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This work presents the mathematical modeling of the cephalosporin C (CPC) adsorption process in a fixed-
bed column. The application of Particle Swarm Optimization (PSO) algorithm for parameter estimation
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was first considered, which shows to be a useful tool for parameter estimation in adsorption processes.
Modeling and simulation of CPC purification showed a good performance during both estimation and
validation step. After this, a central composite rotational design (CCRD) was conceived taking into account
both the superficial velocity of liquid and column length as process variables with the responses obtained
from the application of the model, which works as a process simulator affording a process answer from

show
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a given input. It has been
tool, since few simulation

. Introduction

The commercialization of products obtained from biotechnolog-
cal processes requires a coordinated coupling of unit operations in
rder to develop an efficient process. In most of these biotechnolog-
cal processes, the main product of interest is generally synthesized
long with other byproducts showing analogous chemical and
hysical properties. Thus, the need for more efficient downstream
rocessing is essential to decrease the final costs of those biotech-
ological products. Adsorption processes are widely used unit
perations in downstream processing of many products obtained
y fermentation, including cephalosporin C (CPC), which is a �-

actamic antibiotic precursor that is the starting raw material for the
ynthesis of a wide-ranging spectrum of bactericidal antibiotics [1].

A large-scale cyclic operation involves three steps: adsorption,
esorption and washing. Design and scale-up of such large-scale
eparation process require basic information to simulate the
ynamic behavior in both adsorption and desorption steps [2]. The
odel can be formulated on the basis of conservation equations,
ass transport within the resin particles, and equilibrium relation-

hip at the liquid–solid interface. The model parameters such as

quilibrium data, film mass transfer coefficient, intraparticle dif-
usivity and axial dispersion can be measured experimentally, or
redicted by existing correlation, or optimized from experimental
ata [3].
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n that the response surface methodology was an efficient optimization
re required to find the optimum region for independent variables.

© 2011 Elsevier Ltd. All rights reserved.

The usefulness and confidence of the model predictions are
dependent of the quality of the estimated parameters. The use
of empirical correlation to estimate mass transport parameter
imposes restrictions to the model. If the values of real param-
eters are out of the range in what the correlation is valid the
model predictions are failure. Regarding the equilibrium param-
eters, it is preferable to estimate their values from process data
instead of equilibrium data because some imprecision during the
estimation procedure probably will compromise the overall model
performance. The most published works in the current literature
regarding the mathematical modeling of adsorption process of CPC
are referring the use of empirical correlations or equilibrium data
to estimate the model parameters [3–5].

Ideally, if the experiments, whose data are used during the
parameter estimation procedure, were correctly designed, a unique
set of parameters exists and the global optimum for the system
is easily determined by appropriated optimization routines. Oth-
erwise, it implicates in failure to fit the experimental data. There
are several optimization routines available to estimate the model
parameters, such as Particle Swarm Optimization (PSO) [6,7], sim-
ulated annealing [8], ant algorithm [9] and genetic algorithm [10].

The PSO is a heuristic algorithm based on the social behavior of
collection of animals. Each individual of the swarm, called parti-
cle, remembers the best solution found by itself and by the whole

swarm along the search trajectory. The PSO presents interesting
characteristics along the iterations. In the initial iterations, the ran-
dom character of the search is high and the particles conduct a
global search over search region. As the iterations evolve, the par-
ticles concentrate around the more promising regions found during

dx.doi.org/10.1016/j.procbio.2011.02.016
http://www.sciencedirect.com/science/journal/13595113
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Table 1
Typical physical properties of the Amberlite XAD-2 resin.

Physical properties Corresponding values

Solids (%) 55.0
Porosity (pore mL−1 bead) 0.42
Surface area (m2 g−1) 300.0

Mean pore diameter ( ´̊A) 90.0
Bulk density (g L−1) 640.0
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True wet density (g mL−1) 1.02
Skeletal density (g mL−1) 1.07
Particle size range (�m) 210–500

he exploration stage [7]. PSO was previously reported as good
ethod for parameter estimation in adsorption processes for sep-

ration of enzyme in expanded-bed column [11], biosorption of
ynthetic dyes from water [12] and separation of sugars from the
eaction mixture for production of fructooligosaccharides using the
zeolite as adsorbent in stirred-tank reactor [13].
In this context, the main objective of this work is modeling

f cephalosporin C adsorption in a fixed-bed column. Break-
hrough curves at several experimental conditions were first
arried out aiming the collection of experimental data to estimate
he model parameters by the PSO algorithm. Afterwards, the val-
dated model was used as a process simulator and the response
urface methodology was employed to optimize the column effi-
iency and breakthrough time.

