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Abstract—The present paper presents the use of ANN (Artifical 

Neural Networks) in NPC (Non-Player Character) decision-

making process in RPG (Role-Playing Games) electronic games. 

It mainly focus on the making of decision of attacking or not a 

certain opponent by analyzing the NPC and its opponent internal 

state. 
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I.  INTRODUCTION  

The Artificial Intelligence (AI) applied in electronic games 
is known as Games AI (Game Artificial Intelligence), and its 
main purpose is to create a behavior which seems intelligent, 
due to a scenario with multiple choices  [9] [10].  

This should be similar to the human-being behavior with 
personality, making mistakes and be able to provide different 
levels of difficulty to the employer, in order to add experience 
and immersion in the game and improve its gameplay [11]. 

Even though, in the game industry, AI has been used since 
its beginnings, when it was known as gameplay programming, 
its full usage is still a challenge, mainly due to the following 
reasons: development period, learning algorithms testing and 
performance [12]. 

Among the several AI techniques applied in games, we 
highlight the ANN because they have the skill of learning and 
generalization, through an interactive process with the external 
environment, mainly because of wide usage in prediction 
problems [4] [8].  

Due to this, the present work aims to contribute in the 
purpose of presenting a possibility of ANN use in the decision-
making process through an interactive process in RPG. In this 
way, the FSG (FURG Smart Games) framework [2] will be 
used. It has ANN Black Box type implementation, where all 
components are abstracted, enabling a quicker implementation 
and focus on the theme of the present work. 

The paper is divided in six sections. In section II there is a 
discussion on ANN approaching. In section III, the FSG 
framework is presented. In section IV, the rules of the RPG are 
detailed in which the AI technique is used. In section V, the 
experiments performed using the ANN in the NPC decision-
making process are presented. Finally, in section VI the 

conclusions of the present work are presented as well as the 
further works. 

II. ARTIFICIAL NEURAL NETWORKS 

The artificial neural networks (ANN) are the main 
technique of connectionism, an AI line which studies the 
possibility of simulation of intelligent behavior through 
mathematical models which seek to resemble the biological 
neural structures. These are characterized by being distributed 
processors comprised by a number of simple processing units, 
known as artificial neurons, which tend to store experimental 
knowledge, allowing learning and generalization, given an 
interactive process with the external environment [4] [5]. 

This AI technique is mainly applied in prediction, 
classification, categorization and optimization problems, as 
well as recognition of characters, voice, prediction of time 
series, process modeling, computer vision and signal 
processing [6]. 

Among its main characteristics we may highlight the 
following [4] [5]: 

 Generalization: capacity of learning through examples 
and thus making generalizations to recognize similar 
instances to those which have never been presented 
before; 

 Adaptability: possibility of adapting its synaptic 
weights in order to absorb modifications in the 
environment. Thus, a network which had been trained 
to work in certain conditions may be retrained to deal 
with modifications; 

 Contextual information: the knowledge is represented 
by its own network structure, where each neuron of 
the network is potentially affected by the activity of 
all other neurons. Due to this the contextual 
information is naturally treated; 

 Error tolerance: capacity to fulfill its purpose under 
signals with noises, or even loss of communication in 
part of the network; 

 Self-learning: there is no need of knowledge from a 
specialist to make decisions. The ANN is based only 
on historical examples which are provided to it; 



 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)  

Volume 02– Issue 06, November 2013 

 

www.ijcit.com                       1010 

 

 Non-linear modeling: the mapping process of a neural 
network involves non-linear functions which may 
cover a bigger limit of the problem complexity. 

A. Learning 

The learning of an ANN takes place through the 
modification of its synaptic weights in an ordered way through 
training algorithms. These algorithms could be classified in 
two distinct paradigms, the supervised one and the non-
supervised one [5]. 

 Supervised: the outputs are known during the training, 
and a program known as a catalyst monitors the 
mistake, the difference between the value wished and 
propagated output, and refeeds the network with the 
mistake in order to minimize it to an acceptable 
threshold. 

 Non-supervised: in this case, there is no catalyst or 
refeeds to say whether the learning process was 
reached. The networks use this type of training are 
known as self-organizing maps – SOM. They use 
correlations between the input standards to categorize 
them according to the self-discovery classes. 

