The Addition of Allyltrimethylsilane to Cyclic \boldsymbol{N}-Acyliminium Ions Derived from (S)-(+)-Mandelic Acid and Cyclohexyl-Based Chiral Auxiliaries

Marcelo G. M. D` ${ }^{‘}{ }^{\prime} a^{a}$, Ronaldo A. Pilli ${ }^{a}{ }^{*}$, Vera L. Pardini ${ }^{b}$, Denise Curi ${ }^{\text {b }}$ and Francisco C. M. Comninos ${ }^{b}$
${ }^{a}$ Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970, Campinas - SP, Brazil
${ }^{\mathrm{b}}$ Instituto de Química, Universidade de São Paulo, CP 26037, 05513-970, São Paulo - SP, Brazil

Abstract

A adição de aliltrimetilsilano, promovida por TiCl_{4}, a íons N-aciliminios cíclicos de 5 - e 6membros derivados do ácido (S)-(+)-mandélico, ($1 R, 2 S$)-trans-2-fenil-1-cicloexanol e ($1 R, 2 S, 5 R$)8 -fenilmentol ocorreu com baixas a moderadas razões diastereoisoméricas (1:1-6:1) e forneceu as respectivas amidas e carbamatos em bons rendimentos. A melhor diastereosseleção facial foi observada com o uso de ($1 R, 2 S, 5 R$)-8-fenilmentol como auxiliar quiral. As amidas e carbamatos 2 -substituídos foram convertidos nos alcalóides (S) - e (R)-propil pirrolidina e coniina com eficiente recuperação dos auxiliares quirais.

The $\mathrm{TiCl}_{4}{ }^{-}$promoted addition of allyltrimethylsilane to chiral 5 - and 6 -membered N-acyliminium ions employing $(S)-(+)$-mandelic acid, ($1 R, 2 S$)-trans-2-phenyl-1cyclohexanol and ($1 R, 2 S, 5 R$)-8-phenylmenthol derivatives as chiral auxiliaries occurred with low to moderate diastereoisomeric ratios (1:1-6:1) to afford 2 -substituted amides and carbamates in good yields. The best diastereoselection was observed with ($1 R, 2 S, 5 R$)-8phenylmenthol as the chiral auxiliary. The 2 -substituted amides and carbamates were converted to the corresponding alkaloids (S) - and (R)-propyl pyrrolidine and coniine with efficient recovery of the chiral auxiliaries.

Keywords: (S)-(+)-Mandelic acid, cyclohexyl-based chiral auxiliaries, N-acyliminium ions, pyrrolidine and piperidine derivatives

Introduction

The introduction of cyclohexyl-based chiral auxiliaries by Corey ${ }^{1}$ in 1975 and mandelic acid by Trost ${ }^{2}$ in 1980 stirred the interest for the development of new methodologies for asymmetric carbon-carbon bond formation. Despite that, few asymmetric routes are now available for the regioselective introduction of alkyl groups in the α-nitrogen position of N -acyliminium ions ${ }^{3}$ employing recoverable chiral auxiliaries ${ }^{4}$.

We were attracted by the possibility of using (S)-(+)mandelic acid, $(1 R, 2 S)$-trans-2-phenyl-1-cyclohexanol and $(1 R, 2 S, 5 R)-8$-phenylmenthol as chiral auxiliaries during the addition of allyltrimethylsilane to chiral 5- and 6-membered N -acyliminium ions formed in situ from the corresponding 2-methoxy amides and carbamates prepared through anodic oxidation 5 (Scheme 1).

[^0]
Results and Discussion

The electrochemical oxidation of chiral amides $\mathbf{1 a}, \mathbf{b}$ and chiral carbamates $\mathbf{2 a}, \mathbf{b}$ and $\mathbf{3 a}, \mathbf{b}$, derived from (S)-(+)mandelic acid, $(1 R, 2 S)$-trans-2-phenyl-1-cyclohexanol and ($1 R, 2 S, 5 R$)-8-phenylmenthol, respectively, was performed in an undivided cell equipped with a platinum plate anode and a tungsten wire cathode $(\mathrm{MeOH}, \mathrm{i}=100 \mathrm{~mA}, \mathrm{~J}=25$ $\mathrm{mA} \mathrm{cm}{ }^{-1}$) to afford the corresponding 2-methoxy mandelic amides $\mathbf{4 a}, \mathbf{b}$ and 2-methoxy carbamates $\mathbf{5 a}, \mathbf{b}$ and $\mathbf{6 a}, \mathbf{b}$ in $62-78 \%$ yield, as epimeric mixtures at the α-nitrogen position. The carbon-carbon bond formation step was achieved by treatment of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ soln. of $\mathbf{4 a}, \mathbf{b}, \mathbf{5 a}, \mathbf{b}$ and $\mathbf{6 a}, \mathbf{b}$ with TiCl_{4} at $-78^{\circ} \mathrm{C}$ and addition of allyltrimethyl-silane (Scheme 1).

Dichloromethane solutions of the epimeric mixtures (4a-b, 5a-b, and 6a-b) were treated with TiCl_{4} at $-78{ }^{\circ} \mathrm{C}$ (Scheme 1) to generate the corresponding N -acyliminium ions, followed by the addition of allyltrimehtylsilane. In the case of the reactions employing $\mathbf{4 a}$ and $\mathbf{4 b}$, hydrolysis

a) $-2 \mathrm{e}^{-}, \mathrm{MeOH}, \mathrm{Pt}$ anode, $\mathrm{i}=100 \mathrm{~mA}$. b) i. TiCl_{4}, allyltrimethylsilane, $-78^{\circ} \mathrm{C}-1.5 \mathrm{~h}$, r.t- $2.0 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 12 \mathrm{~h}$; c) TiCl_{4}, allyltrimethylsilane, $-78^{\circ} \mathrm{C}, 3.5 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ d) i. H_{2}, Pd-C, overnight, r.t; ii. $3 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$, dioxane, reflux, 120 h. e) i. $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$, overnight, r.t; ii. Method A: $4.7 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{NaOMe}, \mathrm{MeOH}, 110^{\circ} \mathrm{C}$, sealed ampoule, Method B: $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{MeLi}$, THF/cumene, $0^{\circ} \mathrm{C}$-r.t.

