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Abstract

When physical quantities xi are numbers, then the corresponding measurement accuracy can be usually represented in interval
terms, and interval computations can be used to estimate the resulting uncertainty in y = f (x1, . . . , xn).

In some practical problems, we are interested in more complex structures such as functions, operators, etc. Examples: we may be
interested in how the material strain depends on the applied stress, or in how a physical quantity such as temperature or velocity of
sound depends on a 3-D point.

For many such structures, there are ways to represent uncertainty, but usually, for each new structure, we have to perform a lot of
complex analysis from scratch. It is desirable to come up with a general methodology that would automatically produce a natural
description of validated uncertainty for all physically interesting situations (or at least for as many such situations as possible). In
this paper, we describe the foundations for such a methodology; it turns out that this problem naturally leads to the technique of
domains first introduced by D. Scott in the 1970s.

In addition to general domain techniques, we also describe applications to geospatial and meteorological data.
© 2006 Elsevier B.V. All rights reserved.
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1. From intervals to domains

Formulation of the problem: Usually, physical quantities xi are numbers. In this case, intervals provide a reasonable
description of measurement accuracy. Sometimes, however, we are interested in more complex structures such as
functions, operators, etc. For example, in meteorology, we are interested in knowing how the temperature depends on
a 3-D point. At present, for each new structure, we have to invent a new representation of uncertainty. It is therefore
desirable to come up with a general description of validated uncertainty.
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In this paper, we show that a natural approach leads to Scott’s domains; see, e.g., [4–6,8]. We will also show how
this general approach can be applied to meteorology.

Binary domains: In real-life measurements, a measurement result has to be represented in a computer. Thus, it has
to be represented as a sequence of 0s and 1s, and the length of this sequence is bounded. There are only finitely many
such sequences, so we have a finite set X of possible measurement results.

Measurement uncertainty means, in particular, that when measuring the value of the same quantity with the same
measurement result, we may get different values. Thus, a natural way to describe uncertainty is to describe a binary
relation a ∼ b on the set X, a relation in which a ∼ b if and only if the same object can lead to both a and b.

Definition 1. A binary domain is a pair 〈X,∼〉, where X is a finite set, and ∼ is a symmetric reflexive relation on X.

Comment: Binary domains are also called webs, or graphs.

Examples. Let us first show how the standard interval uncertainty fits into this general picture. For example, suppose
that we measure temperature with the accuracy 1◦, and the scale consists of the values X={0, 1, 2, 3 . . . , T }. Here, e.g.,
t̃=0 means that the actual temperature t is in the interval [−1, 1]; so, a ∼ b if the corresponding intervals [a−1, a+1]
and [b − 1, b + 1] intersect, i.e., if |a − b|�2.

An even simpler example comes from counting. Every actual counting device has a limitation of how many objects
we can count, so here, X = {1, 2, . . . , n, many}, where “many” means that we have exhausted this device, and there
are still objects to count. Here, a ∼ b if and only if a = b.

Yet another example comes from “yes”–“no” questions; here, possible results are “false” (usually denoted by 0),
“true” (usually denoted by 1), and “unknown” (we will denote it by U). Here, X = {0, 1, U}, and the relation ∼ has
the form 0 ∼ U and U ∼ 1. Indeed, if we do not know the truth value (U), then, in reality, the answer may turn out
to be “true” (hence U ∼ 1) or “false” (hence, U ∼ 0). However, once we know the answer “true”, we cannot get the
answer “false”, hence 0 /∼ 1.

In general, a measuring instrument can be described by a binary domain 〈X,∼〉.
Simplicial complexes: To get a better description of a measuring instrument, it is desirable to know not only which

pairs are “compatible”, but also which triples, etc., can come from the same object. If a ∼ b, b ∼ c, and a ∼ c, then
for some measuring instruments, all three values are possible outcomes for some object, while for others, no single
object can lead to these three outcomes.

Informally, let us say that a set S ⊆ X is compatible if for some object, all values from S are possible. Then, a
measuring instrument can be represented as a pair 〈X,S〉, where X ⊆ S ⊆ 2X is the class of all compatible sets.
Clearly, if a set S is compatible then each subset of S is compatible too. In mathematical terms, such a pair is called a
simplicial complex: X is the set of vertices, and S is the set of faces.