. Materials and methods

.1. Chemicals

A nonspecific polystyrene macroporous adsorbent, Amberlite XAD-2 (Rohm &
aas Company), was used for evaluating the influence of geometric and operational
olumn parameters on the performance of the separation of cephalosporin C. The
roperties of the Amberlite XAD-2 resin are described in Table 1.

.2. Apparatus, process start-up and analytical methods

Amberlite XAD-2 was sieved to obtain an adequate fraction of particle sizes
ith 0.210 mm, 0.297 mm and 0.500 mesh screens. For removal of small particles,

he resin was washed with methanol at a Soxhlet extractor [14,15], followed by
ashing with formic acid buffer pH 3.6, prepared as for removal of methanol [16].

The studies of separation of cephalosporin C were carried out in Glass Columns
10/20 from Pharmacia Biotech (Uppsala, Sweden), 200 mm in length and 10 mm

nternal diameter, containing pretreated resin Amberlite XAD-2. The jacketed glass
olumn was maintained at temperature of 25 ◦C using water circulation bath. For
ach test the column was equilibrated by passing a buffer solution of formic acid (pH
.6) in volume equivalent to five times the volume of the bed of particles. Detection
f cephalosporin C concentration effluent from the column was performed by UV
pectrophotometer at 260 nm (Micronal, B-382).

Each experiment was carried out until the output concentration remained con-
tant for 2 h. All the experiments were conducted in duplicate and the error is smaller
han 3.5%. The conditions used in the experiments are shown in Table 2.
. Model formulation

The development of a mathematical model for the CPC adsorp-
ion process in a fixed bed column packed with the Amberlite

able 2
xperimental and predicted column efficiency for the CPC adsorption in the fixed-bed co

Run vz (m h−1) L (m) dp (�m)

1 0.306 0.075 297.0
2 0.306 0.10 297.0
3 0.306 0.05 210.0
4 0.306 0.05 500.0
5 0.153 0.05 297.0
6 0.612 0.05 297.0
7a 0.306 0.05 297.0

a Validation.
mistry 46 (2011) 1270–1277 1271

XAD-2 resin was based on the following hypotheses:

i. The column presents a homogenous packing.
ii. The spherical resin was considered a opaque solid, assuming

that there are no internal CPC diffusion.
ii. Instantaneous equilibrium between the solid and liquid phase

concentrations at the external surface of the particles.
iv. The hydrodynamic behavior of the liquid phase could be

described by the axial dispersion model.
v. Isothermal adsorption column. After a preliminary screening

amongst the isotherm models of Langmuir, Freudlich, linear and
BET, it was verified that the Langmuir model is the most suitable
to represent the equilibrium data for the CPC adsorption.

vi. The rheological properties of the bulk phase were considered to
be the same in all the experiments, and independent of the CPC
concentration.

The differential mass balance in a volume element of the column
for CPC concentration may be expressed by:

∂C

∂t
= DL · ∂2C

∂z2
− vz · ∂C

∂z
−

(
1 − ε

ε

)
· 3 · kf

Rp
· (C − Cr=Rp ) (1)

where DL is the axial dispersion coefficient (m2 h−1), kf is the liquid
film mass transfer coefficient (m h−1), vz is the interstitial velocity
(m h−1), Rp is the resin radius (m), ε is the bed porosity, t is time
(h), z is the axial axis (m), C and Cr=Rp are the CPC concentration in
the bulk fluid and on the resin surface (mg L−1), respectively.

The initial and boundaries conditions are:

t = 0 → C(z, 0) = 0 (2)

z = 0 → C = C0 + DL · ε

vz
· ∂C

∂z
(3)

z = H → ∂C

∂z
= 0 (4)

The differential mass balance in the solid phase, assuming that
the adsorption system can be explained by the Langmuir model,
conform:

∂q

∂t
= k1 · C · (qmax − q) − k2 · q (5)

where qmax is the maximum adsorption capacity of the resin
(mg L−1), k1 and k2 are intrinsic kinetics constants (L mg−1 h−1 and
h−1, respectively) and q is the CPC concentration adsorbed on the
resin (mg L−1).

