
Nelson Duaret FIlho: Centro de Ciências Computacionais -  Universidade Federal do 
Rio Grande, dmtnldf@furg.br 

Fernando Pedone: USI, Switzerland 
 

BUILDING REPLICATED DATABASE SYSTEMS USING DISTRIBUTED SHARED 

MEMORY 
 

 

 

NELSON DUARTE FILHO,  

FERNANDO PEDONE 

 

 

 

RESUMO 

 

Este artigo apresenta uma abordagem para a construção de 

sistemas de base de dados replicados utilizando memória compartilhada 

distribuída.  A arquitetura dsmDB, a qual implementa tal proposta, é 

apresentada. Vantagens e desvantagens da abordagem são elencadas e 

discutidas.  

 

 

Palavras-chave: Sistemas de bases de dados replicados, Memória 

compartilhada distribuída 

 

 

 
ABSTRACT 

 

Current trends in main memory capacity and cost indicate that in a 

few years most performance-critical applications will have all (or most of) 

their data stored in the main mem- ory of the nodes of a small-size cluster. 

A few recent research papers have pointed this out and proposed 

architectures tak- ing advantage of clustered environments aggregating 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 5



power- ful processors equipped with large main memories. This position 

paper proposes yet another approach, which builds on Distributed Shared 

Memory systems (DSMs) introduced in the early 80’s. We introduce the 

idea of the dsmDB, dis- cuss how its architecture could be organized, and 

elaborate on some of its algorithms. We conclude the paper with a 

discussion of some of its advantages and drawbacks.  

 

 

Keyords: distributed memory, replicated database systems 

 

 

 

1 INTRODUCTION 
 

Many current high-end database applications have strin- gent performance and 

availability requirements. Commer- cial solutions to these applications typically rely 

upon spe- cialized hardware or proprietary software or both, often in- heriting their 

design from early centralized databases [10]. Increasing demand from high-end 

applications together with widespread availability of powerful clusters, built out of 

com- modity components, have recently led to alternative ap- proaches to 

implementing efficient and highly available data management systems. 

In modern environments, in-memory architectures are more appropriate than 

on-disk solutions. Main memory capac- ity has been growing at a steady pace, 

approximately dou- bling every 18 months. There is evidence that most future 

performance-critical applications will have all (or most of) their data stored in the 

main memory of the nodes of a small cluster. These trends invalidate many 

fundamental design decisions of current systems and require a re-evaluation of data 

structures and algorithms adapted to the new environ- ment. 

In-memory database systems (IMDBs) have exploited main memory trends 

focusing mostly on standalone architectures. 

IMDBs provide high throughput and low response time by avoiding disk I/O. 

IMDBs were originally designed for spe- cific classes of applications (e.g., 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 6



telecommunication), but have been recently used in more general contexts (e.g., web 

servers, trading systems, content caches). In most cases, ap- plications are limited 

by the memory capacity of the server running the IMDB (e.g., [7]). 

In a clustered environment, the database can be parti- tioned into segments and 

stored in the main memory of sev- eral nodes. Applications are then limited by the 

aggregated memory capacity of the cluster, and not by the capacity of a single node. 

This approach has been exploited in recent research [1, 4, 10]. In these works, the 

database is parti- tioned and replicated either at the granularity of rows (e.g., 

horizontal partitioning) or tables. Queries either have to be broken into subqueries for 

execution at the appropriate node, or the workload has to be special enough so that 

the original query can be submitted to the node containing all needed information. 

In this paper we argue for a different in-memory approach that does not suffer 

from the shortcomings of previous pro- posals: there are no limitations on the 

granularity of parti- tioning and replication, and queries do not have to be broken up 

for execution. Our architecture is based on Distributed Shared Memory systems 

(DSMs) of the early 80’s. DSMs extend the notion of virtual memory to different 

nodes of a cluster. Instead of bringing a page from the local disk upon a page-fault, 

pages are brought from the main mem- ory of remote nodes. Early DSM systems 

were expensive to implement, as they offered strong consistency. Later pro- posals 

weakened the consistency semantics, improving per- formance, but required 

changes in the application programs. Interestingly, semantics that were considered 

weak in DSMs are enough to implement strong database isolation. In this paper we 

substantiate this claim with an implementation of one-copy serializability on top of a 

storage manager that ensures very weak consistency, even for DSM standards. 

According to Gray et al.’s terminology [3], the dsmDB be- longs to the RAPS 

category, Reliable Array of Partitioned Services. RAPS can be implemented in 

shared disk (e.g., Or- acle’s Real Application Cluster [9]) and shared nothing (e.g., 

MySQL Cluster [5]) environments. While implementations in the former class require 

specialized hardware, that is not the case for implementations in the latter class, and 

there- fore for the dsmDB. As pointed out in [3], ideally, data in a RAPS should be 

automatically repartitioned when nodes are added to the system. In reality, however, 

this is difficult to achieve—MySQL cluster, for example, requires the en-tire cluster to 

be shutdown and all nodes to be synchronized offline when adding a new node [2]. 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 7



As we claim in this pa- per, automatic reconfiguration is relatively simple and can be 

done on-the-fly in the dsmDB. 

