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Power Flow with Load Uncertainty1
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Abstract. This paper presents a methodology to solve load flow problems in which

the load data are uncertain due to measurement errors. In order to deal with those

uncertainties we apply techniques of Interval Mathematics. The algorithm uses the

Interval Newton’s method to solve the nonlinear system of equations generated by

the problem. The implementation was performed in the Matlabr environment using

the Intlab toolbox. In order to assess the performance of the proposed algorithm,

the method was applied to hypothetical electric systems. In this paper, we present

results for a three-bus network.

1. Introduction

Load flow [5] calculations provide power flows and voltages for a specified power
system subject to the regulating capability of generators, condensers and tap chang-
ing under load transformers as well as specified net interchange between individual
operating systems. This information is essential for the continuous evaluation of
the current performance of a power system and for analyzing the effectiveness of
alternative plans for system expansion to meet increased load demand. These anal-
yses require the calculation of numerous load flow for both normal and emergency
operating conditions.

The load flow problem consists of the calculation of power flows and voltages of
a network for specified bus conditions. Associated with each bus are four quantities:
the real and reactive power, the voltage magnitude and the phase angle. Three types
of buses are represented in the load flow calculation and two of the four quantities
mentioned above should be specified at every bus. It is necessary to select one bus,
called the slack bus (V θ), to provide the additional real and reactive power to supply
the transmission losses, since these are unknown until the final solution is obtained.
At this bus the voltage magnitude and phase angle are specified. The remaining
buses of the system are designated either as voltage controlled buses (PV ) or load
buses (PQ). The real power and voltage magnitude are specified at PV buses. The
real and reactive power are specified at PQ buses.

The mathematical formulation of the load flow problem results in a system of
algebraic nonlinear equations. These equations can be established by using the bus
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analysis that results in voltages as independent variables. Thus, the admittance
network matrix should be used.

The solution of the system of algebraic equations that describes the power system
is based on an iterative technique [11] because of the nonlinearity of its equations.
This solution must satisfy Kirchhoff’s laws, that is, the algebraic sum of all flows at
a bus must be equal to zero and the algebraic sum of all voltages in a loop must also
be equal to zero. We use the former law as a test for convergence of the solution in
the iterative computational method.

All loads in the electric system are provided by measurement instruments, which
frequently are inaccurate. Moreover, the specified variables, like real power at
PV buses, also can be uncertain since their values are obtained via measurement
equipment. This uncertainty in the input data can be enlarged due to both rounding
and truncating processes that occur in numerical computation. As a consequence
the actual error presented in the final results can not be easily evaluated. In order
to rigorously control and automatically handle these numerical errors we propose to
apply techniques of Interval Mathematics [7, 8, 9] for a more reliable load modelling.

Interval Mathematics considers a set of methods for handling intervals that
approximate (contain) uncertain actual data. These methods are based on the
definition of both interval arithmetic and optimal scalar product. Besides, the
maximal accuracy principle guarantees (by means of the directed rounding) the
automatic control of errors in numerical computation.

The main considerations of our approach in the development of an effective and
reliable computer methodology in order to solve the above problem are: (i) the
formulation of a mathematical description of the problem considering an interval
modelling; (ii) the application of a numerical interval method for the solution of the
system; (iii) the interrelation between (i) and (ii).

In this work we consider the application of this methodology to a hypothetical
system composed by three buses. The solution of the nonlinear system provided
by the problem is obtained by the Interval Newton’s algorithm. The implementa-
tion was performed in Matlabr environment, using Intlab toolbox developed by S.
Rump [10].

This paper is organized as follows. Firstly, in Section 2. we state the interval
load flow problem. Next, Section 3. presents the interval Newton’s method. The
algorithm we propose to solve the problem is introduced in Section 4. An application
of this methodology to a hypothetical three-bus system is discussed in Section 5.
Finally, the conclusions are presented in Section 6.