The initial condition is:
t = 0 → q(z, 0) = 0 (6)

Considering that the rate of adsorption of the product into the
resin is equal to the decreasing concentration of the product in
the bulk phase, Eqs. (1) and (5) could be manipulated to explicit

lumn.

˚exp
90% (%) ˚calc

90% (%) RED (%) RED =
∣∣∣ ˚exp

90%
−˚calc

90%
˚exp

90%

∣∣∣ · 100

55.8 58.5 4.8
59.5 64.0 7.6
62.8 64.5 2.7
41.9 45.9 9.5
58.5 64.4 10.1
41.7 45.1 8.2
50.1 51.1 2.0
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he concentration of CPC adsorbed on the surface particle (Cr=Rp )
onform:

∂q

∂t
=

(
1 − ε

ε

)
· 3 · kf

Rp
· (C − Cr=Rp ) = k1 · C · (qmax − q) − k2 · q (7)

After the algebraic manipulations the concentration of CPC
dsorbed on the surface particle is:

r=Rp = C + (Rpk2q/3kf )(1 − ε/ε)
1 + [(k1Rp/3kf )(qmax − q)](1 − ε/ε)

(8)

To solve the partial differential equation presented in Eq. (1), the
ime and spatial derivatives were solved by the Crank–Nicholson
pproximations, resulting in a tri-diagonal linear system, which
as solved by the DLSLRG IMSL FORTRAN routine. The differential
ass balance in the solid phase (Eq. (5)) was integrated in the time

omain using the LIMEX routine for each column positions [17]. The
odel parameters, namely qmax, k1, k2, DL kf, and ε were estimated

y the Particle Swarm Optimization (PSO). An in-house algorithm,
eveloped in our working group, was used and implemented in
ORTRAN 90 language.

A common practice in the modeling of adsorption processes is
he use of kinetic parameters (k1, and k2) and equilibrium param-
ter capacity (qmax) estimated by nonlinear regression, besides the
mpirical correlations to calculate the transport parameters (DL and
f) and bed properties (porosity) in order to simulate the process
n a fixed-bed or expanded-bed column. Nevertheless, these cor-
elations are used to obtain these parameters in a more general
pplication, where its value is valid for a narrow range of oper-
tional variables. In this sense, it is preferred to estimate from
xperimental data.

The parameters estimation consisted of minimizing the sum
quares residues (SSR), as described in Eq. (9), where C is the exper-
mentally CPC concentration at z = H and Ccalc is the calculated CPC
oncentration at z = H by the model, both normalized between 0
nd 1.

SR =
N∑

i=1

(Ci − Ccalc
i )

2
(9)

For the estimation of the parameters were employed six
reakthrough curves, using a fixed initial CPC concentration of
0.0 mg L−1. The variables evaluated on the performance of the pro-
ess were column length, particle diameter and superficial velocity.
n the validation step, one additional breakthrough curve was
mployed. Table 2 presents the detailed information about the
xperimental conditions used in the seven breakthrough curves.

.1. Particle Swarm Optimization (PSO)

The PSO version used in this study was based on the work of
chwaab et al. [7], which presents a detailed description of the
lgorithm. The PSO technique is based on the social behavior of
ollection of animals. Each individual of the swarm, called parti-
le, remembers the best solution found by itself and by the whole
warm along the search trajectory. The particles move along the
earch space and exchange information with others particles, in
ccordance with the following equations:

k+1
p,d

= w · vk
p,d + c1 · r1(xind

p,d − xk
p,d) + c2 · r2(xglob

d
− xk

p,d) (10)

k+1
p,d

= xk
p,d + vk+1

p,d
(11)
n Eqs. (10) and (11), p denotes the particle, d is the search direction,
represents the iteration number, v is the velocity (or pseudo-

elocity) of the particle and x is the position of particle, xind and
glob represent the regions of the search space where the objective
mistry 46 (2011) 1270–1277

function attains low (optimum) values, where xind is the best posi-
tion found by the particle itself, while xglob is the best position found
by whole swarm. In addition, r1 and r2 are two random numbers
with uniform distribution in the range comprehended between 0
and 1. The parameters w, c1 and c2 are search parameters, which
are called of inertial weight, the cognition and social parameters,
respectively.

