains are not included in
resistance genotyping assays, but their clinical impact is contro-
versial and remain poorly characterized.13,18,19 Limited studies
have attempted to evaluate these mutations among drug-naïve

dx.doi.org/10.1016/j.jcv.2011.09.005
http://www.sciencedirect.com/science/journal/13866532
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Table 1
Demographic, behavioral, clinical and laboratorial characteristics of the studied pop-
ulation, HU-FURG, Rio Grande, Brazil, 2005–2008 (n = 205).

Characteristic n (%)

Age (average ± SD) 35.4 ± 11.7
Gender

Male 116 (56.6)
Transmission route (n = 175)a

Heterosexual 135 (77.1)
MSM 18 (10.3)
Intravenous (IDU/transfusion) 22 (12.6)

HIV+ partner 41 (20)
Partner on ART (n = 182)a 9 (4.9)
CDC clinical classification

A 109 (53.2)
B  25 (12.2)
C 71 (34.6)

CDC immune classification
1 56 (27.3)
2 69 (33.7)
3 80 (39)

Median CD4+ T-cell counts (cells/mm3) (IQR50) 301 (105–532)
Median HIV-1 plasma VL (cp/ml) (IQR50) 35,078 (9,851–133,944)
Sequenced HIV fragments (n = 205)

Protease 141 (68.8)
Polymerase RT 87 (42.4)
Connection RT 164 (80.0)

or RNH DRMs and mutations in RT polymerase, as no virus carried
concomitant primary mutations in N- and C-terminal RT regions
(data not shown). When analyzing viral isolates with polymerase

Table 2
Patterns of primary drug resistance at protease and polymerase RT genomic regions,
Rio  Grande, Brazil, 2005–2008.

Patient ID HIV-1 subtype
classification

Protease region
(n = 141)

Polymerase RT
region (n = 87)

J63 B I54V, N88S K103N, M184V
J99 CRF31 BC 0 K103N
J150 B – D67N, T215V, K219Q/N
J156 B T74P –
74 A.F. Santos et al. / Journal of C

ubjects.20 Moreover, virtually all studies so far conducted assessed
T C-terminal mutations in subtype B.

. Objectives

Brazil is reference to universal and free access to HAART. Despite
he predominance of HIV-1B in the country,5 the southern region
f Brazil is featured by a high prevalence of HIV-1C. This region per-
its the analysis of the primary resistance in HIV-1B and C from

reatment-naïve patients. Our objective was to analyze the preva-
ence of DRM in the HIV-1 RT C-terminal subdomains of HIV-1B and
, and to compare their genetic barriers to DRM acquisition.

. Study design

Plasma samples of 245 treatment-naïve HIV+ subjects diagnosed
etween January 2005 and December 2008 and consecutively seek-

ng care at Hospital Universitário de Rio Grande, Southern Brazil
ere collected. All patients signed a written consent to participate

n the study.
Viral RNA was extracted with QIAamp Viral RNA kit (QIA-

EN) from 140 �l of plasma and was submitted to RT-PCR
sing M-MLV-RT and Taq platinum polymerase (Invitrogen).
he protease and RT regions were amplified in two fragments;
he first nested PCR encompassed the entire protease and RT
olymerase (∼1228 bp), as previously described21; the second
ne harbored the RT CN and RNH domains (962 bp), using
rimers 5′tggatgggttatgaact3′ and 5′cagtctacttgtccatgcatggcttc3′

n the first round, and 5′atacagaagttagtgggaaaa3′ and
′cattgctctccaattactgtgatatttctcatg3′ in the second. When the
mplification was not successful, the pol region subdomains were
mplified separately according to established protocols.20–22

