
 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1009

Using Artificial Neural Networks in NPC Decision-

Making Process

Carlos Alberto Barros Cruz Westhead Madsen

Nucleo de Tecnologia da Informaçao

Universidade Federal de Rio Grande - Brasil

Diana F. Adamatti

Centro de Ciencias Computacionais

Universidade Federal de Rio Grande - Brasil

Email: dianaadamatti {at} furg.br

Abstract—The present paper presents the use of ANN (Artifical

Neural Networks) in NPC (Non-Player Character) decision-

making process in RPG (Role-Playing Games) electronic games.

It mainly focus on the making of decision of attacking or not a

certain opponent by analyzing the NPC and its opponent internal

state.

Keywords- games; artifical neural networks; decision-making

process; NPC

I. INTRODUCTION

The Artificial Intelligence (AI) applied in electronic games
is known as Games AI (Game Artificial Intelligence), and its
main purpose is to create a behavior which seems intelligent,
due to a scenario with multiple choices [9] [10].

This should be similar to the human-being behavior with
personality, making mistakes and be able to provide different
levels of difficulty to the employer, in order to add experience
and immersion in the game and improve its gameplay [11].

Even though, in the game industry, AI has been used since
its beginnings, when it was known as gameplay programming,
its full usage is still a challenge, mainly due to the following
reasons: development period, learning algorithms testing and
performance [12].

Among the several AI techniques applied in games, we
highlight the ANN because they have the skill of learning and
generalization, through an interactive process with the external
environment, mainly because of wide usage in prediction
problems [4] [8].

Due to this, the present work aims to contribute in the
purpose of presenting a possibility of ANN use in the decision-
making process through an interactive process in RPG. In this
way, the FSG (FURG Smart Games) framework [2] will be
used. It has ANN Black Box type implementation, where all
components are abstracted, enabling a quicker implementation
and focus on the theme of the present work.

The paper is divided in six sections. In section II there is a
discussion on ANN approaching. In section III, the FSG
framework is presented. In section IV, the rules of the RPG are
detailed in which the AI technique is used. In section V, the
experiments performed using the ANN in the NPC decision-
making process are presented. Finally, in section VI the

conclusions of the present work are presented as well as the
further works.

II. ARTIFICIAL NEURAL NETWORKS

The artificial neural networks (ANN) are the main
technique of connectionism, an AI line which studies the
possibility of simulation of intelligent behavior through
mathematical models which seek to resemble the biological
neural structures. These are characterized by being distributed
processors comprised by a number of simple processing units,
known as artificial neurons, which tend to store experimental
knowledge, allowing learning and generalization, given an
interactive process with the external environment [4] [5].

This AI technique is mainly applied in prediction,
classification, categorization and optimization problems, as
well as recognition of characters, voice, prediction of time
series, process modeling, computer vision and signal
processing [6].

Among its main characteristics we may highlight the
following [4] [5]:

 Generalization: capacity of learning through examples
and thus making generalizations to recognize similar
instances to those which have never been presented
before;

 Adaptability: possibility of adapting its synaptic
weights in order to absorb modifications in the
environment. Thus, a network which had been trained
to work in certain conditions may be retrained to deal
with modifications;

 Contextual information: the knowledge is represented
by its own network structure, where each neuron of
the network is potentially affected by the activity of
all other neurons. Due to this the contextual
information is naturally treated;

 Error tolerance: capacity to fulfill its purpose under
signals with noises, or even loss of communication in
part of the network;

 Self-learning: there is no need of knowledge from a
specialist to make decisions. The ANN is based only
on historical examples which are provided to it;

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1010

 Non-linear modeling: the mapping process of a neural
network involves non-linear functions which may
cover a bigger limit of the problem complexity.

A. Learning

The learning of an ANN takes place through the
modification of its synaptic weights in an ordered way through
training algorithms. These algorithms could be classified in
two distinct paradigms, the supervised one and the non-
supervised one [5].

 Supervised: the outputs are known during the training,
and a program known as a catalyst monitors the
mistake, the difference between the value wished and
propagated output, and refeeds the network with the
mistake in order to minimize it to an acceptable
threshold.

 Non-supervised: in this case, there is no catalyst or
refeeds to say whether the learning process was
reached. The networks use this type of training are
known as self-organizing maps – SOM. They use
correlations between the input standards to categorize
them according to the self-discovery classes.

B. Multilayer Perceptron (MLP)

This work will focus on the multilayer perceptrons
feedforward network, totally connected, due to their usage in
games [7].