In Section 2 we review the concept of DSMs. In Section 3 we show how it can 

be used in the context of replicated databases. We conclude in Section 4 with a 

discussion of advantages and disadvantages of the approach. 

 
2 DISTRIBUTED SHARED MEMORY  

Distributed shared memory systems (DSMs) extend the notion of virtual 

memory to different nodes of a cluster [6]. With virtual memory, if an accessed page 

is not loaded in main memory, a page fault is triggered and the page is brought from 

disk. DSMs allow pages to be fetched from the main memory of other nodes in the 

cluster. 

The DSM model improves performance since, with cur- rent technology, 

bringing a page from the main memory of a remote node in a cluster is faster than 

bringing the page from the local disk. It also allows programs running on different 

nodes to easily share pages. However, multiple nodes concurrently reading and 

writing shared pages raises the problem of consistency. 

Many consistency criteria have been defined in the liter- ature. The most 

intuitive one is that a read should always return the last value written. However, in a 

distributed sys- tem the notion of the last value written is not well defined. Sequential 

consistency solves this problem by requiring the memory to appear to all nodes as if 

they were executing on a single multiprogrammed processor. 

Although intuitive and well defined, sequential consistency is expensive to 

implement. To see why, consider that node N wants to write page P. Before the page 

can be written, N has to invalidate any remote copies of P. The write will be 

processed once all nodes have replied to N confirming that any future access to P 

will see the newest value writ- ten. Even though there are mechanisms to keep 

multiple copies of a page on several nodes, they involve some level of cooperation 

between nodes, and multiple communication steps until the operations can be 

processed. 

Alternatively, weaker consistency criteria have been pro- posed, which require 

less synchronization and data move- ment, resulting in better performance [6]. 

Weaker consis- tency can been obtained, for example, by explicitly specify- ing, 

through synchronization operators, which parts of the application require strong 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 8



consistency. Obviously, synchro- nization is no longer transparent, and to work 

properly some programs may have to be modified. 

In the following sections we argue that the DSM model (with weak consistency) 

is an appropriate paradigm for build- ing high performance and high availability 

database systems. 

 

3. THE DSM DATABASE APPROACH 
In this section we briefly discuss the architecture of the DSM database 

approach (dsmDB), explain how database consistency criteria can be built on top of 

weak shared mem- ory guarantees, and present some of the algorithms involved. 

3.1 The dsmDB Architecture 
We assume a simplified database architecture composed of a Distributed 

Storage Manager, a Consistency Manager, and a Query Manager (see Figure 1). 

 

 
Figura 3: Architecture of the dsmDB 

 

The Storage Manager executes read and write operations on the data, 

providing transactional access to a virtual stor- age that consists of the complete 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 9



database space. This il- lusion is implemented by local and remote memory. Stor- 

age Managers may synchronize local access to the virtual database space, in which 

case two transactions executing on the same node would be mutually consistent. 

However, transactions executing on different nodes are not synchro- nized during 

their execution by Storage Managers. 

The Consistency Manager ensures that the execution is globally consistent 

according to some correctness criteria. It uses an optimistic mechanism to guarantee 

global consis- tency, similarly to the deferred update replication model [8]: 

Transactions execute locally on some node and, as part of the transaction 

termination protocol, are validated. If the transaction passes the validation phase, it is 

locally commit- ted by the Storage Manager; if it does not pass validation it is 

aborted. From the perspective of the Consistency Man- agers, the execution of each 

transaction is local. In reality, some data may be fetched from remote nodes on 

demand. 

The Query Manager is responsible for receiving high level client requests (e.g., 

SQL statements), pre-processing them and possibly breaking them up into lower 

level operations to be executed by the Storage Manager. It receives the re- sults from 

the Consistency and Storage Managers and passes them to the clients, possibly 

after some post-processing. 

In the example in Figure 1, an application program has submitted a request to 

compute the sum of items A and D to the Query Manager of node x. This request is 

parsed and results in two read operations, passed to the Storage Manager. The 

value of A is stored locally and is available immediately. Reading D triggers an 

exception since it is not stored locally. After D is fetched from a remote node, the 

Storage Manager replies to the Query Manager, which com- putes the result and 

returns it to the application program. 