After a preliminary set of simulations, it was defined the best
configuration of the PSO algorithm that is as following: 40 par-
ticles were used for the PSO algorithm, and the inertial weight,
cognition and social parameters were set at 0.7, 1.0, 1.0, respec-
tively. The search interval for model parameters was determined
according the studies available in the literature for the separation
of CPC and was allowed to vary as following: qmax ∈ [0.1, 100],
k1, k2 ∈ [1 × 10−4, 0.1], Dl ∈ [1 × 10−8, 1 × 10−3], kf ∈ [0.1, 20], and
ε ∈ [0.20, 0.55].

The proceeding of minimization of the objective function was
repeated four times, since the PSO is a heuristic method of optimiza-
tion and do not guarantee to find the minimum global. After each
minimization of the objective function the parameters range were
decreased, with objective to guarantee that the region of minimum
global was found.

3.2. Process optimization

The main advantage of a mathematical model is that it can in
principle be used to simulate the process at other experimental
conditions than those used to estimate the model parameters. In
this section, an experimental design (central composite rotational
design – CCRD) was conceived taking into account the effects of
column length and superficial velocity as process variables with
the responses (column efficiency – Eq. (12), and breakthrough time
– tC/C0=0.9) obtained from the application of the validated model
keeping fixed the resin diameter at 210 �m. In this sense, the hybrid
model works at a process simulator affording a process answer
from a given input. The column efficiency was defined according
the following equation [11]:

˚90% =
(

0.9 · tC/C0=0.9 −
∫ .tC/C0=0.9

0
C/C0 · dt

)
0.9 · tC/C0=0.9

· 100 (12)

In the fixed-bed adsorption process the column efficiency and
breakthrough time had opposite tendency, since as high as the
breakthrough time more efficient is the column. However, there
is an interval for the independent variables that both, column effi-
ciency and breakthrough time, are at their optimum values. At this
point, the process reached its operational equilibrium and to find
this point it was defined a third response, which is function of
column efficiency and breakthrough time. This new response is
defined as the objective function conforms following equation:

F = ˚90% + ˚2
90% + ˚3

90%

1 + � + �2 + �3
(13)

where ˚90% and � are the column efficiency and breakthrough
time normalized between 0 and 1. The optimization problem was
stated as the maximization of F in function of superficial velocity

and column length so that the feasibility of the purification pro-
cess was dependent of the compromise between high efficiency
and low required time. The responses in terms of column efficiency,
breakthrough time and F were analyzed by Statistica® 7.0 Statsoft
Inc.
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Fig. 1. Experimental and predicted breakthrough curves for CPC adsorption

. Results and discussion

.1. Experimental breakthrough curves and column efficiency

Table 2 presents the column efficiency calculated by the exper-
mental breakthrough curves according to Eq. (10). The highest
fficiency was 62.8% on run 3 and the lowest efficiencies were
eported at runs 4 and 6, which were 41.9 and 41.7%, respectively.
he effect of particle size in the column efficiency is clearly demon-
trated at runs 3 and 4. The increase in the particle diameter from
97 to 500 �m decreased the column efficiency. As big as the par-

icle size the contact area between CPC and resin is considerably
educed, limiting the efficiency of the process, since the diffusion
rocess was not taken into account in this work.

The superficial velocity is another important parameter that has
mpact on the efficiency. Its effect can be better visualized at runs
e fixed-bed column employed during the parameter estimation procedure.

5, 6 and 7. At constant column length and particle size, the grad-
ual increase in the superficial velocity results in a decrease of the
column efficiency. This occurs because at high velocities the con-
tact time between CPC and the resin is lower, affecting the dynamic
capacity, that have direct influence on the adsorption kinetics. The
contact time can be increased by increasing the column length.
Runs 1, 2 and 7 illustrate the effect of column length on efficiency at
constant velocity and particle size. Higher efficiencies are obtained
with higher column lengths.

Another important aspect that should be carefully observed in
adsorption purification process is the breakthrough time. The fea-

sibility of the purification process is dependent of the compromise
between high efficiency and low required time, which should be
determined. The experimental breakthrough time obtained in this
work ranged from 1.9 h for run 6 to 4.8 h for run 5 (Fig. 1). An
example that there is an optimum relationship between break-
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Fig. 2. Experimental and predicted breakthrough curves for CPC adsorption in the
fixed-bed column employed during the model validation.