Scheme 1.

Table 1. The addition of allytrimethylsilane to α-OMe derivatives 4-6a,b promoted by TiCl4

Entry	n	α-OMe derivatives	R* (Chiral Auxiliaries)	Product	d. $\mathrm{r}^{\text {a }}$	Yield \%
1	1	4 a	(S)-N-(O-acetyl)-mandeloyl	7a:10a	2:1	71
2	2	4b	(S)-N-(O-acetyl)-mandeloyl	7b:10b	2:1	60
3	1	5a	(1R,2S)-trans-2-phenyl-1-cyclohexyl	8a:11a	1:1	75
4	2	5b	(1R,2S)-trans-2-phenyl-1-cyclohexyl	8b:11b	1:2	68
5	1	6 a	(1R,2S,5R)-8-phenylmenthyl	9a:12a	6:1 $1^{\text {b }}$	70
6	2	6b	($1 R, 2 S, 5 R$)-8-phenylmenthyl	9b:12b	3:1	65

${ }^{2}$ Diastereoisomeric ratios determined by GC-MS analyses; ${ }^{\text {b }}$ Diastereoisomeric ratio determined by chiral GC analyses.
of the acetyl group $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}\right)$ of the products afforded N-mandeloyl 2-allyl pyrrolidines 7a/10a (71\% yield) and N-mandeloyl 2-allyl piperidines 7b/10b (60% yield), respectively. The unambiguous assignment of the NMR spectra was precluded by the presence of rotational isomers around the amide bond. The diastereoisomeric ratio was determined to be $2: 1$ for both 2-allyl amides $\mathbf{7 a} / \mathbf{1 0 a}$ and $\mathbf{7 b} / \mathbf{1 0 b}$ by GC-MS analyses (Table 1). The absolute configuration at the newly formed stereogenic center was assigned after catalytic hydrogenation followed by hydrolysis ($3 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, dioxane, reflux) of the 2allyl amides 7a and 10a (separated by flash chromatography on silica gel) to provide (S) - and (R)-2propyl pyrrolidine (13a) $\left\{[\alpha]_{D}-1.94\right.$ (c 1.3, $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{HCl})$ and $+2.0\left(c 1.5,2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\right)$, respectively; lit. $\left.{ }^{6}(R)-\mathbf{1 3 a},[\alpha]_{\mathrm{D}}+2.0\left(c 1.5,2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\right)\right\}$ in 57% yield. When the same protocol was applied to the $2: 1$ mixture of $\mathbf{7 b} / \mathbf{1 0 b}$, a $2: 1$ mixture of (S) - and (R)-coniine (13b) enriched in the S isomer $\left\{(S / R)\right.$-13b. $\mathrm{HCl},[\alpha]_{\mathrm{D}}+4.2$ (c 1.0, EtOH); lit. $\left.{ }^{7}(R) \mathbf{- 1 3 b},[\alpha]_{\mathrm{D}}-9.2(c 0.8, \mathrm{EtOH})\right\}$ was obtained in 50% yield (Scheme 1).

Low diastereofacial preference was also observed in the addition of allyltrimethylsilane to 2-methoxy carbamates 5a,b derived from ($1 R, 2 S$)-trans-2-phenyl-1cyclohexanol.The 1:1 and 1:2 diastereoisomeric ratios were assigned to the ratios of 2-allyl carbamates 8a/11a (75\% yield) and $\mathbf{8 b} / \mathbf{1 1 b}$ (68% yield), respectively, by GC-MS analyses. Catalytic hydrogenation followed by methanolysis (Method A: $\mathrm{NaOMe}, \mathrm{MeOH}, 110^{\circ} \mathrm{C}$, sealed ampoule $)^{4 \mathrm{~d}}$ of 8a/11a allowed the recovery of $(1 R, 2 S)$ -trans-2-phenyl-1-cyclohexanol (95% yield) and afforded racemic 2-propyl pyrrolidine (13a) in 91% yield. The same protocol was applied to 2-allyl carbamates $\mathbf{8 b} / \mathbf{1 1 b}$ to afford a levorotatory mixture (1:2 ratio) enriched in (R)-coniine (13b) $\left\{(S / R) \mathbf{- 1 3 b} . \mathrm{HCl},[\alpha]_{\mathrm{D}}-4.2\right.$ (c 1.0, EtOH); lit. ${ }^{7}$ $\left.(R) \mathbf{- 1 3 b},[\alpha]_{\mathrm{D}}-9.2(c 0.8, \mathrm{EtOH})\right\}$ in 86% yield.

Better facial discrimination was observed when 8phenylmenthol derivatives were employed. The TiCl_{4} promoted addition of allyltrimethylsilane to $\mathbf{6 a}$ and $\mathbf{6 b}$ afforded the corresponding 2-allyl carbamates 9a/12a and 9b/12b in 70% and 65% yield, respectively. The diastereoisomeric ratio of $\mathbf{9 b} / \mathbf{1 2 b}$ (3:1) was determined by

GC-MS analysis. Enantiomerically enriched (S)-coniine (13b) $\left\{(S / R)\right.$-13b. $\mathrm{HCl},[\alpha]_{\mathrm{D}}+5.4$ (c 1.0, EtOH) $\}$ was obtained in 78% yield after catalytic hydrogenation and recovery of ($1 R, 2 S, 5 R$)-8-phenylmenthol (Method B: 1 mol $\mathrm{dm}^{-3} \mathrm{MeLi}, \mathrm{THF} /$ cumene, $0^{\circ} \mathrm{C}-$ r.t, 85% yield).