2. Interval Load Flow Problem

The equation describing the performance of the network of a power system using
the bus frame of reference in admittance form is

I = YbusE, (2.1)

where I is a vector related to the current injection at the system buses, Ybus is the
admittance matrix and E is a vector with the complex nodal voltages. From (2.1),
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it is possible to write

Ip =

n∑

q=1

YpqEq. (2.2)

The real and reactive power at any bus p is

Pp − jQp = E∗

pIp. (2.3)

This load flow problem can be solved by the Newton’s method using a set of
nonlinear equations to express real and reactive powers in terms of bus voltages [4,
12, 14]. Substituting Ip from equation (2.2) into equation (2.3) results in

Pp − jQp = E∗

p

n∑

q=1

YpqEq. (2.4)

Using cartesian coordinates, we have Ep = ep + jfp and Ypq = Gpq + jBpq, and
then equation (2.4) becomes Pp − jQp = (ep − jfp)

∑n

q=1(Gpq + jBpq)(eq + jfq).
Separating the real and imaginary parts, we have

Pp =

n∑

q=1

[ep(eqGpq + fqBpq) + fp(fqGpq − eqBpq)], (2.5)

Qp =

n∑

q=1

[fp(eqGpq + fqBpq) − ep(fqGpq − eqBpq)]. (2.6)

This formulation results in a set of nonlinear equations, two for each bus of the
system. Note that the real and reactive powers are given by Pp = Pgp

− Pdp
and

Qp = Qgp
−Qdp

, respectively, where Pgp
and Qgp

are the generated real and reactive
powers at bus p, and Pdp

and Qdp
are the real and reactive power loads at bus p,

respectively.
At this point, it is important to point out that the known real and reactive power

loads Pdp
and Qdp

present an uncertainty due the measurement errors. Pdp
and

Qdp
belong to an interval that is estimated at beginning of the process, since the

accuracy of the instrument is known a priori. This implies it is necessary to admit
that the real and reactive powers Pgp

and Qgp
, which are specified in the beginning

of the process, may range in an interval with an admissible radium determined by
an heuristic method based on the experience of a system operator.

The real and imaginary components of voltage ep and fp are unknown intervals
for all buses except the slack bus, where the voltage interval is specified and remains
fixed. Thus there are 2(n − 1) equations to be solved for a load flow problem. In
order to reach the solution, we use the interval version of the Newton’s algorithm [6].

3. Interval Newton’s Method

The problem is to find bounds on the solution of a nonlinear continuous function
f : R

n → R
n in a given box x

(0) ∈ IR
n. Using the mean value theorem we have
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for any x∗ that f(x∗) ∈ f(x̃) + J(x)(x∗ − x̃), where J(x) is the interval Jacobian
matrix with

Jij =
∂2f

∂xi∂xj

i, j = 1, . . . , n

and x̃ ∈ x. If x∗ is a zero of f then f(x∗) = 0 and, therefore,

−f(x̃) ∈ J(x)(x∗ − x̃). (3.1)

The interval linear system given by the equation (3.1) can be solved for x∗ to
obtain an outer bound on the solution set, say N(x̃,x). The notation includes both
x̃ and x to show the dependence on both terms.

It follows that 0 ∈ f(x̃) + J(x)(N(x̃,x)− x̃), which suggests the following itera-
tion, for k = 0, 1, . . . and x̃(k) ∈ x

(k):

solve for N f(x̃(k)) + J(x(k))(N(x̃(k),x(k)) − x̃(k)) = 0 (3.2)

x
(k+1) = x

(k) ∩ N(x̃(k),x(k)). (3.3)

A reasonable choice for x̃(k) is the center, denoted by x̌, of x. In this work, we
decided to use it, however other choices are available [6].

The linear system given by equation (3.2) can be solved using an appropriate
interval method [6, 9] to give the Newton operator

N(x̃,x) = x̃ − J(x)−1f(x̃).