3.2 Distributed Storage Manager 
The Distributed Storage Manager provides access to a vir- tual storage that 

consists of the complete database space, which hereafter we assume to be a set of 

blocks. There aref our simple operations: read(T, B), write(T, B, V ), commit(T ), and 

abort(T ), where T is a transaction, B a unique block id, and V a value. These 

primitives provide weak guarantees: 

(Read committed.) Every transaction can only read com- mitted data or its own 

uncommitted writes. 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 10



(Data freshness.) If a node x executes a committed write on block B in isolation 

and no other node writes B at a later time, then eventually every node that 

successively reads B will see x’s write. 

Providing weak consistency (w.r.t. traditional consistency guarantees of 

Distributed Shared Memory systems) is key to the dsmDB: First, it allows applications 

to tune the level of global consistency needed through the Consistency Man- ager. 

Second, weak consistency can be efficiently imple- mented by the Storage Manager. 

We now briefly describe one possible implementation of the Distributed Storage 

Manager. 

The virtual storage abstraction provided by a node is im- plemented using its 

local memory and the memory of remote nodes. At any time, each data block B can 

be stored by any number of nodes, but it is surely stored by all home nodes of B, 

determined by a deterministic function with B’s id as sole input. Thus, every node 

keeps locally a set of per- manent blocks, the ones for which it is home, and a set of 

temporary blocks, blocks that are not permanent and can be discarded at the node’s 

will. 

Therefore, we divide the local memory in the Distributed Storage Manager of a 

node into permanent and temporary. Permanent storage keeps permanent blocks; 

temporary stor- age keeps temporary blocks and ongoing writes of executing 

transactions. For durability purposes, permanent storage can be located both in main 

memory and on disk. Alterna- tively, if blocks have multiple home nodes, then only 

main memory may suffice to guarantee durability. 

Read operations are served immediately from the node’s local storage (i.e., 

from the permanent or temporary storage) or fetched from the block’s home node. 

Write operations are executed locally in temporary storage. At commit time, they may 

become permanent, temporary, or simply be discarded from the node’s memory. To 

guarantee data freshness, from time to time a node invalidates all blocks in its 

temporary storage. 

The Storage Manager can be optimized in a number of ways. For example, it 

can discard all write operations of blocks for which it is not the home node. This 

results in faster response for committing transactions, since fewer op- erations have 

to be executed, and leaves more space in the memory buffer for ongoing and new 

transactions. 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 11



3.3 Consistency Manager 

Storage Managers implement weak consistency semantics. Stronger 

guarantees can be obtained by a separate mecha- nism implemented by the 

Consistency Manager. In the fol- lowing we will discuss how One-Copy Serializability 

(1SR) can be implemented. We adopt an approach similar to the validation process 

used by the Database State Machine (DBSM) [8]. 

1SR specifies that any concurrent execution of transac- tions in a possibly 

replicated setting should be equivalent to a serial execution of the same transactions 

in a single node. As a consequence, if two conflicting transactions ex- ecute 

concurrently on different nodes, only one transaction can be allowed to commit. Two 

transactions conflict if they access the same database block and at least one 

transaction writes the block. 

The Consistency Manager uses an atomic broadcast ab- straction, defined by 

the primitives broadcast(m) and deliver(m), where m is a message. Every message 

broadcast by the Con- sistency Manager of a node is delivered by all operational 

(i.e., nonfaulty) nodes in total order. More formally: 

1. (Agreement.) If node x delivers message m, then every nonfaulty node also 

delivers m. 

2. (Total order.) If nodes x and y deliver messages m and m′, they do so in the 

same order. 

During the local execution of T , the Consistency Manager captures its read and 

write operations, that is, its readset and writeset. Notice that readsets and writestes 

contain an indication of the data blocks read and written by the trans- actions, not the 

contents of the blocks. When the commit operation is requested, T’s readsets, 

writesets, and the val- ues written are broadcast to all nodes. 

Upon delivery, each node x proceeds with the validation of T, which checks 

whether all blocks read by T are still up to date, i.e., they were not written by another 

transac- tion during T’s execution. This is performed by checking T ’s readset against 

the writesets of all transactions that ex- ecuted concurrently with T and have already 

committed. 

If T passes validation then it can be committed against the local Storage 

Manager. At the node where T executed, it suffices for the Consistency Manager to 

send the commit(T ) operation to the Storage Manager and reply to the appli- cation; 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 12



at the other nodes, the local Consistency Manager first executes all writes against 

the local Storage Manager and then commits the transaction. 

4. CONCLUDING REMARKS 
This short note discusses the dsmDB, a novel approach to building high 

performance clustered database systems in- spired by DSMs. The dsmDB approach 

enhances transac- tion processing in two ways: first, it provides in-memory access of 

executing transactions; second, it allows nodes to reduce the number of updates to 

be processed when trans- actions commit, improving performance. This last property 

is achieved by the Storage Managers, which can drop write requests for data blocks 

they are not responsible for (i.e., the node is not the block’s home node). 