Unfortunately, baseline resolution was not achieved in the GC-MS analyses of 2-allyl carbamate $\mathbf{9 a} / \mathbf{1 2 a}$ derived from $\mathbf{6 a}$ and the determination of the diastereoisomeric ratio had to be postponed to the stage of preparation of 2-propyl pyrrolidine (13a) which was derivatized as the corresponding trifluoroacetamide and submitted to chiral GC analyses ($6: 1$ enantiomeric ratio) ${ }^{8}$. The major 2-propyl carbamate derived from $9 \mathbf{a}\left([\alpha]_{D}-46.7, c 2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) was isolated and converted (Method B: $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{MeLi}, \mathrm{THF} /$ cumene, $0^{\circ} \mathrm{C}$-r.t) to (S)-2-propyl pyrrolidine (13a) $\left\{[\alpha]_{\mathrm{D}}+18.2\right.$ (c 1.8, MeOH); lit. ${ }^{6 \mathrm{~b}}$ $\left.(R)-\mathbf{1 3 a},[\alpha]_{\mathrm{D}}-18.0(c 0.1, \mathrm{MeOH})\right\}$ in 90% yield after catalytic hydrogenation, followed by flash chromatography on silica gel with efficient recovery of the chiral auxiliary (92% yield).

The TiCl_{4}-promoted reaction of allyltrimethylsilane with chiral cyclic N-acyliminium ions derived from 2-methoxy amides $\mathbf{4 a}, \mathbf{b}$ and 2-methoxy carbamates $\mathbf{6 a}, \mathbf{b}$, except in the reaction with 2 -methoxy carbamate $\mathbf{5 b}$, resulted from the approach of the nucleophile to the Si face of the N acyliminium ions. The better facial discrimination (6:1 d.r) observed with ($1 R, 2 S, 5 R$)-8-phenylmenthol as the chiral auxiliary was rationalized from the kinetically preferred attack of the nucleophile to the s-cis conformation of N-acyliminium ions (Figure 1) ${ }^{9}$, which might be enforced by π-stacking ${ }^{10}$ interactions involving the low-lying LUMO of the carbamoyl group and HOMO of the phenyl substituent. Comins and coworkers ${ }^{3 \mathrm{ab}}$ (Figure 2) revealed this behavior in the addition of Grignard reagents to chiral N acylpyridinium salts containing cyclohexyl-based chiral auxiliaries such as $(1 R, 2 S, 5 R)-8$-phenylmenthol and the excellent stereocontrol observed was again assigned to π-stacking interactions between the iminium moiety and the phenyl substituent of the chiral auxiliary.

Figure 1. Addition of allyltrimethylsilane to the s-cis conformation of N -Acyliminium ion derived from $\mathbf{6 a}$.

Conclusion

Overall, this paper describes an efficient procedure for generating chiral cyclic 5-and 6-membered N -acyliminium

Figure 2. Addition of trimethylsilylmagnesium chloride to the s-cis conformation of N -acylpyridinium ion.
ions, followed by in situ addition of allyltrimethylsilane to yield the corresponding 2-allyl pyrrolidines and piperidines. We have shown that the carbon-carbon bond formation in the addition of allyltrimethylsilane to chiral N-acyliminium ions occurred with low diastereoselection (1:1-2:1 d.r) employing (S)-(+)-mandelic acid and ($1 R, 2 S$)-trans-2-phenyl-1-cyclohexanol as chiral auxiliaries. However, moderate diastereoselection (6:1 d.r) was observed with $(1 R, 2 S, 5 R)-8$-phenylmenthol as the chiral auxiliary. The results describe an attractive route to pyrrolidine and piperidine derivatives, particularly to pure (S)-2-propyl pyrrolidine (13a) which is present as a structural motif in many naturally occurring and biologically important compounds. The method also allows for an efficient recovery of the chiral auxiliary.

Experimental

General

(S)-Mandelid acid, ($1 R, 2 S$)-trans-2-phenyl-1-cyclohexanol and ($1 R, 2 S, 5 R$)-8-phenylmenthol, allyl-trimethylsilane, solvents and reagents were purchased from commercial sources, unless otherwise noted. Amides 1a,b were synthesized from (S)-(+)-mandelic acid, pyrrolidine and piperidine in 68% and 66% overall yield, respectively. Carbamates $\mathbf{2 a}, \mathbf{b}$ and $\mathbf{3 a}, \mathbf{b}$ were synthesized by the reaction of ($1 R, 2 S$)-trans-2-phenyl-1-cyclohexylchloroformate and ($1 R, 2 S, 5 R$)-8-phenymenthyl chloroformate with pyrrolidine and piperidine in $80 \%, 86 \%, 95 \%$ and 91% yield, respectively. All experiments were carried out under an argon atmosphere except for hydrolyses under acid conditions. Dichloromethane was distilled from CaH_{2}, methanol and ethanol were distilled from Mg turnings. The titanium (IV) chloride (Aldrich Co.) was distilled from CaH_{2} and stored in a Schlenk flask. The normal processing of organic extracts consisted of drying over MgSO_{4}, filtration and concentration under reduced pressure with a rotatory evaporator. The compounds were purified by column chromatography on silica gel (200-400 mesh, 70230 mesh, $60 \AA$). The electrochemical oxidation was performed using a Princeton Applied Research potenciostat/galvanostat model 173 equipped with a current
follower, model 176, and Hewlett Packard 6255A (Dual DC Power Supply, 0-40V, 0-1.5A). The ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Bruker AC-300/P (7.05T), Varian Gemini (7.05T) and Varian Inova (11.7T) spectrometers. Chemical shifts $(\boldsymbol{\delta})$ are recorded in ppm with the solvent resonance as the internal standard and coupling constants (J) recorded in Hz. Signals for rotational and/or configurational isomers are denoted inside brackets. The infrared spectra were recorded as films in KBr cells on a Perkin-Elmer 1600 (FTIR) spectrometer (film and NaCl) and Nicolet Impact 410 (FTIR). Elemental analyses and high resolution mass spectroscopy (HRMS) were performed on a 2400 CHN-Perkin Elmer instrument and Autoespec-Micromass-EBE, respectively. Optical rotations were measure on a polarimeter Polamat A Carl Zeiss Jena using a quartz cell and a mercury or sodium lamp. The melting points were measured on an Electrothermal 9100 apparatus. The gas chromatography analyses (FID detector) were performed using a HP-5890-II equipment. Gas chromatography-mass spectrometry (GC/MS) analyses were performed on a Hewlett Packard 5890/Hewlett Packard 5970 MSD.