We use the following notation ∆x = −J(x)−1f(x̃) that results in the iteration

∆x(k) = −J(x(k))−1f(x̃(k)) (3.4)

N(x̃(k),x(k)) = x̃(k) + ∆x(k) (3.5)

x
(k+1) = x

(k) ∩ N(x̃(k),x(k)) (3.6)

for k = 0, 1, . . . and x̃(k) ∈ x
(k).

4. Proposed Algorithm

In this section we briefly present the main aspects of our approach to computation-
ally solve the power flow problem.

(i) Data Input

The data provided by the user are classified into two types: transmission-line
data (resistance, reactance, susceptance of the circuits etc.) and bus data
(magnitude and phase of the voltage at slack bus, generated real power at PV
buses etc.). In the second group we find the load data, which are given as
interval data, since they are specified considering the probable measurement
errors5.

5These errors are inherent to the instruments and their tolerances are usually specified in the
operation manual.
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(ii) Initial Guesses

The initial guesses are provided by a punctual algorithm for the power flow
problem [2], transformed into intervals that consider the maximal measure-
ment relative error.

(iii) Applying Newton’s Iteration

According to the iteration given by equations (3.4)-(3.6), we implemented the
algorithm shown in Figure 1. The implementation was done in Matlabr using
the Intlab toolbox. Notice that a real interval x = [x1, x2] in Intlab can be
stored by using either the command infsup(x1, x2), where x1 and x2 are,
respectively, the infimum and supremum of the interval x, or the command
midrad(mp, rd), which represents x by its midpoint mp = x1+x2

2 and radius
rd = x2−x1

2 . In this algorithm, e and f denote, respectively, the real and
imaginary parts of the interval complex voltage at all buses, whereas e intv

and f intv are conceived as the initial guesses, as stated in (ii). The real and
reactive power are evaluated according Section 2.

The power mismatches are evaluated using equations (2.5) and (2.6) in order
to obtain the box fx. In the given algorithm, bsf means a vector with all bus
indices except the slack bus and bpq is a vector containing the bus indices for
PQ buses.

After the evaluation of the Jacobian matrix6, the linear system given by the
equation (3.4) is solved using the Matlabr command “\”. Then, the nonlinear
system variables are updated according equations (3.5) and (3.6).

(iv) Stop Criteria

In order to assess the process convergence, we use two stop criteria. Firstly, it
is verified if the box fx includes the zero, which means that an approximation
for the solution was found. After, it is verified the possibility of improving
the solution (that is, the possibility of reducing its diameter according to an
admissible tolerance).

(v) Final Result in Polar Coordinates

The algorithm shown in Figure 1 provides a solution for the power flow prob-
lem in cartesian coordinates. In general, it is more usual to express the com-
plex voltages in polar coordinates. Then, we have added a routine in order to
calculate the interval polar coordinates.

5. Example System

To assess our methodology we applied to a hypothetical three-bus system composed
by two load buses and a slack bus, presented in Figure 2. This network has three
circuits with parameters shown in Table 1. The first and the second columns of Table

6In this matrix, adj(i) means the vector containing the bus indices of all buses connected to
the i-th bus.
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for iter = 0 : 10

e1 = midrad(mid(e_intv), eps);

f1 = midrad(mid(f_intv), eps);

%----- P (real power) and Q (reactive power) -----

E1 = e1 + j * f1;

I1 = Y_barra * E1;

S1 = E1 .* conj(I1);

P1 = real(S1);

Q1 = imag(S1);

E = e_intv + j * f_intv;

I = Y_barra * E;

%----- POWER MISMATCHES -----

dP = P1(bsf) - Pg(bsf) + Pd(bsf);

dQ = Q1(bpq) - Qg(bpq) + Qd(bpq);

fx = [ dP; dQ ];