Table 4
Parametric sensitivity of the model parameters.

Parameters ˚calc
90% (%)

−15% +15%

qmax (mg L−1) 46.7 52.1
k1 (L mg−1 h−1) 92.4 92.4
k (h−1) 49.9 49.2

T
T
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hrough time and efficiency can be verified at runs 3 (2.4 h) and 6
1.9 h). The efficiency at run 3 was 20% higher than run 6. However,
he breakthrough time obtained in run 3 was only 30 min higher
han run 6. Nevertheless, the efficiency should be improved and, in
he following section (Section 4.3), it was presented a tool, based
n mathematical model of the process, to adjust the operational
arameters (column length and superficial velocity) to maximize
he efficiency and minimize the breakthrough time.

.2. Parameter estimation and model validation

Model parameters were estimated by the Particle Swarm
ptimization (PSO) algorithm using a set of six experimental break-

hrough curves at different conditions (Table 2). It is important
mphasize that this study did not compare PSO to other parameter
stimation methods and that techniques such as genetic algo-
ithms, simulated annealing, ant algorithm too could in principle
rovide satisfactory parameter estimates for this particular prob-

em. The estimated parameters are presented at Table 3.
A numerical comparison of the estimated parameters obtained

n this work with the ones reported in the literature is difficult for
wo reasons. Firstly, the units differ amongst the works and a sim-
le unit conversion can lead to mistakes of interpretation, because
he conversions alter their magnitude and these new values may
ot be the optimum. Additionally, the strategy of global parameter
stimation adopted in this work was not employed previously to
imulate adsorption process. Several works report the use of a set
f parameters for each experimental condition, which is a different
trategy that adopted in this study [3–5,18].

The model parameters in Table 3 were used to simulate the CPC
dsorption process and results are showed at Fig. 1. As it can be
een, the model was able to simulate the CPC breakthrough curves
n all the experiments. Some deviations were observed, mainly in
he final stage of the breakthrough curves. The reliability and appli-
ability of the proposed model to simulate the breakthrough curves
f CPC in the fixed-bed column was verified in terms of the col-
mn efficiency (Eq. (10)). Table 2 presents the experimental and
alculated column efficiencies, which emphasizes that model pre-
ictions are reliable, since the relative error deviations were lower
han 10% in all the experiments.

The critical test for the validity of a model is not its ability to fit
given condition. Rather, it is the ability of the model to predict a
iven set of conditions that constitute the true test of the validity
f the model, its assumptions and the estimated parameter values
19]. In this work one additional experimental breakthrough curve
as used to validate the model, whose operational conditions are
etailed at run 7, in Table 2. The results are shown in Fig. 2, where it
an be verified that the proposed model well fitted the CPC break-
hrough curve. In addition, Table 2 presents the experimental and
alculated column efficiencies for the validation experiment (run
). The relative error deviation was the lowest amongst the experi-
ents. This fit quality shows that the estimated parameters and the

ypothesis are valid and can be used to simulate the CPC adsorp-
ion in other conditions, different of those employed during the
arameter estimation.
According Schwaab and Pinto [20] the variance of model could
e represented by the following equation:

ˆ 2 = SSR
NP − N

(14)

able 3
he estimated parameters by the PSO algorithm.

Parameters qmax (mg L−1) k1 × 102 (L mg−1 h−1)

Values 87.44 2.40
2

Dl (m2 h−1) 49.5 49.5
kf (m h−1) 49.5 49.5
ε 57.9 42.6

where �̂2 is the variance of model predictions, SSR is the sum of
square residues, NP is the number of models parameters and N is
the number of experimental points. If the models predictions are
reliable, the experimental variance is comparable to the variance
of the model. In this work, the experimental variance was 0.1277,
while the variance of model predictions was 0.1434. Performing the
test of Fisher it is seen that these variances are statistically similar
(p < 0.05), indicating that the model predictions are reliable.