Definition 2. A simplicial complex is a pair 〈X,S〉, where X ⊆S ⊆ 2X.

Example. For example, if X = {a, b, c}, a ∼ b, b ∼ c, a ∼ c, and there is an object for which all three outcomes are
possible, then the corresponding simplicial complex is a filled triangleS={{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}.
Alternatively, if no such object exists, then we have an empty triangle S= {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}}.

How to describe actual values of measured quantities: A single measurement only leads to an approximate value of
the measured quantity. To describe the actual value of the measured quantity, we must consider a sequence of more
and more accurate measuring instruments.

Let Xk describe results of first k measurements. Then, for every k < l, there exists a natural “forgetful functor”
�lk : Xl → Xk that simply erases the results of the last l − k measurements. It is easy to see that this projection �
satisfies the following properties:

(i) if a′∼′b′, then �(a′) ∼ �(b′);
(ii) if a ∼ b, then ∃a′, b′ such that �(a′)= a, �(b′)= b, and a′∼′b′.
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Definition 3. Let 〈X,∼〉 and 〈X′,∼′〉 be finite domains. A mapping � : X′ → X is called a projection if it satisfies
the properties (i)–(ii).

We thus arrive at the following definition.

Definition 4.

• By a physical quantity, we mean a sequence of binary domains 〈Xi,∼i〉 with projections: X1
�2,1← X2

�3,2← X3
�4,3← . . ..

• By an actual value of the quantity, we mean a sequence x = (x1, x2, . . .), where xi ∈ Xi and �lk(xl) = xk for all
k < l.
• The set X of all actual values is called a projective limit of the sequence Xi .
• Two values a, b ∈ X are called equivalent if ai∼ibi for all i.

On the set X of possible values of the quantity, we can naturally define neighborhoods and limits:

Definition 5.

• By a neighborhood of a value a we mean a set Nn(a)
def={b | b∼na} for some integer n.

• If a(k) is a sequence of elements form X, then we say that a(k) tends to a limit a (denoted a(k) → a) if
∀n ∃m∀k > m(a

(k)
n ∼na).

Examples. It is easy to see that if we consider interval-related sets Xi={−pi/qi,−(pi−1)/qi, . . . , (pi−1)/qi, pi/qi}
(where k/qi∼i (k + 1)/qi) with a better and better accuracy (qi → ∞) and broader and broader span (pi/qi →
∞), then the corresponding set X is the set of all real numbers (+ two extra values −∞ and +∞) with a natural
topology.

If we start with n-dimensional “boxes”, we naturally end up with the set Rn.
For “yes”–“no” questions, if one measurement does not lead to a definite answer (i.e., if the answer is U), we can

perform a more accurate measurement; as a result, we may get a definite answer, i.e., we may get a sequence of answers
U0 or U1, or we may still get “unknown” — i.e., the sequence UU. So, after two measurements, we have five possible
results: X2={0, 1, U0, U1, UU}. In the set X2, all “yes” answers (0 and U0) can happen in the same state, so 0 ∼ U0;
it is also possible that in the same state, sometimes, the answer is “yes”, and sometimes, the answer is still unknown, so
0 ∼ UU and U0 ∼ UU . The natural projection from X2 to X1 simply deleted the second answer: e.g., �2,1(U0)=U .
So, here:

• X1: 0∼1U , U∼11;
• X2: 0∼2U0, 0∼2UU , U0∼2UU , 1∼2U1, 1∼2UU , U1∼2UU ;

etc. Thus, the projective limit X consists of three different elements 0, 1, and U, with the relation 0 ∼ U and U ∼ 1.

Proposition 1. (compactness). For every projective limit X, every sequence a(k) has a convergent subsequence.