This type of neural network is characterized by having its
neurons in multiple layers, normally an input layer, several
hidden layers and an output layer. The neuron of each layer is
connected with all the neurons of the immediately before and
after layers. Thus, given an input, it propagates, according to
the integrator and activation function of each neuron, layer by
layer, until an output group that produces as a network final
response [5]. MLP networks with three layers have the capacity
of approaching any non-linear function. In fact, normally the
information that a NPC captures from a game environment is
non-linear [5], justifying its usage in games.

Finally, the learning in this type of network occurs in a
supervised way through the backpropagation algorithm. This is
constituted by two basic steps, the network propagation and the
error retropropagation. In the first step, a given input sign is
propagated throughout whole network and the resulting output
is stored. In this phase, the synaptic weights remain unchanged.
In the second phase, the network output is compared with

values which the catalyst recognizes them as true for the
presented input, through the difference between these two
groups an error value is created. By making use of this error,
the catalyst retropropagates through the network, adjusting the
synaptic weights with the purpose of moving it closer to the
expected solution. Thus, this happens successively, until the
network converges to the output error within an acceptable
limit [5].

One question that arises is the possibility that during the
training, the MLP finds a minimum place and it do not present
the ideal result. However, in the context of electronic games,
this is not necessarily a problem, as it is not expected that the
NPC has an ideal or perfect behavior. Eventual errors, as long
as less predictable, are also interesting.

III. FSG (FURG SMART GAMES)

The FSG framework aims to help the AI techniques

incorporation more effective in the development of electronic
games, assuming that the decision-making layer of an NPC is
an FSM (Finite Sate Machine), a technique widely used in the
industry [12] [3].

In order to do it, every time a FSM receives from the
environment an event which takes it, in response, passes from
its current status to another, the decision-making which makes
this transition to happen or not, is ruled by a guard condition,
and it may be related to an AI technique. With its final purpose
to make the character have a less predictable behavior and it
may respond in a more realistic way [2].

In the Figure 1, a classes diagram with the FSG core is
presented. In this, three abstract classes are highlighted:
FSGCharacter, FSGState and FSGAITechnique. In the
FSGCharacter class there is the NPC implementation. It is
noticeable the presence of the “currentState” attribute which
denotes in which status the machine is, the “transition” method
responsible for the transition between status, and the “activity”
method, which delegates the responsibility of the character
behavior to the method of same name of the object
“currentState”. In the FSGState, all states in the FSM must be
implemented. Finally, the FSGAITechnique class serves as an
interface between the AI techniques and the FSM state
transitions. Normally, its objects are instantiated in the
“guardCondition” method of a given class which inherits
FSGstate. In Figure 1, the classes concerning the AI techniques
were suppressed.

Figure1: FSG Simplified classes diagram

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1011

IV. PROPOSED GAME

We have proposed a game where two characters duel in a
way similar to the RPG. This game was implemented in Java
using the framework JGame [1], for the implementation of
2D animations and the framework FSG [2] for the
implementation of the decision-making layer of the character
“Guard''. It is a very simple game, just to test the “Guard”
NPC decision-making process. Figure 2, the game interface
is presented, which the following items are highlighted:

Figure 2. Game proposed for the validation of the tool.

1. Character known as “Player'', when the game is not
on automatic mode, may be controlled by the user
through the keyboard directing arrows and the key
“A'' for the attacks;

2. Character known as “Guard'' is the game NPC and
its function is to guard a certain area besides
defending itself against any other character which
may enter its reach;

3. Area where, before starting a game, the player may
set the attributes of both characters. It is even
possible to define which AI technique will be used
by the “Guard'' in its decision-making (attack or
not). Nowadays, the framework FSG enables the
usage of Artificial Neural Networks, Fuzy Logics
and Genetic Algorithms;

4. Finally, in this interface there is the possibility of
automatically simulating a certain number of
rounds, in which the two characters are autonomous
and their attributes are defined randomly. At the
end of each duel, the information concerning the
initial attributes of the characters, as well as who
the winner was, is stored in a file for later training
of the neural networks.

Each game characters has the following attributes:

 Energy: it represents its vital energy, with restricted
values at the interval [0,100]. When a character’s

energy equals zero, this is considered as defeated
and the game is finished;

 Experience: this attribute defines the character’s
experience in battle, with values in the interval
[0,100]. This value establishes the possibility of a
carried out attack to be successful or not. Thus, in
case a character has 20 points of experience, he will
have a 20\% probability of causing some harm to its
opponent;

 Attack power: this attribute sets, in case of a
successful attack, the harm maximum value the
opponent may suffer, with the values in the interval
[0,100];

 Defense power: it defines how much harm the
character can stand before its vital energy is
affected, with the chance of receiving values in the
interval [0,100];

 Reach: this attribute sets the distance around which
can be perceived by the character concerning the
environment, with values in the interval [150,250];

 Speed: this attribute defines the speed in which the
character moves around the environment, with
values in the interval [0,10].