General procedure for the electrochemical oxidation and preparation of 2-methoxy amides $4 \boldsymbol{a}, \boldsymbol{b}$ and carbamates $\mathbf{5 a}, \boldsymbol{b}$ and $\mathbf{6 a}, \boldsymbol{b}$. A solution of amides $\mathbf{1 a}, \mathbf{b}$ or carbamates 2$\mathbf{3 a , b}(2.4 \mathrm{mmol})$ and tetraethylammonium p-toluenesulfonate ($\mathrm{Et}_{4} \mathrm{NOTs}$, 1.2 mmol) in methanol $\left(12 \mathrm{~cm}^{3}\right)$ was added into an undivided glass cell, equipped with a platinum plate anode ($2.0 \times 2.0 \mathrm{~cm}^{2}$) and a tungsten wire cathode. The substrate was electrolyzed at constant current ($100 \mathrm{~mA}, \mathrm{~J}=25 \mathrm{~mA} . \mathrm{cm}^{-2}$) under magnetic stirring and the reaction temperature was maintained between $15-20^{\circ} \mathrm{C}$ with external water bath. After the passage of $8.0{\mathrm{~F} . \mathrm{mol}^{-1}}^{\text {, }}$ the solvent was removed under reduced pressure, the residue was dissolved in water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The product was separated by column chromatography on silica gel.

N-[(O-acetyl)-mandeloyl]-2-methoxy pyrrolidine (4a): 50% diethyl ether/hexane as eluent (78% yield). White solid. IR (film): $v_{\text {max }} / \mathrm{cm}^{-1} 2940,1739,1670,1420$ and 1234. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-7.60(\mathrm{~m}, 5 \mathrm{H})$, [6.45, 6.35, 6.10, $6.00(\mathrm{~s}, 1 \mathrm{H})$], [5.50, 5.57, 5.49, $4.80(\mathrm{~d}$, $J 6.0,1 \mathrm{H})$], $3.80-3.50(\mathrm{~m}, 2 \mathrm{H}),[3.40,3.39,3.30,3.20(\mathrm{~s}$, $3 \mathrm{H})], 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\mathrm{CDCl} 3): ~ \delta 170.5,168.7,133.0,129.7,129.2,129.1,128.4$, [89.1, 88.0], [74.0, 56.0, 54.0], [46.0, 45.0], 31.0, 23.0, 21.0. Elemental analysis- Found: C, 64.87, H, 7.13, N, 4.72; Calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}: \mathrm{C}, 64.90, \mathrm{H}, 6.85, \mathrm{~N}, 5.00 \%$.
N-[(O-acetyl)mandeloyl]-2-methoxy piperidine (4b): 25% hexane/diethyl ether as eluent (71% yield). White solid. IR: $v_{\text {max }} / \mathrm{cm}^{-1} 3055,2946,1739,1663,1438$ and
1371. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta \quad 7.45(\mathrm{~m}, 5 \mathrm{H})$, [6.30, 6.20, $6.15(\mathrm{~s}, 1 \mathrm{H})],[5.70,5.00(\mathrm{~s}, 1 \mathrm{H})],[4.30,3.65$, $3.55(\mathrm{~d}, J 10,1 \mathrm{H})],[3.40,3.20,3.00(\mathrm{~s}, 3 \mathrm{H})], 2.80(\mathrm{~m}$, $1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.10(\mathrm{~m}, 5 \mathrm{H}), 0.70(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 172.0,167.5,135.0,129.4$, 129.3, 129.2, 84.0, 80.0, 74.0, 55.0, 41.0, 37.0, 30.0, 25.0, 21.0, 18.0. Elemental Analysis- Found: C, $65.58, \mathrm{H}, 7.42$, $\mathrm{N}, 4.66$; Calc. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~N}: \mathrm{C}, 65.90, \mathrm{H}, 7.20, \mathrm{~N}, 4.80 \%$.