Proof. Since the set X1 is finite, and there are infinitely many elements a(k) in the sequence, there exist at least one value
x ∈ X1 for which infinitely many elements a(k) have a

(k)
1 = x. We can therefore consider a subsequence consisting of

such elements. Let us fix the first element in this new subsequence. There are infinitely many elements in the remaining
part of the subsequence, and only finitely many elements in X2. Thus, we can select a sub-subsequence in which all
elements but one have the same value of a2, etc. As a result, we get a convergent subsequence. �

Discussion: For example, for real numbers, instead of the set R, we have a compactification R ∪ {−∞,+∞}.
Compactness is important for solving inverse problems; see, e.g., [7]. The main reason why we have measurements

is that we want to reconstruct the actual values of the measured quantities. In general, we observe f (x) for some
continuous f : X → Y , and we want to reconstruct x. For example, we want to reconstruct an image x, but what we
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observe is an image f (x) distorted by the inaccuracies of the lens. The problem is that even in the presence of noise,
when the mapping f is 1–1, the function f−1 is often discontinuous, so a small measurement error y can lead to a large
error in reconstructing x. A known solution is to restrict ourselves to compact sets X because for compact sets, the
inverse f−1 to a continuous mapping is continuous as well.

The problem is that, e.g., the set X of all images is not compact under standard mathematical metrics such as L2 or
L∞. Our result shows that this set is compact if we consider a topology that naturally comes from measurements.

Functions: Once we have a description of the set A and of the set B, how can we describe, in these terms, the set of
all functions from A to B? For example, if we know how to describe time t and how to describe spatial coordinate x,
how can we then describe a trajectory x(t), i.e., a function that maps t into x?

In physical terms, a function f : A → B means that, once we know an approximation an to a, we can find some
approximation bm to b. Thus, we arrive at the following definition:

Definition 6. Let A and B be two projective limits. By a function f : A→ B, we mean a mapping from ∪An to ∪Bn

such that:

• a ∼ a′ implies f (a) ∼ f (a′);
• if a = �(a′), then f (a)= �(f (a′)).

Comment: It is worth mentioning that functions may be partial, so the results do not converge: e.g., due to Heisenberg
inequality, we cannot determine both x(t) and v(t) with arbitrary accuracy.

Definition 7. We say that a function f is continuous if

∀n ∃m((xm∼mx′m)→ f (xm)∼nf (x′m)).

Proposition 2. If a function f : X→ R is everywhere defined, then f is continuous.

Proof. By using compactness and reduction to a contradiction. �

Let us show how this general vision can be applied to practical problems.

2. Towards meteorological and geophysical applications

Data compression: formulation of the problem: At present, a large amount of data are coming from measuring
instruments. It is often necessary to compress this data before storing and processing. We can gain some storage space
by using lossless compression. However, often, the gain available via lossless compression is not sufficient. So, we
must use lossy compression as well.

For image compression, the JPEG2000 standard uses wavelet transform (and other efficient compression techniques)
to provide a very efficient compression of 2-D images I (x, y). Its important characteristic is bitrate b, i.e., number
of bits per pixel that is required, on average, for the compressed image. Within JPEG2000, we can select different
bitrates. The highest possible bitrate B leads to lossless compression, when image is reconstructed precisely, i.e., when
the reconstructed image Ĩ [b](x, y) is identical to the original image I (x, y). When we decrease the bitrate b, we get a
lossy compression, for which Ĩ [b](x, y) �= I (x, y); the smaller the bitrate b, the more the compressed/decompressed
image Ĩ [b](x, y) will differ from the original image I (x, y).

Known methods of data compression: In principle, it is possible to use JPEG2000 compression techniques to com-
press 2-D measurement data as well. In some cases, we have 3-D data: e.g., meteorological measurements taken
in different places (x, y) at different heights z. To compress 3-D data, in principle, we can simply apply the 2-D
JPEG2000 compression to each horizontal layer f (x, y, z0). However, a better compression is achieved if we use KLT
transform:
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We compute the average value f̄ (z) = N−1 ·∑x,yf (x, y, z) of the analyzed quantity at a given height z, where N
is the overall number of horizontal points (x, y).

We then compute the covariances between different heights:

V (z1, z2)= 1

N
·
∑
x,y

(f (x, y, z1)− f̄ (z1)) · (f (x, y, z2)− f̄ (z2)).

We find the eigenvectors �k and the eigenvectors ek(z) of the covariance matrix V (z1, z2), and sort these eigenvalues
into a sequence e1(z), e2(z), . . . so that |�1|� |�2|� · · ·.