%----- STOP CRITERIA -----

if the stop criteria are satisfied, exit

%----- JACOBIAN MATRIX -----

for i = 1 : nb

K1 = e_intv(i) * G(i, i) + f_intv(i) * B(i, i);

K2 = f_intv(i) * G(i, i) - e_intv(i) * B(i, i);

J1(i, i) = K1 + real(I(i));

J2(i, i) = K2 + imag(I(i));

J3(i, i) = K2 - imag(I(i));

J4(i, i) = - K1 + real(I(i));

for l = adj(i) : adj(i + 1) - 1

k = b_adj(l);

J1(i, k) = e_intv(i) * G(i, k) + f_intv(i) * B(i, k);

J2(i, k) = f_intv(i) * G(i, k) - e_intv(i) * B(i, k);

J3(i, k) = J2(i, k);

J4(i, k) = - J1(i, k);

end

end

J = [ J1(bsf, bsf) J2(bsf, bsf)

J3(bpq, bsf) J4(bpq, bsf) ];

%----- LINEAR SYSTEM - Equation (3.9) -----

delta = - J \ fx;

%----- VARIABLE UPDATE -----

e_old = e_intv;

f_old = f_intv;

e2 = e1(bsf) + delta(1 : nb-1); %----- Equation (3.10)

f2 = f1(bsf) + delta(nb : 2*nb-2); %----- Equation (3.10)

e_intv(bsf) = intersect(e_old(bsf), e2); %----- Equation (3.11)

f_intv(bsf) = intersect(f_old(bsf), f2); %----- Equation (3.11)

end

Figure 1: Intlab version for the proposed algorithm.
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3

1 2

Figure 2: One-line diagram for the test-system.

2 show the bus indices between which the line is connected to. The bus data for
this system are presented in Table 2, where EPd

and EQd
are the relative tolerance

presented by the measurement instruments that provide the real and reactive load
values, respectively.

Table 1: Circuit data for the example.

From To Resistance (%) Reactance (%) Susceptance (MVAr)

1 2 8.0 37.0 3.0

1 3 12.3 51.8 4.2

2 3 72.3 105.0 8.6

Table 3 shows the iteration process generated by the proposed algorithm.
Iteration 0 represents the interval initial guess, which was obtained considering
the solutions provided by a punctual method, as explained in Section 4.(ii). The
algorithm performed 7 iterations, providing the best interval results according to
the stop criteria given in Section 4.(iv), for which the tolerance adopted was 10−5.

Table 4 shows the solution of the load flow study applied to the example sys-
tem. According to Section 4.(v), the voltages are represented in interval polar
coordinates. The mean error in the value of the magnitude V and the phase angle
θ is denoted, respectively, by EV and Eθ. Notice that the punctual values of the
voltage for this system is approximately

V = [1.0500e+0∠0.000◦; 9.5771e-1∠ − 9.574◦; 9.0373e-1∠ − 14.589◦]T

and, therefore, we have the expected inclusions in the final interval solution pre-
sented in Table 4.
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Table 2: Bus data for the example.

V Angle Pg Qg Pd EPd
Qd EQd

Bus Type (pu) (◦) (MW) (MVAr) (MW) (%) (MVAr) (%)

1 2 1.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0 0.00 0.0 0.0 0.0 40.0 3.0 15.0 2.0

3 0 0.00 0.0 0.0 0.0 55.0 5.0 13.0 3.0

Table 3: Iterative Process.