N-[(1R,2S)-trans-2-phenyl-1-cyclohexyloxycarbonyl]-2-methoxy pyrrolidine ($\mathbf{5 a}$): 70% hexane/ethyl acetate as eluent (76% yield). Pale yellow oil. IR: $v_{\text {max }} . / \mathrm{cm}^{-1} 3060$, 3028, 2933, 2858, 2831, 1705, 1450, 1402, 1356, 1327, 1182, 1084, 1012, 756, 700. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.32-7.11(\mathrm{~m}, 5 \mathrm{H}),[5.06,4.96,4.62(\mathrm{~s}, 1 \mathrm{H})], 4.83-4.74$ $(\mathrm{m}, 1 \mathrm{H}),[3.30,3.00,2.50(\mathrm{~s}, 3 \mathrm{H})], 3.20-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.78-$ $2.61(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.10(\mathrm{~m}, 1 \mathrm{H}) .1 .95-1.28(\mathrm{~m}, 11 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.0,154.8,143.8,143.5$, 129.1, 128.4, 128.3, 128.2, 127.7, 127.6, 127.4, 127.1, 126.5, 126.4, 126.3, 126.2, 88.7, 88.2, 87.6, 77.2, 76.6, $55.5,55.1,54.1,50.2,49.9,45.5,45.2,44.8,35.3,33.9$, $33.6,33.5,32.8,32.6,32.5,32.1,31.8,25.6,25.2,24.5$, 24.4, 22.2, 21.5.

N-[(1R,2S)-trans-2-phenyl-1-cyclohexyloxycarbonyl]-2-methoxy piperidine ($\mathbf{5 b}$): 70% hexane/ethyl acetate as eluent (71% yield). Pale yellow oil. $I R v_{\text {max. }} . / \mathrm{cm}^{-1} 3025$, 2933, 2854, 1700, 1417, 1356, 1263, 1081, 1033, 755, $700 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-7.11(\mathrm{~m}, 5 \mathrm{H})$, [5.10, 4.98, $4.62(\mathrm{~s}, 1 \mathrm{H})$], $4.83-4.74(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.20$ (m, 2H), [3.15, $2.25(\mathrm{~s}, 3 \mathrm{H})], 2.80-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.70$ (m, 4H), 1.70-1.20 (m, 9H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 155.9,155.0,143.0,142.5,128.3,127.9,126.0,86.0$, 84.2, 77.5, 57.8, 57.1, 50.1, 47.8, 47.0, 46.2, 44.8, 35.8, $33.8,33.0,32.5,26.1,25.9,24.5,24.0,23.5$.

N-[(1R,2S,5R)-8-phenylmenthyloxycarbonyl]-2methoxy pyrrolidine ($\mathbf{6 a}$): 65% hexane/ethyl acetate as eluent (62% yield). Pale yellow oil. IR: $v_{\text {max. }} . / \mathrm{cm}^{-1} 3056$, 2952, 2925, 2869, 1708, 1600, 1509, 1454, 1363, 1205, 1122, 1031, 769, 700. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.32-7.07(\mathrm{~m}, 5 \mathrm{H}),[5.16,5.08,3.40,3.24(\mathrm{~d}, 3 \mathrm{~J}=4.3$, $1 \mathrm{H})],[3.39,3.32,3.04(\mathrm{~s}, 3 \mathrm{H})], 2.96-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.20-$ $1.40(\mathrm{~m}, 12 \mathrm{H}),[1.32,1.35,1.75(\mathrm{~s}, 3 \mathrm{H})],[1.24,1.22$, $1.20,1.18(\mathrm{~s}, 3 \mathrm{H})], 1.12-0.90(\mathrm{~m}, 2 \mathrm{H}),[0.88,0.84(\mathrm{~d}$, $3 \mathrm{H})] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \quad 155.3,154.7$, 153.1, 152.5, 128.0, 127.9, 127.7, 125.4, 124.7, 88.7, 88.2, 87.2, 74.9, 74.5, 55.6, 55.3. 50.1, 45.2, 44.7, 44.6, $43.9,42.5,42.3,34.3,31.0,29.9,28.8,23.3,22.1,21.5$. HRMS- Found: 359.23963; Calc. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~N}$: 359.24605.

N-[(1R,2S,5R)-8-phenylmenthyloxycarbonyl]-2methoxy piperidine ($\mathbf{6 b}$): 65% hexane/ethyl acetate as eluent (71% yield). Pale yellow oil. IR (film): $v_{\text {max }} / \mathrm{cm}^{-1}$

3023, 2917, 2952, 2829, 1702, 1602, 1402, 1180, 1083, 755, 700. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ 7.31-7.22 $(\mathrm{m}, 4 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}),[5.39,5.35,4.46,3.95(\mathrm{~m}, 1 \mathrm{H})$], $4.90-4.70(\mathrm{~m}, 1 \mathrm{H}),[3.49,3.25,3.19,3.09(\mathrm{~s}, 3 \mathrm{H})],[2.95,2.82$, 2.72, 2.44, $2.38(\mathrm{~m}, 1 \mathrm{H})], 2.09-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.80-1.40(\mathrm{~m}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}),[1.20,1.21(\mathrm{~s}, 3 \mathrm{H})], 1.19-$ $0.90(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 155.0, 152.2, 152.3, 128.2, 125.6, 125.3, 96.0, 95.0, 82.0, 81.0, 87.2, 75.0, 76.0, 54.9, 50.8, 42.7, 41.0, 40.0, 38.5, 35.0, 32.0, 30.5, 27.9, 25.9, 24.5, 21.9, 19.0. HRMS-Found: 373.26011; Calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{~N}$: 373.26169 .

General procedure for the preparation of 2-allyl amides 7/10a,b: To a stirred solution of 2-methoxy amides $\mathbf{4 a}, \mathbf{b}$ (3.7 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$, under an argon atmosphere, $\mathrm{TiCl}_{4}(3.7 \mathrm{mmol})$ was added. After 0.5 h , allytrimethylsilane (7.5 mmol) was added and the reaction mixture was stirred for 1 h . The temperature was raised to room temperature and the mixture was stirred for 2 h . The reaction was quenched by the addition of water $\left(5 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 15 \mathrm{~cm}^{3}\right)$. After evaporation under reduced pressure, a solution of methanol ($5 \mathrm{~cm}^{3}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg})$ was added to the pale yellow oil and the mixture was stirred 12 h at room temperature. After removal of methanol in vacuo, the diastereoisomeric mixture was purified by flash column chromatography on silica gel.