Finally, we represent the original 3-D data values f (x, y, z) as a linear combination of the eigenvectors ek(z):
f (x, y, z)= f̄ (z)+∑

kak(x, y) · ek(z), and to each “slice” ak(x, y), we apply a 2-D JPEG2000 compression with the

appropriate bit rate bk . Based on the compressed data, we can reconstruct each slice as ã
[bk]
k (x, y), and then reconstruct

the data as f̃ (x, y, z)= f̄ (z)+∑
kã
[bk]
k (x, y) · ek(z).

Specifics of data compression: There is a difference between image and data compression. In image compression,
image quality is main objective, and the visual image quality is well described by the mean square difference (MSE)
between the original image I (x, y) and the compressed–decompressed image Ĩ (x, y).

In data compression, we want to reproduce each measurement result with a certain accuracy. For example, we want
to know wind, temperature, pressure along the trajectory of a plane: if along this line, the values are not reconstructed
accurately enough, the plane may crash, and the fact that on average, we get a good reconstruction, does not help.

Thus, we need a compression that guarantees the desired accuracy �, i.e.,

‖f − f̃ ‖L∞ def= max
x,y,z
|f (x, y, z)− f̃ (x, y, z)|��.

Among all such compressions, we must find the one for which the average bit rate b
def= (1/Nz) ·∑kbk is the smallest

possible, where Nz denotes the number of vertical layers (i.e., number of different heights).
In some cases, the bandwidth is limited by the capacity b0 of the communication channel: b�b0. In such cases,

among all compression schemes with b�b0, we must find a one for which the L∞ compression/decompression error
is the smallest possible. In this paper, we describe new efficient (suboptimal) techniques for data compression under
such interval uncertainty.

2D case: We want to find the b for which D(b)��, where D(b)
def= max

x,y

∣∣f̃ [b](x, y)− f (x, y)
∣∣ . We know that

bopt ∈ [b−, b+], where b−=0 and b+=B (lossless), and that D(b) ↓when b ↑. So, we can use the following bisection
algorithm: on each iteration, we start with an interval [b−, b+] that contains bopt.

We take bmid
def= (b− + b+)/2, apply JPEG2000 compression with b = bmid, and compute D(bmid). If D(bmid)��,

we replace the original interval [b−, b+] with the half-size interval [b−, bmid]. Otherwise, we replace [b−, b+] with
[bmid, b

+].
After each iteration, the size of the interval halves. So, after k iterations, we get bopt with accuracy 2−k .

3-D case: idea: We want to find the bitrate allocation b = (b1, . . . , bNz) for which b→ min among all b for which

D(b1, b2, . . .)��, where D(b1, . . .)
def= max

x,y,z

∣∣f̃ (x, y, z)− f (x, y, z)
∣∣ . Minimizing a function of many variables is

difficult—running time grows exponentially with Nz.
To overcome this difficulty, we borrow the idea from interval computations. There, the problem is, given a function

f (x1, . . . , xn) and intervals xi , to compute the range y def={f (x1, . . . , xn) | x1 ∈ x1 & . . . & xn ∈ xn}, and the difficulty
is that computing this range exactly is NP-hard—crudely speaking, no algorithm always computes y in reasonable
time. The solution is that since we cannot find the exact range y, we compute an enclosure Y ⊇ y.

Similarly, in our case, since it is difficult to minimize D(b1, . . .), we find easier-to-optimize upper estimate
D̃(b1, b2, . . .)�D(b1, b2, . . .), and then find the values bi that minimize D̃(b1, . . .). As a result, we find bi for which
D̃(b1, . . .)�D̃min hence D(b1, . . .)�D̃min.
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Since, in general, D(b1, . . .)�D̃(b1, . . .), the resulting allocation is only suboptimal with respect to D(b1, . . .).

Explicit formulas: Once we know the L∞-norms

Dk(bk)
def= max

x,y
|ak(x, y)− ã

[bk]
k (x, y)|

of the compression/decompression errors of each slice, we can conclude that |ak(x, y)− ã
[bk]
k (x, y)|�Dk(bk). Hence,

|(ak(x, y)− ã
[bk]
k (x, y)) · ek(z)|�Dk(bk) · Ek ,

where Ek
def= maxz|ek(z)|. Thus, the desired L∞ error is bounded by D̃(b1, . . .)

def=∑
kDk(bk) · Ek.