CR products were sequenced using the Big Dye v.3.1 kit
Applied Biosystems). Sequences were generated in an auto-

ated ABI3130XL apparatus and edited with SeqMan v7.0
DNASTAR). Sequences were aligned in BioEdit v7.023 with
IV-1 references from the Los Alamos Database (http://hiv-
eb.lanl.gov/). Subtypes were determined through phylogenetic

nference using neighbor-joining and Kimura’s two-parameter,
ith 1000 bootstrap replicates, using MEGA 4.1.24

DRM genotyping was done by aligning viral sequences with
XB2 in BioEdit. DRM in the CN and RNH domains considered here
ere G335D, N348I, A360V, T369I/V, A371V, A376S, A400T, D488E,
509L and Q547K, for their recognized phenotypic role in drug

esistance.12,14–17 Protease and RT polymerase sequences were
enotyped using the Stanford HIV Drug Resistance algorithm.25

Viral sequences were grouped by subtype and the frequency
f primary DRM for each genomic region was determined. Com-
arisons of mutation frequencies were performed with two-tailed
isher exact tests and p-values below 0.05 were considered signif-
cant.

Sequences were grouped by subtype (B or C) and the compo-
ition of each codon associated with DRM was determined. The
umber and nature of nucleotide of changes needed to turn a wild-
ype codon into a resistant codon was determined. Comparison of
olymorphism frequencies for each subtype was performed with
wo-tailed Fisher’s exact tests.

HIV sequences reported in this study were submitted to the
enBank nucleotide database and were assigned the accession
umbers JN010440–JN010780.
. Results

We successfully PCR amplified and sequenced RT CN and/or
NH fragments of 83.7% (205/245) viruses. Table 1 describes
RNase H RT 168 (81.9)

a Number of individuals for which the variable was available.

demographic, behavioral, clinical and laboratorial characteristics
of the casuistic analyzed. No differential characteristics were seen
for the 40 subjects for whom no viral sequence data was  obtained
(data not shown), with exception of the mean HIV viral load,
which was significantly lower the unsuccessful group (p = 0.06).
This fact may  explain, at least in part, our inability to generate
viral sequences from that group of patients. HIV-1C was  respon-
sible for 64% (132/205) of infections, while HIV-1B accounted for
22% (45/205), followed by 14% (28/205) of other forms.

The major mutations N348I and Q509L were not observed
in our dataset. However, T369I/V was seen in 1.8% (03/168) of
patients, while A376S was presented in another 8.3% (14/168).
Overall, 10.1% (17/168) of the isolates presented any major CN DRM.
G335D and A400T were the most frequent compensatory muta-
tions, with proportions of 54% and 33% HIV-1B and C, respectively.
G335D was classified as a polymorphism in subtype C (p < 0.001
in comparison with B), while A400T was  found in half of subtype
B viruses (p < 0.001 in comparison with C). D488E was  more fre-
quently observed in HIV-1C than B (p = 0.038); the inverse was
observed for Q547K (p < 0.001). The primary resistance in the pro-
tease region was  2% (03/141), and 6% (05/87) in the RT polymerase
region (Table 2). We  did not observe any correlation between CN
J162 C 0 K219N
J265 URF BC 0 K103N
J348 URF F1B M46I, I54V, V82A –
Total (%) 2.1 5.7

http://hiv-web.lanl.gov/
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Table 3
Codon genetic barriers to drug resistance mutation acquisition at the C-terminal RT domains of HIV-1 of subtypes B and C.

RT pos WT Codon Sub B (43/35)a (%) Sub C (103/118) (%) p DRM Codon Change

335 G335
GGC/GGT 90 18 <0.001 335D GAC/GAT 1 ts
GGA/GGG 3 2 NS 335D GAC/GAT 1 tv, 1 ts

348 N348 AAT/AAC 100 100 NS 348I ATT/ATC 1 tv

360
A360  GCT/GCC/GCA/GCG 79 100 <0.001 360V GTT/GTC/GTA/GTG 1 ts
T360  ACT/ACC/ACA/ACG 21 – <0.001 360V GTT/GTC/GTA/GTG 2 ts