I e intv f intv fx

0 [ 1.0499e+00, 1.0501e+00] [ 0.0000e+00, 0.0000e+00] [ -1.2000e-02, 1.2001e-02]

[ 8.9715e-01, 9.9160e-01] [ -1.6725e-01, -1.5131e-01] [ -2.7480e-02, 2.7521e-02]

[ 8.3086e-01, 9.1833e-01] [ -2.3902e-01, -2.1624e-01] [ -2.9932e-03, 3.0069e-03]

[ -3.8314e-03, 3.9687e-03]

1 [ 1.0499e+00, 1.0501e+00] [ 0.0000e+00, 0.0000e+00] [ -1.1992e-02, 1.2009e-02]

[ 9.2839e-01, 9.6034e-01] [ -1.6725e-01, -1.5131e-01] [ -2.7506e-02, 2.7495e-02]

[ 8.4414e-01, 9.0497e-01] [ -2.3902e-01, -2.1624e-01] [ -3.0057e-03, 2.9944e-03]

[ -3.8954e-03, 3.9047e-03]

2 [ 1.0499e+00, 1.0501e+00] [ 0.0000e+00, 0.0000e+00] [ -1.1992e-02, 1.2009e-02]

[ 9.3425e-01, 9.5447e-01] [ -1.6725e-01, -1.5131e-01] [ -2.7506e-02, 2.7495e-02]

[ 8.5216e-01, 8.9695e-01] [ -2.3902e-01, -2.1624e-01] [ -3.0057e-03, 2.9944e-03]

[ -3.8954e-03, 3.9047e-03]

3 [ 1.0499e+00, 1.0501e+00] [ 0.0000e+00, 0.0000e+00] [ -1.1992e-02, 1.2009e-02]

[ 9.3545e-01, 9.5327e-01] [ -1.6725e-01, -1.5131e-01] [ -2.7506e-02, 2.7495e-02]

[ 8.5456e-01, 8.9455e-01] [ -2.3902e-01, -2.1624e-01] [ -3.0057e-03, 2.9944e-03]

[ -3.8954e-03, 3.9047e-03]

.

.

.
.
.
.

.

.

.
.
.
.

6 [ 1.0499e+00, 1.0501e+00] [ 0.0000e+00, 0.0000e+00] [ -1.1992e-02, 1.2009e-02]

[ 9.3572e-01, 9.5301e-01] [ -1.6725e-01, -1.5131e-01] [ -2.7506e-02, 2.7495e-02]

[ 8.5515e-01, 8.9395e-01] [ -2.3902e-01, -2.1624e-01] [ -3.0057e-03, 2.9944e-03]

[ -3.8954e-03, 3.9047e-03]

7 [ 1.0499e+00, 1.0501e+00] [ 0.0000e+00, 0.0000e+00] [ -1.1992e-02, 1.2009e-02]

[ 9.3572e-01, 9.5300e-01] [ -1.6725e-01, -1.5131e-01] [ -2.7506e-02, 2.7495e-02]

[ 8.5516e-01, 8.9395e-01] [ -2.3902e-01, -2.1624e-01] [ -3.0057e-03, 2.9944e-03]

[ -3.8954e-03, 3.9047e-03]
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Table 4: Interval Complex Voltages.

Bus Magnitude V (pu) EV (%) Phase Angle θ (◦) Eθ (%)

1 [ 1.0499, 1.0501] 0,0095 [ 0.0000, 0.0000] 0,0000

2 [ 0.9410, 0.9744] 1,7438 [-10.1338, -9.0221] 5,8034

3 [ 0.8729, 0.9345] 3,4082 [-15.6153, -13.5988] 6,9025

6. Conclusions

This paper presented a methodology for power flow studies considering load un-
certainty, using techniques of Interval Mathematics. The proposed approach was
applied to several hypothetical networks (for example, the three-bus system shown
in Section 5.). Punctual approaches usually presents convergence in 3 or 4 itera-
tions. Considering the expressiveness of the information given by interval results, a
convergence in 6 iterations can be considered acceptable.

The actual solution for the load flow problem with load uncertainty is indeed
unknown. We can only estimate an approximation for the system voltages. In every
studied cases, the final interval solution provided by our methodology, as it was
expected, included the approximated punctual result of the load flow problem. The
main advantage of this approach is that the analysis of the influence of the input-
data errors in the final result is automatic (by the evaluation of the diameter of the
interval complex voltages) e guaranteed by the definition of interval arithmetics [8].