B. Multilayer Perceptron (MLP) 

This work will focus on the multilayer perceptrons 
feedforward network, totally connected, due to their usage in 
games [7]. 

This type of neural network is characterized by having its 
neurons in multiple layers, normally an input layer, several 
hidden layers and an output layer. The neuron of each layer is 
connected with all the neurons of the immediately before and 
after layers. Thus, given an input, it propagates, according to 
the integrator and activation function of each neuron, layer by 
layer, until an output group that produces as a network final 
response [5]. MLP networks with three layers have the capacity 
of approaching any non-linear function. In fact, normally the 
information that a NPC captures from a game environment is 
non-linear [5], justifying its usage in games. 

Finally, the learning in this type of network occurs in a 
supervised way through the backpropagation algorithm. This is 
constituted by two basic steps, the network propagation and the 
error retropropagation. In the first step, a given input sign is 
propagated throughout whole network and the resulting output 
is stored. In this phase, the synaptic weights remain unchanged. 
In the second phase, the network output is compared with 

values which the catalyst recognizes them as true for the 
presented input, through the difference between these two 
groups an error value is created. By making use of this error, 
the catalyst retropropagates through the network, adjusting the 
synaptic weights with the purpose of moving it closer to the 
expected solution. Thus, this happens successively, until the 
network converges to the output error within an acceptable 
limit [5]. 

One question that arises is the possibility that during the 
training, the MLP finds a minimum place and it do not present 
the ideal result. However, in the context of electronic games, 
this is not necessarily a problem, as it is not expected that the 
NPC has an ideal or perfect behavior. Eventual errors, as long 
as less predictable, are also interesting. 

III. FSG (FURG SMART GAMES) 

 
The FSG framework aims to help the AI techniques 

incorporation more effective in the development of electronic 
games, assuming that the decision-making layer of an NPC is 
an FSM (Finite Sate Machine), a technique widely used in the 
industry [12] [3]. 

In order to do it, every time a FSM receives from the 
environment an event which takes it, in response, passes from 
its current status to another, the decision-making which makes 
this transition to happen or not, is ruled by a guard condition, 
and it may be related to an AI technique. With its final purpose 
to make the character have a less predictable behavior and it 
may respond in a more realistic way [2]. 

In the Figure 1, a classes diagram with the FSG core is 
presented. In this, three abstract classes are highlighted: 
FSGCharacter, FSGState and FSGAITechnique. In the 
FSGCharacter class there is the NPC implementation. It is 
noticeable the presence of the “currentState” attribute which 
denotes in which status the machine is, the “transition” method 
responsible for the transition between status, and the “activity” 
method, which delegates the responsibility of the character 
behavior to the method of same name of the object 
“currentState”. In the FSGState, all states in the FSM must be 
implemented. Finally, the FSGAITechnique class serves as an 
interface between the AI techniques and the FSM state 
transitions. Normally, its objects are instantiated in the 
“guardCondition” method of a given class which inherits 
FSGstate. In Figure 1, the classes concerning the AI techniques 
were suppressed. 

Figure1: FSG Simplified classes diagram 
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IV. PROPOSED GAME 

We have proposed a game where two characters duel in a 
way similar to the RPG. This game was implemented in Java 
using the framework JGame [1], for the implementation of 
2D animations and the framework FSG [2] for the 
implementation of the decision-making layer of the character 
“Guard''. It is a very simple game, just to test the “Guard” 
NPC decision-making process. Figure 2, the game interface 
is presented, which the following items are highlighted: 

 

Figure 2.  Game proposed for the validation of the tool. 

1. Character known as “Player'', when the game is not 
on automatic mode, may be controlled by the user 
through the keyboard directing arrows and the key 
“A'' for the attacks; 

2. Character known as “Guard'' is the game NPC and 
its function is to guard a certain area besides 
defending itself against any other character which 
may enter its reach; 

3. Area where, before starting a game, the player may 
set the attributes of both characters. It is even 
possible to define which AI technique will be used 
by the “Guard'' in its decision-making (attack or 
not). Nowadays, the framework FSG enables the 
usage of Artificial Neural Networks, Fuzy Logics 
and Genetic Algorithms; 

4. Finally, in this interface there is the possibility of 
automatically simulating a certain number of 
rounds, in which the two characters are autonomous 
and their attributes are defined randomly. At the 
end of each duel, the information concerning the 
initial attributes of the characters, as well as who 
the winner was, is stored in a file for later training 
of the neural networks. 