In order to quantify the sensitivity of the model predictions, with
respect to errors in the estimated parameters, a sensitivity analy-
sis has been performed. The parameters presented at Table 3 were
taken as nominal values. The process model was solved with a rela-
tive parameter perturbation ranging from −15 to +15% in relation to
nominal values. To quantify the deviation occasioned by the param-
eter perturbation, the column efficiency was calculated according
Eq. (10) for the validation experiment (run 7) and comparing with
nominal value (51.1%). As it is shown in Table 4, the most sensitive
variable was the intrinsic constant k1. The alteration in its value
leads to an accentuated variation in the column efficiency. The bed
porosity was the second most sensitive variable in the process. The
increase in the porosity decreases the efficiency, because there is an
increase in the void space of the column. In practice, there is a loss
of dynamic binding capacity, because there are lower molecules of
CPC in contact with the resin.
When the model predictions are very sensitive to a parameter
value, like k1, it means that the confidence interval of this parameter
will be very narrow and this parameter can be estimated with high
precision. In fact, when the sensitivity of a parameter is very low,
the estimation of this value is very difficult, since the change of the

k2 (h−1) Dl × 105 (m2 h−1) kf (m h−1) ε

0.67 1.39 7.64 0.25
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Table 5
Matrix of the CCRD (real and coded values) with responses in terms of the column
efficiency, breakthrough time and objective function for CPC purification in a fixed-
bed column.

Simulation vz (m h−1) L (m) ˚calc
90% (%) tC/C0=0.9 (h) F

1 0.19 (−1) 0.16 (−1) 81.82 9.84 1.14
2 0.61 (1) 0.16 (−1) 59.98 3.95 0.03
3 0.19 (−1) 0.44 (1) 92.62 24.44 1.09
4 0.61 (1) 0.44 (1) 79.61 8.44 1.02
5 0.10 (−1.41) 0.30 (0) 94.13 31.20 0.82

p
s
t
p
t

4

e
c
f
u
A
u
a
r

a

6 0.7 (1.41) 0.30 (0) 70.21 5.20 0.46
7 0.40 (0) 0.10 (−1.41) 58.90 3.81 0.00
8 0.40 (0) 0.50 (1.41) 87.11 13.90 1.37
9 0.40 (0) 0.30 (0) 80.17 8.94 1.04

arameter value produces only a small modification in the sum of
quared residues, turning hard the estimation of this parameter. In
his work the PSO algorithm has shown to be a suitable method for
arameter estimation in adsorption processes since it overcomes
he difficulties imposed by the high parameter sensitivity.

.3. Optimization of column efficiency

Table 5 presents the results obtained in the CCRD for column
fficiency, breakthrough time and objective function (F). The effi-
iency ranged from 58.90% to 94.13% and the breakthrough time
rom 3.81 to 31.20 h at simulations 7 and 5, respectively. The val-
es of F ranged from 0 to 1.37 at simulations 7 and 8, respectively.
s expected, the highest efficiencies were obtained at high col-

mn length and low superficial velocity. However, a more profound
nalysis only can be made by the effects of each variable in the
esponse.

The data in Table 5 were used to compute the linear, quadratic
nd interaction effects of the process variables in the efficiency,

Fig. 3. Contour plots for column efficiency (A), breakthrough time (B) and
mistry 46 (2011) 1270–1277 1275

breakthrough time and F, which are presented in Table 6. The signif-
icant effects (p < 0.15) in the column efficiency were the linear and
quadratic terms for column length, the linear term for superficial
velocity and the interaction term, while for breakthrough time the
most significant effects were the linear term for column length and
the linear and quadratic effects for superficial velocity. The increase
of the superficial velocity shows a negative effect in both column
efficiency and breakthrough time, while the column length shows
positive effect. However, the magnitude of the column length effect
in efficiency and breakthrough time is different, since the effect was
more pronounced in efficiency.

By the analysis of the effects it was possible to verify that the
efficiency is directly proportional to column length and inversely
proportional to superficial velocity, while the breakthrough time
had opposite behavior. To found an optimum point that presents
high efficiency and low breakthrough time is a difficult and time-
consuming task, mainly if the traditional one-variable-at-a-time
approach is employed. Response surface methodology (RSM) is a
scientific approach to determine optimum conditions, which com-
bines special experimental designs with Taylor first and second
order equations. The RSM protocol, therefore, uses the Taylor equa-
tion to approximate the function, which describes the response in
nature, coupled with the special experimental designs for deter-
mining the coefficients of the Taylor equation that is employed to
draw the contour plots and response surface [20–22].