The harm that a certain successful attack causes to the
opponent is defined by the Equation (1). In this, it can be
noticed the direct dependence in relation to experience, vital
energy and attack power. Due to this, the harm will only be
equal to the attack power when the character has its energy
and experience in their maximum values.

Briefly, a confrontation may be defined through the
following steps:

1. The characters move around the environment until

an opponent is in its reach;

2. Once an opponent is within reach, an attack is

carried out;

3. If, according to the character’s level of experience,

the attack is successful, then the harm is calculated

according to the Equation \ref{eq:dano};

4. If the harm inflicted is smaller than the opponent’s

defense power, this attribute is decreased;

5. If the harm inflicted is bigger or equal to the

opponent’s defense power, its defense item (for

example, the shield) is destroyed and its vital

energy is vulnerable for a next attack;

6. If the opponent’s defense power is zero, then the

amount is deducted from the opponent’s vital

energy;

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1012

7. At the end of a successful attack, the offender’s

experience is added a point;

8. The offender passes its turn to the opponent, if it is

within his reach, so it can carry out the next attack;

9. This cycle is repeated until one of the two is

defeated or is out of reach.

The NPC “Guard”' behavior ruled by the Finite State

Machine (FSM) illustrated in Figure 3.

Figure 3. FSM responsible for the NPC “Guard”'

According to the FSM presented in Figure 3, the Guard
initially assumes the “Survey'' state, where the NPC moves
around the area where it keeps guard and if an opponent is
noticed, according to its internal attributes and the enemy’s,
should decide either to attack or escape.

In this work, this decision-making process is carried out,
associating to an ANN the function of “Weak opponent''
transition guard, leading to the “Attack'' state, and also a
function of “Strong opponent'' transition guard, leading to the
“Escape'' state. In the “Attack'' state, there is a confrontation
between the two characters and, if it wins, the “Guard”
returns to the “Survey” state. If not, the process is finished.
Once taking the “Escape” state, the NPC tries to be away
from the enemy's reach. If successful, it returns to the
“Survey” state.

V. EXPERIMENTS AND RESULTS

For the training of the ANN used in the game, two
distinct files were created, each one resulting from 500
rounds carried out automatically. In this automatic mode, the
NPC Guard always makes the decision of attacking when
there is an enemy within its reach. In each line of these files,
the initial attributes of each character were registered, as well
as who was the winner of each duel.

The first automatic simulation resulted in 243 (48,6%)
victories of the Guard and 257 (51,4%) of the Player, in
which a description of their attribute values is presented in
Tables I and II, respectively.

TABLE I: Guard Attributes In The First Simulation.

Attribute Average Standard Deviation

Energy 51.56 27.88

Experience 53.01 27.92

Attack Power 49.07 27.77

Defense Power 48.62 29.29

Reach 200.91 29.94

Speed 4.61 2.91

TABLE II: Player Attributes in the first simulation.

Attribute Average Standard Deviation

Energy 51.56 27.88

Experience 53.01 27.92

Attack Power 49.07 27.77

Defense Power 48.62 29.29

Reach 200.91 29.94

Speed 4.61 2.91

The second automatic simulation resulted in 253 (50,6%)

victories of the Guard and 247 (49,4%) victories of the
Player, in which a description of their attribute values is
presented in Tables III and IV, respectively.

TABLE III: Guard Attributes in the second simulation.

Attribute Average Standard Deviation

Energy 50.89 29.39

Experience 52.76 27.49

Attack Power 49.25 28.43

Defense Power 50.04 28.39

Reach 202.27 29.91

Speed 5.13 2.82

TABLE IV: Player Attributes in the second simulation.

Attribute Average Standard Deviation

Energy 51.43 29.43

Experience 52.98 28.74

Attack Power 49.48 29.26

Defense Power 48.38 29.80

Reach 202.06 29.20

Speed 4.77 2.79

 International Journal of Computer and Information Technology (ISSN: 2279 – 0764)

Volume 02– Issue 06, November 2013

www.ijcit.com 1013

A. Artificial Neural Network

In this work an ANN was implemented with the

following configuration:

 Twelve neurons in the input layer, where the first
six ones are destined to receive the Player attributes
and the five last, the Guard attributes;

 Twenty-four neurons in the hidden layer;

 Two neurons in the output layer. If the Player wins,
the first neuron must present the value one and the
second zero, and if the Guard wins these values are
inverted;

 Learning rate in 0.4;

 Momentum in 0.2;

 Sigmoid activation function (standard in
framework).