N-mandeloyl-2-(1-propenyl) pyrrolidine (7/10a): 70\% hexane/ethyl acetate as eluent (71% yield). Pale yellow oil. IR: $v_{\text {max }} / \mathrm{cm}^{-1} 3405,2971,2924,1638,1449,1381,735$, 701.Elemental Analysis: Found - C, 72.96, H, 7.97, N, 5.54; calc for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N} \mathrm{C}, 73.00, \mathrm{H}, 7.75, \mathrm{~N}, 5.71$. Data for the major isomer 7a: $[\alpha]^{23}{ }_{\mathrm{D}}+4.8$ (c 3.0, EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~d}$, $J 6.0,1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~d}, 3 \mathrm{~J} 6.0,1 \mathrm{H})$, $4.30(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H})$, $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.0,140.0,134.0,129.2,128.7$, 127.9, 118.0, 73.0, 58.0, 46.0, 38.0, 28.0, 24.0. Data for the minor isomer 10a: $[\alpha]^{23}{ }_{\mathrm{D}}+47.3$ (c 3.0, EtOH). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{~m}$, $1 \mathrm{H}), 5.15(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J 6.0,1 \mathrm{H}), 4.70(\mathrm{~d}, J 6.0,1 \mathrm{H})$, $4.20(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H})$, $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.60(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 171.0,139.0,135.0,129.1,128.6,128.0,127.6$, 118.0, 73.0, 58.0, 46.0, 37.0, 28.0, 24.0.

N-mandeloyl-2-(1-propenyl) piperidine (7/10b): 50% ethyl acetate/hexane as eluent (90 \% yield). Pale yellow oil. IR: $v_{\text {max }} . / \mathrm{cm}^{-1} 3406,2940,2855,1634,1452,1397$, 1266, 1064, 1012, 764, 701. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.95-$ $4.80(\mathrm{~m}, 2 \mathrm{H}),[4.55,3.75,3.40(\mathrm{~m}, 1 \mathrm{H})], 2.90-2.15(\mathrm{~m}$, 3 H), $1.75-1.15(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
$171.0,140.0,134.0,128.9,128.7,128.5,128.3,127.5$, 118.0, 72.0, [52.0, 49.0], [41.0, 38.0], 34.0, 27.0, [26.0, 24.0], 19.0. Elemental Analysis- Found: C, 73.89, H, 7.98, $\mathrm{N}, 5.05$; Calc. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C}, 74.00, \mathrm{H}, 8.10, \mathrm{~N}, 5.40 \%$.

General procedure for the preparation of 2 -allyl carbamates $8 / 11 a, b$ and $9 / 12 a, b$: To a stirred solution of 2-methoxy carbamates $\mathbf{5} / \mathbf{6 a}, \mathbf{b}(1.32 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$, under an argon atmosphere, $\mathrm{TiCl}_{4}(1.5$ mmol) was added. After 0.5 h , allyltrimethylsilane (2.64 mmol) was added and the reaction mixture was stirred for 3 h . The reaction was quenched by the addition of water (5 cm^{3}) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The products were purified by flash column chromatography on silica gel.

N-[(1R,2S)-trans-2-phenyl-1-cyclohexyloxycarbonyl]-2-(1propenyl) pyrrolidine (8/11a): 70% hexane/ethyl acetate as eluent (75% yield). Colorless oil. IR: $v_{\text {max }} . / \mathrm{cm}^{-1} 3062,3027$, 2931, 2857, 1698, 1639, 1602, 1448, 1407, 1355, 1184, 1105, $1033,755,700 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26-7.14(\mathrm{~m}$, $5 \mathrm{H}), 5.60-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.75(\mathrm{~m}, 3 \mathrm{H})$, [3.66-3.61, 3.33-$3.18,3.00-2.81(\mathrm{~m}, 3 \mathrm{H})],[2.67-2.61,2.50-2.05(\mathrm{~m}, 3 \mathrm{H})], 1.92-$ $1.25(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.5,143.5$, 135.1, 128.3, 128.0, 127.6, 127.3, 126.1, 76.7, 56.1, 56.9, 50.4, 46.4, 39.0, 38.0, 35.1, 33.7, 33.1, 25.7, 24.7. HRMS Found: 314.21257; Calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~N}(\mathrm{M}+1)$: 314.21200 .

N-[(1R,2S)-trans-2-phenyl-1-cyclohexyloxycarbonyl]-2-(1propenyl) piperidine ($8 / \mathbf{1 1 b}$): 70% hexane/ethyl acetate as eluent (68\% yield). Colorless oil. IR: $v_{\text {max. }} / \mathrm{cm}^{-1} 3025,2929,2857$, 1698, 1417, 1101, 755, 700. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ 7.28-7.13 (m, 5H), [5.56, 4.95-4.78 (m, 4H)], 4.05 (s, 1H), 3.78 (d, J $13.0,1 \mathrm{H}), 2.70-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.94-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.21(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 155.3,143.6,135.4,128.3,128.1,127.7,127.5,126.2,116.5$, 77.0, 50.3, 49.9, 49.7, 38.8, 38.7, 33.9, 33.7, 32.8, 27.1, 25.8, 25.1, 25.0, 24.7, 24.6, 18,5; 18,4. HRMS- Found: 328.22760; Calc. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~N}(\mathrm{M}+1)$: 328.22765;