Each game characters has the following attributes: 

 Energy: it represents its vital energy, with restricted 
values at the interval [0,100]. When a character’s 

energy equals zero, this is considered as defeated 
and the game is finished; 

 Experience: this attribute defines the character’s 
experience in battle, with values in the interval 
[0,100]. This value establishes the possibility of a 
carried out attack to be successful or not. Thus, in 
case a character has 20 points of experience, he will 
have a 20\% probability of causing some harm to its 
opponent; 

 Attack power: this attribute sets, in case of a 
successful attack, the harm maximum value the 
opponent may suffer, with the values in the interval 
[0,100]; 

 Defense power: it defines how much harm the 
character can stand before its vital energy is 
affected, with the chance of receiving values in the 
interval [0,100]; 

 Reach: this attribute sets the distance around which 
can be perceived by the character concerning the 
environment, with values in the interval [150,250]; 

 Speed: this attribute defines the speed in which the 
character moves around the environment, with 
values in the interval [0,10]. 

The harm that a certain successful attack causes to the 
opponent is defined by the Equation (1). In this, it can be 
noticed the direct dependence in relation to experience, vital 
energy and attack power. Due to this, the harm will only be 
equal to the attack power when the character has its energy 
and experience in their maximum values. 

 

Briefly, a confrontation may be defined through the 
following steps: 

1. The characters move around the environment until 

an opponent is in its reach; 

2. Once an opponent is within reach, an attack is 

carried out; 

3. If, according to the character’s level of experience, 

the attack is successful, then the harm is calculated 

according to the Equation \ref{eq:dano}; 

4. If the harm inflicted is smaller than the opponent’s 

defense power, this attribute is decreased; 

5. If the harm inflicted is bigger or equal to the 

opponent’s defense power, its defense item (for 

example, the shield) is destroyed and its vital 

energy is vulnerable for a next attack; 

6. If the opponent’s defense power is zero, then the 

amount is deducted from the opponent’s vital 

energy; 
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7. At the end of a successful attack, the offender’s 

experience is added a point; 

8. The offender passes its turn to the opponent, if it is 

within his reach, so it can carry out the next attack; 

9. This cycle is repeated until one of the two is 

defeated or is out of reach. 
 

The NPC “Guard”' behavior ruled by the Finite State 

Machine (FSM) illustrated in Figure 3. 

Figure 3.  FSM responsible for the NPC “Guard”' 

According to the FSM presented in Figure 3, the Guard 
initially assumes the “Survey'' state, where the NPC moves 
around the area where it keeps guard and if an opponent is 
noticed, according to its internal attributes and the enemy’s, 
should decide either to attack or escape. 

In this work, this decision-making process is carried out, 
associating to an ANN the function of “Weak opponent'' 
transition guard, leading to the “Attack'' state, and also a 
function of “Strong opponent'' transition guard, leading to the 
“Escape'' state. In the “Attack'' state, there is a confrontation 
between the two characters and, if it wins, the “Guard” 
returns to the “Survey” state. If not, the process is finished. 
Once taking the “Escape” state, the NPC tries to be away 
from the enemy's reach. If successful, it returns to the 
“Survey” state. 

V. EXPERIMENTS AND RESULTS 

For the training of the ANN used in the game, two 
distinct files were created, each one resulting from 500 
rounds carried out automatically. In this automatic mode, the 
NPC Guard always makes the decision of attacking when 
there is an enemy within its reach. In each line of these files, 
the initial attributes of each character were registered, as well 
as who was the winner of each duel. 

The first automatic simulation resulted in 243 (48,6%) 
victories of the Guard and 257 (51,4%) of the Player, in 
which a description of their attribute values is presented in 
Tables I and II, respectively. 