369
T369  ACT/ACC/ACA/ACG 85 94 NS 369V369I GTT/GTC/GTA/GTG

ATT/ATC/ATA/ATG
2 ts
1 ts

A369 GCA 15 4 NS 369V369I GTA
ATA

1 ts
2 ts

371  A371 GCT/GCA 100 100 NS 371V GTT/GTA 1 ts

376
A376  GCT/GCC/GCA/GCG 59 87 <0.001 376S TCT/TCC/TCA/TCG 1 tv
T376  ACT/ACC/ACA/ACG 28 5 <0.001 376S TCT/TCC/TCA/TCG 1 tv
V376  GTT/GTC/GTA/GTG 3 – NS 376S TCT/TCC/TCA/TCG 1 ts, 1 tv

400
A400 GCT/GCC/GCA/GCG 34 81 <0.001 400T ACT/ACC/ACA/ACG 1 ts
S400  TCT/TCC/TCA/TCG – 2 NS 400T ACT/ACC/ACA/ACG 1 tv

488 D488 GAT/GAC 100 100 NS 488E GAA/GAG 1 tv
506  I506 ATT/ATC/ATA/ATG 100 100 NS 506L CTT/CTC/CTA/CTG 1 tv

509
Q509 CAA/CAG 100 96 NS 509L CTA/CTG 1 tv
K509  AAA – 4 NS 509L CTA 2 tv

547 Q547 CAA/CAG 97 100 NS 547K AAA/AAG 1 tv
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S, not significant; ts, transition; tv, transversion.
a Numbers in parentheses correspond to the number of connection/RNase H sequ

nd CN regions sequenced (n = 53), the overall frequency of primary
esistance was 15%.

The genetic barrier analysis is depicted in Table 3. Viruses car-
ying T360 need two transitions to change to 360V, while those
ith A360 need one transition. Twenty-one percent of HIV-1B iso-

ates but no HIV-1C carried T360, suggesting that the former require
ore changes to acquire 360V. The polymorphism T369 needs one

ransition to change to 369V, and two to change into 369I. We  also
etected a higher genetic barrier for changing V376 (one transi-
ion and one transversion) into 376S compared to A376 and T376
one transition). Viruses carrying S400 require one transversion to
cquire T400, compared to those carrying A400 (one transition).

. Discussion

Primary drug resistance has been estimated between 8% and 14%
n developed settings,26–31 whereas in Brazil recent studies showed
ower rates of transmitted resistance (7–8%).32,33 However, the C-
erminal RT domains have not been previously surveyed. Mutations
348I, A360V and Q509L have been detected in low frequency

n treatment-naïve subjects (<3%),13,18,19,22 in agreement with our
tudy. Although the observation of A376S at 8.3% is noteworthy, this
hould be interpreted with care. A376S has been associated with
educed susceptibility to NVP,12 but the fold-change values were
elow the biological cut-off for that drug.34 T369I/V was found in
nly 1.8% of our patients.

G335D was recently characterized as potentiating TAM
esistance.17 Here, it was profusely detected in HIV-1C. The effect of
335D remains unknown in HIV-1C, and further phenotypic stud-

es are warranted. A400T is also polymorphic in HIV-1 subtypes, and
ts role was equivalent in HIV-1B, C and CRF01 AE.14,35 The pheno-
ypic role of the remaining RT polymorphisms seen here remains
ndetermined for non-B subtypes.

Major DRM to NNRTI was detected in 10% of RT CN domain
f viruses from treatment-naïve subjects. This highlights their
mportance and potential inclusion in resistance genotyping. We
lso showed polymorphisms displayed by different HIV-1 sub-

ypes that can potentially affect DRM acquisition. Further studies
re necessary to elucidate the impact of these mutations on
ntiretroviral treatment of individuals infected with distinct HIV-1
ubtypes.
 for each subtype used in the calculations.
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