N-[(1R,2S,5R)-8-phenylmenthyloxycarbonyl]-2-(1propenyl) pyrrolidine (9/12a): 65% hexane/ethyl acetate as eluent (70% yield). Colorless oil. IR: $v_{\text {max }} / \mathrm{cm}^{-1} 2954,2921$, 2869, 1693, 1641, 1407, 1330, 1184, 1108, 992, 910, 755, 700. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.10$ $(\mathrm{m}, 1 \mathrm{H}),[5.79,5.50(\mathrm{~m}, 1 \mathrm{H})], 5.14-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~m}$, $1 \mathrm{H}),[3.80,2.60(\mathrm{~m}, 1 \mathrm{H})], 3.22(\mathrm{~m}, 1 \mathrm{H}),[2.80,2.38(\mathrm{~m}, 1 \mathrm{H})]$, 2.19-1.99 (m, 2H), 1.85-1.40 (m, 9H), [1.35, $1.21(\mathrm{~s}, 3 \mathrm{H})]$, $1.18(\mathrm{~s}, 3 \mathrm{H}),[1.30-1.20(\mathrm{~m}, 1 \mathrm{H})], 0.90-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~d}$, $J 7,03 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.0,153.0$, 152.7, 135.9, 127.9, 125.4, 124.7, 117.0, 77.2, 74.1, 56.7, 54.7, 50.8, 46.0, 45.5, 42.5, 42.2, 39.2, 38.4, 38.0, 34.5, 31.1, 29.3, 28.7, 27.9, 26.2, 24.6, 23.2, 22.8, 21.6. HRMS- Found: 370.26754; Calc. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{O}_{2 \mathrm{~N}}(\mathrm{M}+1)$: 370.26935 ;.

N-[(1R,2S,5R)-8-phenylmenthyloxycarbonyl]-2-(1propenyl) piperidine (9/12b): 65% hexane/ethyl acetate as
eluent (65% yield). Colorless oil. IR: $v_{\text {max. }} / \mathrm{cm}^{-1} 3091,3061$, 2954, 2930, 2866, 1687, 1641, 1423, 1369, 1259, 1149, 1093, 1034, 700. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.20(\mathrm{~m}$, $4 \mathrm{H}), 7.10(\mathrm{~m}, 1 \mathrm{H}),[5.80,5.60(\mathrm{~m}, 1 \mathrm{H})], 5.10-4.90(\mathrm{~m}, 2 \mathrm{H})$, $4.80(\mathrm{~m}, 1 \mathrm{H}),[4.38,4.00(\mathrm{~m}, 1 \mathrm{H})],[3.40,3.25,3.19(\mathrm{~m}, 1 \mathrm{H})]$, [2.75, 2.60, $2.10(\mathrm{~m}, 1 \mathrm{H})], 2.40-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.90(\mathrm{~m}$, $2 \mathrm{H}), 1.68-1.20(\mathrm{~m}, 16 \mathrm{H}), 1.10(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.80(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.0,152.0,135.9,128.0$, $125.6,125.1,116.5,75.4,51.0,50.5,49.8,42.5,40.2,39.0$, 35.0, 34.4, 31.8, 27.9, 25.7, 25.9, 26.2, 22.0, 18.8. HRMSFound: 383.28420; Calc. for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~N}$: 383.28242 ;.

General procedure for the preparation of 2-propyl pyrrolidine (13a) and coniine (13b) derived from amides 7/ $\mathbf{1 0 a}, \boldsymbol{b}$: A solution of 2-allyl amides $\mathbf{7 / 1 0 a , b}(1.7 \mathrm{mmol})$ in ethanol ($5 \mathrm{~cm}^{3}$) containing $10 \% \mathrm{Pd}-\mathrm{C}$ was stirred overnight at room temperature under hydrogen atmosphere $\left(\mathrm{H}_{2}, 1 \mathrm{~atm}\right)$. The catalyst was removed by filtration through Celite ${ }^{\circledR}$, and the filter pad was washed with diethyl ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined filtrates were concentrated under reduced pressure and a solution of $3 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$:dioxane ($1: 1,2.0 \mathrm{~cm}^{3}$) was added to the oily residue. The reaction mixture was refluxed 120 h , the solvent was removed in vacuo and the residue was extracted with diethyl ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The product was purified by column chromatography on silica gel.

General procedure for the preparation of 2-propyl pyrrolidine (13a) and coniine (13b) from carbamates 8/ 11a,b and 9/12a,b: A solution of 2-allyl carbamates 8/11a,b or $9 / 12 \mathrm{a}, \mathrm{b}(0.91 \mathrm{mmol})$ in ethanol ($2 \mathrm{~cm}^{3}$) containing 10% Pd-C was stirred overnight at room temperature under hydrogen atmosphere $\left(\mathrm{H}_{2}, 1 \mathrm{~atm}\right)$. The catalyst was removed by filtration through Celite ${ }^{\circledR}$, and the filter pad was washed with diethyl ether ($3 \times 10 \mathrm{~cm}^{3}$). The combined filtrates were concentrated under reduced pressure. Method A: To a solution of 2-propyl carbamates derived from 8/ 11a,b in methanol $\left(2 \mathrm{~cm}^{3}\right)$ was added a 4.7 mol. dm^{-3} solution of NaOMe in methanol $\left(2 \mathrm{~cm}^{3}\right)$ and the reaction mixture was stirred $30 \mathrm{~h}(\mathrm{n}=1)$ or $36 \mathrm{~h}(\mathrm{n}=2)$ in a sealed ampoule at $110^{\circ} \mathrm{C}$. After filtration through silica gel with methanol ($20 \mathrm{~cm}^{3}$) the combined filtrates were acidified (pH 1.0) with methanolic $10 \% \mathrm{HCl}$. Methanol was removed in vacuo and the residue was purified by column chromatography on silica gel. Method B : To a solution of 2-propyl carbamates derived from 9/12a,b in THF $\left(2.0 \mathrm{~cm}^{3}\right)$ was added, at $0^{\circ} \mathrm{C}$, a $1.0 \mathrm{~mol} . \mathrm{dm}^{-3}$ solution of MeLi in THF/cumene (2.0 mmol). The reaction mixture was stirred $36 \mathrm{~h}(\mathrm{n}=1)$ or $48 \mathrm{~h}(\mathrm{n}=2)$ at room temperature. The reaction was quenched by the addition of water $\left(3 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether ($3 \times 5 \mathrm{~cm}^{3}$). The combined filtrates were acidified (pH 1.0) with methanolic $10 \% \mathrm{HCl}$ and the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel.