TABLE I: Guard Attributes In The First Simulation. 

Attribute Average Standard Deviation 

Energy 51.56 27.88 

Experience 53.01 27.92 

Attack Power 49.07 27.77 

Defense Power 48.62 29.29 

Reach 200.91 29.94 

Speed 4.61 2.91 

 

TABLE II: Player Attributes in the first simulation. 

Attribute Average Standard Deviation 

Energy 51.56 27.88 

Experience 53.01 27.92 

Attack Power 49.07 27.77 

Defense Power 48.62 29.29 

Reach 200.91 29.94 

Speed 4.61 2.91 

 

 
The second automatic simulation resulted in 253 (50,6%) 

victories of the Guard and 247 (49,4%) victories of the 
Player, in which a description of their attribute values is 
presented in Tables III and IV, respectively. 

TABLE III: Guard Attributes in the second simulation. 

Attribute Average Standard Deviation 

Energy 50.89 29.39 

Experience 52.76 27.49 

Attack Power 49.25 28.43 

Defense Power 50.04 28.39 

Reach 202.27 29.91 

Speed 5.13 2.82 

 
TABLE IV: Player Attributes in the second simulation. 

Attribute Average Standard Deviation 

Energy 51.43 29.43 

Experience 52.98 28.74 

Attack Power 49.48 29.26 

Defense Power 48.38 29.80 

Reach 202.06 29.20 

Speed 4.77 2.79 
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A. Artificial Neural Network 

 
In this work an ANN was implemented with the 

following configuration: 

 Twelve neurons in the input layer, where the first 
six ones are destined to receive the Player attributes 
and the five last, the Guard attributes; 

 Twenty-four neurons in the hidden layer; 

 Two neurons in the output layer. If the Player wins, 
the first neuron must present the value one and the 
second zero, and if the Guard wins these values are 
inverted; 

 Learning rate in 0.4; 

 Momentum in 0.2; 

 Sigmoid activation function (standard in 
framework). 

This network training was designed with the following 
parameters: 

 Acceptable error in the output layer: 0.3%; 

 Maximum number of periods: 500,000; 

 Presentation of each standard for the network for 
five times; 

 10% of the training data was separated for cross-
validation; 

 100 networks were trained, and, from these, the one 
with less output error was extracted. 

In this training process, 450 registrations were used for 
the training and 50 for the network validation. Besides that, 
there was the need of data normalization, with all between -
0.5 and +0.5.  

Once the best network had been tested, it was propagated 
over all the data of the simulation files, with the purpose of 
checking if the decision made was right. This decision-
making process developed in the following way: if the first 
output neuron is higher than the second, the Guard must 
escape, otherwise it must attack. 

By processing the file referring to the first simulation, 
which served as training for the network, the following 
results were reached:  

 Decision of attacking in confrontations in which the 
Guard was the winner: 240 of 243 victories, in a 
total of 98.71%; 

 Decision of escaping in confrontations in which the 
Guard was defeated: 255 of 257 victories, in a total 
of 99.22%. 

When the resulting file was processed for the second 
simulation, to which the network had never been presented, 
the following results were reached:  

 Right decisions, including the attacks and the 
escapes: 424 out of 500, in a total of 84.8%; 

 

 Decision of attacking in confrontations in which the 
Guard was the winner: 210 of 253 victories, in a 
total of 83,01%; 

 Decision of escaping in confrontations in which the 
Guard was defeated: 214 of 247 victories, in a total 
of 86,63%. 

VI. CONCLUSIONS AND FUTURE STUDIES 

 

The AI techniques use in NPC decision-making layer, 
mainly in FSM, enables the characters to have more realistic 
behaviors. Due to the prediction capacity the ANN acquire 
for their training, its use, in the context, is providential. This 
is proved by the rate of right decisions that this technique 
presented in the proposed experiments. 

An important issue, which was not the focus of the 
present work, concerns the moment in which the ANN is 
trained. The training presented took place off line, ie, before 
the game was executed. In future studies, the intention is to 
study the possibility of training the network during the game 
execution so that besides learning its rules, the network can 
adapt to the player’s strategies. 
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