To minimize D̃(b1, . . .)=∑
kDk(bk) ·Ek under the condition

∑
kbk =Nz · b0, we can use the Lagrange multiplier

approach [1,3]. As a result, we arrive at the following algorithm:

Algorithm. Once we know how Dk(b) depends on the bitrate b, it is sufficient to find the Lagrange multiplier �; then,
|D′k(bk)| = �/Ek . We find � for which the average bitrate is b0 by bisection.

How can we find Dk(b)? We can try, for each layer k, all possible bitrates b. Alternatively, we have shown that
Bk(b)= A1 · (b − b0)

� for b�b0 and Bk(b)= A2 · 2−b for b�b0; thus, we need to try a few b to find Ai , b0, and �.

Results. We tested our algorithm on 3-D meteorological data: temperature T , pressure P , the components U , V , and
W of the wind speed vector, and the waver vapor ratio WV . These data describe the values of the six meteorological
variables at Nz = 64 different heights. The height is measured with respect to the terrain, so that the points on the
surface correspond to z= 0. Within each height z, the values are given at N = 129× 129 different points (x, y).

For meteorological data, the resulting compression indeed leads to a much smaller L∞ error bound �new than the
L∞ error bound �MSE corresponding to the bitrate allocation that optimizes MSE error:

• For b0 = 0.1, we have �MSE ≈ 6% and �new ≈ 4%, so �new/�MSE ≈ 0.7.
• For b0 = 0.5, we have �MSE ≈ 2% and �new ≈ 1%, so �new/�MSE ≈ 0.5.
• For b0 �1, we have �MSE ≈ 1% and �new �0.1%, so �new/�MSE �0.1.

For details, see [1–3].

Acknowledgments

This work was supported by NSF Grant CDA-9522207, by the ARO Grants DAA H04-95-1-0494 and DAA D19-99-
1-0012, by the Texas Instruments Grant, and by NASA under cooperative agreement NCC5-209. This work was partly
performed during O. K.’s visit to Brazil; this visit was sponsored by the Brazilian funding agency CTINFO/CNPq.

The authors are thankful to the anonymous referees for valuable suggestions.

References

[1] O. Kosheleva, Task-specific metrics and optimized rate allocation applied to part 2 of JPEG2000 and 3-D meteorological data, Ph.D. Dissertation,
University of Texas at El Paso, August 2003.

[2] O. Kosheleva, S. Cebrare, B. Usevitch, E. Vidal Jr., Compressing 3D measurement data under interval uncertainty, in: J. Dongarra, K. Madsen,
J. Wasniewski (Eds.), PARA’04 Workshop on State-of-the-Art in Scientific Computing, Springer Lecture Notes in Computer Science, 2005,
vol. 3732, pp. 142–150.

[3] O. Kosheleva, B. Usevitch, S. Cabrera, E. Vidal Jr., MSE optimal bit allocation in the application of JPEG2000 part 2 to meteorological data,
Proceedings of the 2004 IEEE Data Compression Conference DCC’2004, Snowbird, UT, March 23–25, 2004, p. 546

[4] V. Kreinovich, G.P. Dimuro, A.C.d. Rocha Costa, From intervals to towards a general description of validated uncertainty, Catholic University
of Pelotas, Brazil, January 2004 (available as Technical Report 〈http://www.cs.utep.edu/vladik/2004/tr04-06.pdf/〉.)

http://www.cs.utep.edu/vladik/2004/tr04-06.pdf/


V. Kreinovich et al. / Journal of Computational and Applied Mathematics 199 (2007) 411–417 417

[5] J. Lorkowski, V. Kreinovich, If we measure a number, we get an interval. What if we measure a function or an operator?, Reliable Comput. 2 (3)
(1996) 287–298.

[6] D.S. Scott, Lectures on a mathematical theory of computation, in: Theoretical Foundations of Programming Methodology, D. Reidel Publ., 1982,
pp. 145–292.

[7] A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems, W.H. Whinston & Sons, Washington, DC, 1977.
[8] G.-Q. Zhang, Logic of Domains, Birkhäuser, Boston, 1991.


	From intervals to domains: Towards a general description of validated uncertainty, with potential applications to geospatial and meteorological data
	From intervals to domains
	Towards meteorological and geophysical applications
	Acknowledgments
	References