The quadratics coded models that better describes the responses
in Table 6 (column efficiency, breakthrough time and F) were val-
idated by analysis of variance (ANOVA) and were employed to

generate contour plots. The fitted contour plots for column effi-
ciency, breakthrough time and F were generated using Statistica
7.0 and are presented in Fig. 3. The highest efficiency was obtained
for column length ranging from 0.30 to 0.50 m (96%) at low level
of superficial velocity (0.10 m h−1). An increment in the superficial

objective function (C) for CPC purification in the fixed-bed column.
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Table 6
Estimated effects of manipulated variables on column efficiency and breakthrough time for CPC purification.

Column efficiency Breakthrough time F

Effects Standard error p-Value Effects Standard error p-Value Effects Standard error p-Value

Mean 80.16 2.10 <0.0001 8.96 3.56 0.0861 1.04 0.28 0.0335
vz −17.20 1.49 0.0014 −14.68 2.52 0.0101 −0.42 0.20 0.1209
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L 17.60 1.49 0.0013 8.35
vz

2 2.49 2.48 0.3882 8.34
L2 −6.73 2.48 0.0728 −1.06
vz × L 4.42 2.11 0.1269 −5.06

elocity value decreases the column efficiency (Fig. 3A). Regarding
he breakthrough time, an opposite behavior was found, since at
onditions where the column efficiency is maximized the break-
hrough time is too large (Fig. 3B). Both column efficiency and
reakthrough time showed behavior already expected.

The greatest advantage of the response surface methodology in
ptimizing two or more responses is the easy visualization of opti-
um region for both responses. In this work, the two responses

nvestigated (column efficiency and breakthrough time) showed
pposite behavior, as previously discussed. Nevertheless, there are
egions in Fig. 3C that make it possible to obtain high efficiency at
cceptable breakthrough time, since the F values were the greatest.
he predicted efficiency for a column length of 0.50 m and super-
cial velocity of 0.32 m h−1was about 90% and the breakthrough
ime was around 15 h. At these conditions the column efficiency
ecreased 6%, which is undesirable but reasonable, and 57% for
reakthrough time, which is highly positive.

. Conclusion

In this work, the mathematical model of the fixed-bed adsorp-
ion process for CPC purification was described. The PSO algorithm
as used to optimize the model parameters and proved to be

n efficient method for parameter estimation for adsorption pro-
esses. Modeling and simulation of CPC purification showed a good
erformance during both estimation and validation step. The use
f experimental design methodology to plan the experiments cou-
led with the validate model as a process simulator showed to be
n interesting alternative for process optimization, since the opti-
um was found quickly and with few simulations. The proposed
ethodology saves time and reduces costs in adsorption process

evelopment and scale-up.
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ppendix A. Nomenclature

CPC concentration in bulk-phase (mg L−1)
r=Rp CPC concentration on resin surface (mg L−1)
0 initial CPC concentration at the inlet of the column

(mg L−1)
i experimental CPC concentration normalized between 0

and 1 (−)
calc
i

calculated CPC concentration normalized between 0 and
1 (−)
L axial dispersion coefficient (m2 h−1)
objective function for process optimization (−)
column height (m)

1 intrinsic adsorption constant (L mg−1 h−1)
2 desorption constant (h−1)

[

2 0.0451 0.72 0.33 0.0353
8 0.1401 −0.32 0.20 0.4000
8 0.8168 −0.27 0.33 0.4626
6 0.2503 0.52 0.28 0.1583

kf liquid film mass transfer coefficient (m h−1)
N number of experimental data points (−)
NP number of model parameters (−)
q adsorbed CPC concentration (mg L−1 of adsorbent)
qmax maximum adsorption capacity (mg L−1 of adsorbent)
Rp particle radius (m)
SSR sum squares residues (−)
t time (h)
vz superficial liquid velocity (m h−1)
z axial bed height (m)

Nomenclature for Eqs. (10) and (11), referring the PSO method
c1 search parameter denominated the cognition parameter
c2 search parameter denominated social parameter
d the search direction
k the iteration number
p denotes the particle
r1 and r2 random numbers with uniform distribution in the range

[0,1]
v velocity (or pseudo-velocity) of the particle and
w search parameters denominated inertial weight
x position of particle
xglob the best position found by whole swarm
xind the best position found by the particle itself

Greek letters
ε bed voidage
˚90% column efficiency (%)
˚90% column efficiency normalized between 0 and 1 (−)
� breakthrough time normalized between 0 and 1 (−)
�̂ variance of model predictions
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