Propyl pyrrolidine (13a): $\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}$ (90:9:1) as eluent. Yellow oil. IR: $v_{\max } / \mathrm{cm}^{-1} 3396,2960$, 2931, 2873, 2744, 2532, 2466, 1593, 1462, 1414, 1385, 1078, 1018, 943. (S)-13a, $[\alpha]^{23}{ }_{\mathrm{D}}{ }^{-1.94}\left(c 1.3,2 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ $\mathrm{HCl})$ and $[\alpha]^{23}{ }_{\mathrm{D}}+18.2(c 1.8, \mathrm{MeOH}) ;(R)-\mathbf{1 3 a},[\alpha]^{23}{ }_{\mathrm{D}}$ $+2.0\left(c 1.5,2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\right)$, lit. $^{6}(R)-\mathbf{1 3 a},[\alpha]^{23}{ }_{\mathrm{D}}{ }^{+2.0}$ $\left(c 1.5,2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\right)$ and $[\alpha]^{23}{ }_{\mathrm{D}}+18.0(c 0.1, \mathrm{MeOH})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 3.45$ (qt, $J 7.69,1 \mathrm{H}$), 3.15 $(\mathrm{m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 3 \mathrm{H}), 1.28$ (sext., $J 7.3,2 \mathrm{H}$), $0,79(\mathrm{t}, J 7.3,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 60.3,44.6,33.2,29.3,22.6,19.0,12.5$. Coniine (13b): $\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}(90: 9: 1)$ as eluent. Yellow oil. IR: $v_{\text {max }} / \mathrm{cm}^{-1} 3417,2954,2933,2738,2573,2532$, 2507, 2451, 2403, 1591, 1456, 1387, 1215, 1036, 754. (S/ R)- and (R / S) - 13b. $\mathrm{HCl}(2: 1$ mixture $):[\alpha]^{23}{ }_{\mathrm{D}}+4.2$ and 4.2 , respectively (c $1.0, \mathrm{EtOH}$); $(S / R)-\mathbf{1 3 b} . \mathrm{HCl}$ (3:1mixture): $[\alpha]^{23}{ }_{\mathrm{D}}+5.4$ ($c 2.4$, EtOH); lit. ${ }^{7}:(R) \mathbf{- 1 3 b} . \mathrm{HCl}$, $[\alpha]^{20}{ }_{\mathrm{D}}-9.2(c 0.8, \mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta$ 3.29 (d, J 14.0, 1H), $3.05(\mathrm{~m}, 1 \mathrm{H}), 2.87$ (t, J 12.9, 1H), $1.90(\mathrm{~d}, J 12.9,1 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 3 \mathrm{H}), 1.30$ (m, 4H), $0.82(\mathrm{t}, J 7.4,3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta$ 56.7, 44.7, 35.2, 28.2, 22.0, 21.5, 17.7, 13.0.

Acknowledgments

FAPESP, CNPq and FAEP, Unicamp for financial support.

References

1. Whitesell, J. K. Chem. Rev. 1992, 92, 953.
2. Trost, B. M.; O’Krongly, D.; Belletire, J. L. J. Am. Chem. Soc. 1980, 102, 7595.
3. a) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817; b) D’Oca, M. G. M.; Pilli, R. A.; Vencato, I. Tetrahedron Lett. 2000, 41, 9709
4. Comins, D. L.; Kilpack, M. O. J. Am. Chem. Soc. 1991, 114, 10972; b) Comins, D. L.; Joseph, S. P.; Goehring, R. R. J. Am. Chem. Soc. 1994, 116, 4719; c) Comins, D. L.; Kuethe, J. T.; Hong, H.; Lakner, F. J.; Concolino, T. E.; Rheingold, A. L. J. Am. Chem. Soc. 1999, 121, 2651.
5. Shono, T. in Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon Press; Oxford, 1991, 7, p. 789.
6. a) Seebach, D.; Blarer, S. J. Chem. Ber. 1983, 116, 2250; b) Burgess, L. E.; Meyers, A. I. J. Org. Chem. 1992, 57, 1656.
7. a) Oppolzer, W.; Bochet, C. G.; Merifield, E. Tetrahedron Lett. 1994, 35, 7015; b) Munchhof, M. J.; Meyers, A. I. J. Org. Chem. 1995, 60, 7085.
8. a) König, W. A. in Gas Chromatographic Enantiomer

Separation with Modified Cyclodextrins, König, W. A., Ed.; Heidelberg:Huthing, 1992, p. 118; b) Chiral Gas Chromatography was performed using a heptakis-(2,6-methyl-3-pentyl)-?-cyclodextrin column.
9. a) Seebach, D.; Lamatsch, B. Helv. Chim. Acta. 1992, 75, 1095; b) Kupfer, R.; Würthwein, E. -U.; Nagel, M.; Allmann, R. Chem. Ber. 1985, 118, 643.
10. Jones, G. B.; Chapman, B. J. Synthesis 1995, 475.

Received: October 27, 2000
Published on the web: May 13, 2001
FAPESP helped in meeting the publication costs of this article.

[^0]: *e-mail: pilli@iqm.unicamp.br