In [13], interval techniques were also used to try to solve the power flow prob-
lem, comparing the results with those obtained by Monte Carlo simulations and
by stochastic power flow. Although their methodology presented some problems,
one important conclusion of that work was that interval analysis can substitute the
repeated simulations required by Monte Carlo method. Some shortcomings of the
stochastic approach were also pointed out, such as the problem of dealing with the
non-linear relation between node loads and branch flows, and the great computa-
tional requirements that are not usually needed for conventional power flow.

Therefore, interval techniques seem to be a very good choice to deal with power
flow with load uncertainty. We conclude remarking that, in actual systems, the load
behavior is very difficult to be determined a priori. As further work, we intend to
develop an algorithm that considers the load variation in a specified time period.

Resumo. Este artigo apresenta uma metodologia para a solução do problema

do fluxo de potência em redes de energia elétrica nos quais os dados referentes

à carga são incertos devido aos erros de medição nos instrumentos utilizados nas

subestações. Para manipular estas incertezas, aplicam-se técnicas da Matemática

Intervalar. O algoritmo utiliza a versão intervalar do método de Newton para

a solução do sistema de equações não-lineares geradas pelo problema. A imple-

mentação foi realizada em Matlabr usando o toolbox Intlab. Para verificar o

desempenho do método proposto, o algoritmo foi aplicado a sistemas de energia

elétrica hipotéticos. No presente artigo, são apresentados os resultados obtidos

para um sistema de três barras.



36 Barboza, Dimuro and Reiser

References

[1] G. Alefeld and J. Herzberger, “Introduction to Interval Computations”, Aca-
demic Press, New York, 1983.

[2] L.V. Barboza, “Power Flow”, in Class Notes, School of Engineering, Pelotas,
2002. (Available at http://atlas.ucpel.tche.br/∼lvb/cap3.PDF, in Portuguese)

[3] L.G. Dias and M.E. El-Hawary, OPF Incorporating Load Models Maximizing
Net Revenue, IEEE Trans. on Power Systems, 8, No. 1 (1993), 53-59.

[4] A.F. Glimn and G.W. Stagg, Automatic Calculation of Load Flows, AIEE

Trans. on Power Apparatus and Systems, 76, pt. III (1957), 817-828.

[5] C.A. Gross, “Power System Analysis”, John Wiley, New York, 1986.

[6] G.I. Hargreaves, “Interval Analysis in MATLAB”, Numerical Analysis Report
no. 416, Manchester Centre for Computational Mathematics, 2002.

[7] R.B. Kearfott and V.Kreinovich (eds.), “Applications of Interval Computa-
tions”, Kluwer, Boston, 1996.

[8] R.E. Moore, “Methods and Applications of Interval Analysis”, SIAM, Philadel-
phia, 1979.

[9] A. Neumaier, “Interval Methods for Systems of Equations”, Encyclopedia of
Mathematics and its Applications 37, Cambridge University Press, 1990.

[10] S.M. Rump, IntLab - Interval Laboratory, in “Developments in Reliable Com-
puting” (T. Csendes, ed.), pp. 77-104, Kluwer, Boston, 1999.

[11] G.W. Stagg and A.H. El-Abiad, “Computer Methods in Power System Analy-
sis”, McGraw-Hill Kogakusha, Tokio, 1968.

[12] J.E. Van Ness and J.H. Griffin, Elimination Methods for Load Flow Studies,
AIEE Trans. on Power Apparatus and Systems, 80, pt. III (1961), 229-304.

[13] Z. Wang and F.L. Alvarado, Interval Arithmetic in Power Flow Analysis, Trans.

on Power Systems, 7, No. 3 (1992), 1341-1349.

[14] J.B. Ward and H.W. Hale, Digital Computer Solution of Power-Flow Problems,
AIEE Trans. on Power Apparatus and Systems, 75, pt. III (1956), 398-404.