This network training was designed with the following
parameters:

 Acceptable error in the output layer: 0.3%;

 Maximum number of periods: 500,000;

 Presentation of each standard for the network for
five times;

 10% of the training data was separated for cross-
validation;

 100 networks were trained, and, from these, the one
with less output error was extracted.

In this training process, 450 registrations were used for
the training and 50 for the network validation. Besides that,
there was the need of data normalization, with all between -
0.5 and +0.5.

Once the best network had been tested, it was propagated
over all the data of the simulation files, with the purpose of
checking if the decision made was right. This decision-
making process developed in the following way: if the first
output neuron is higher than the second, the Guard must
escape, otherwise it must attack.

By processing the file referring to the first simulation,
which served as training for the network, the following
results were reached:

 Decision of attacking in confrontations in which the
Guard was the winner: 240 of 243 victories, in a
total of 98.71%;

 Decision of escaping in confrontations in which the
Guard was defeated: 255 of 257 victories, in a total
of 99.22%.

When the resulting file was processed for the second
simulation, to which the network had never been presented,
the following results were reached:

 Right decisions, including the attacks and the
escapes: 424 out of 500, in a total of 84.8%;

 Decision of attacking in confrontations in which the
Guard was the winner: 210 of 253 victories, in a
total of 83,01%;

 Decision of escaping in confrontations in which the
Guard was defeated: 214 of 247 victories, in a total
of 86,63%.

VI. CONCLUSIONS AND FUTURE STUDIES

The AI techniques use in NPC decision-making layer,
mainly in FSM, enables the characters to have more realistic
behaviors. Due to the prediction capacity the ANN acquire
for their training, its use, in the context, is providential. This
is proved by the rate of right decisions that this technique
presented in the proposed experiments.

An important issue, which was not the focus of the
present work, concerns the moment in which the ANN is
trained. The training presented took place off line, ie, before
the game was executed. In future studies, the intention is to
study the possibility of training the network during the game
execution so that besides learning its rules, the network can
adapt to the player’s strategies.

REFERENCES

[1] B. Schooten, JGame - a Java/Flash game engine for 2D games.

http://www.13thmonkey.org/boris/jgame/ (2013).

[2] C. A. B. C. W. Madsen, Ambiente de desenvolvimento de jogos com
reuso de software e inteligencia artificial. Programa de Pos-
Graduacao em Modelagem Computacional, FURG, Rio Grande,
Brasil (2012).

[3] C. A. B. C. W. Madsen, D. F. Adamatti., G. Lucca, G. Daniel, FURG
Smart Games: a Proposal for an Environment to Game Development
With Software Reuse and Artificial Intelligence. The Fourth
International Conference on Networked Digital technologies. p. 369-
381 (2012)

[4] S. O. Rezende, Sistemas Inteligentes Fundamentos e Aplicacoes. 1st
ed. 370 pp. ISBN 8520416837. Edit. Manole Ltda, Barueri - SP,
Brazil (2005)

[5] S. Haykin, Redes Neurais Principios e Praticas. 2nd ed. 900 pp. ISBN
0132733501. Edit. Bookman, Higienopoliss - SP, Brazil (2001)

[6] S. Russel, P. Norwig, Inteligencia Artificial. 2nd ed. 1056 pp. ISBN
8535211772. Edit. Campus, Rio de Janeiro - RJ, Brasil (2004)

[7] P. Sweetser, J. Wiles, Current AI in games: a review. Australian
Journal of Intelligent Information Processing Systems, vol. 8, nr. 1,
p. 24-42 (2002)

[8] K. Chellapilla, B. D. Fogel, Evolution, neural networks, games, and
intelligence., Proceedings of the IEEE, vol. 87, nr. 9, p. 1471-1496,
ISSN 0018-9219 (1999)

[9] R. T. Santana, IA Em Jogos a Busca Competitiva entre Homem e a
Maquina, Faculdade de Tecnologia de Praia Grande.,Praia Grande,
Brasil (2006)

[10] J. D. Funge,Artificial Intelligence for Computer Games: An
Introduction., AK Peters/CRC Press, ISBN 9781568812083 (2004)

[11] B. Schwab, AI Game Engine Programming., Hingham: Charles River
Media, ISBN 1584503440 (2004)

[12] D. Bourg, G. Seemann, AI for Game Developers, OReilly ISBN
0596005555 (2004)