At the top two layers, Query Manager and Consistency Manager, the dsmDB is 

similar to the Database State Ma- chine (DBSM) [8]. In fact, the Storage Managers 

implement the illusion of a fully replicated database. Differently from the DBSM, and 

other fully replicated database protocols, the dsmDB has more flexibility to handle 

storage. 

We enumerate next a number of reasons we believe the dsmDB approach is 

promising. 

• Location transparency. The dsmDB offers a transpar- ent mechanism to 

manage memory and disk, either lo- cal or remote. As a consequence, adding nodes 

to and removing nodes from a cluster can be done on-the-fly, with the resulting 

performance benefits. It also pro- vides simple system reconfiguration (e.g., changing 

the unit of partitioning). 

• Concurrency control “a` la carte”. By providing weak consistency at the 

storage level, the dsmDB allows an 

efficient implementation. Stronger requirements can be built on top of it in a 

modular way. We have com- mented on how 1SR can be guaranteed in this context. 

We conjecture that other strong database consistency criteria (e.g., snapshot 

isolation) could be also imple- mented on top of Storage Managers. 

• Simple load balancing. The dsmDB could be com- bined with a load balancer 

in order to group trans- actions that access common portions of the database on 

specific nodes, favoring locality. This technique has proved to be quite efficient in 

similar contexts [4]. The work in [4] assumes that the workload can be divided at the 

table level, and each table placed on a sepa- rate replica. Since the dsmDB provides 

location trans- parency, it does not need such an assumption. 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 13



• Flexible data partitioning and replication. As another consequence of location 

transparency, the dsmDB al- lows data to be freely partitioned and replicated. This is 

an important feature if the database is large but the hot spot portion of the data fits 

the aggregated main memory of the cluster nodes. 

• Incremental recovery. Traditional database systems have to undergo a 

recovery procedure before becom- ing operational after a crash. This procedure 

involves operations such as bringing the database state from disk, undoing the 

effects of unfinished transactions, and making sure that all committed transactions 

have their effects reflected on the database state. This op- eration can be sped up by 

bringing the current state from remote nodes, but in any case new transactions can 

be only accepted once the complete state has been recovered. The dsmDB allows 

incremental recovery by simply restarting the crashed node with an empty stor- age. 

New transactions can be accepted immediately and data read by these transactions 

will be fetched from remote nodes on demand. 

We have also tried to anticipate the drawbacks of the dsmDB. So far, we 

identified the following ones. 

• Loss of semantics. Since the virtual database space is implemented by the 

Storage Managers, after high level operations are translated into lower level block 

opera- tions by the Query Manager, some information avail- able for sharing data 

may be lost. In this sense, mov- ing the virtual shared space to higher modules (e.g., 

the Query Manager) could be wiser. It’s unclear to us though whether the complexity 

involved in such a design could bring any real benefits. 

• Difficulty to re-engineer into existing database engines. We are currently 

building a prototype of the dsmDB by modifying an existing database (Berkeley DB). 

De- spite the relatively simplicity of the Storage Manager, modifying a storage engine 

to integrate the ideas de- scribed in this paper turned out to be more complex than 

we initially expected. One reason is that although it is easy to identify the portions of 

the database that handle storage, dependencies across layers make it dif- ficult to 

introduce the needed modifications. 

5. REFERENCES 

[1] L. Camargos, F. Pedone, and M. Wieloch. Sprint: A middleware for 

highperformance transaction processing. In Eurosys, 2006. 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 14



[2] E. Cecchet, G. Candea, and A. Ailamaki. Middleware-based database 

replication: The gaps between theory and practice. In SIGMOD ’07: Proceedings of 

the 2008 ACM SIGMOD international conference on Management of data, 2006. 

[3] B. Devlin, J. Gray, B. Laing, and G. Spix. Scalability terminology: 

Farms, clones, partitions, and packs: Racs and raps. Technical report, Microsoft, 

1999. 

[4] S. Elnikety, S. Dropsho, and W. Zwaenepoel. Tashkent+: Memory-

aware load balancing and update filtering in replicated databases. In Eurosys, 2006. 

[5] Mysql cluster architecture overview, April 2004. Online Technical White 

Paper. 

[6] B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues 

and algorithms. IEEE Computer, 24(8):52–60, August 1991. 

[7] Oracle TimesTen products and technologies, February 2006. Online 

White Paper. 

[8] F. Pedone. The Database State Machine and Group Communication 

Issues. PhD thesis, E ́colePolytechnique F ́ed ́erale de Lausanne, Switzerland,1999. 

Number 2090.  

[9] Oracle real application cluster 11g, April 2006. Online White Paper. [10] 

M. Stonebraker, S. Madden, D. Abbadi, S. Harizopoulos, N. Hachem, and P. Helland. 

The end of an architectural era (it’s time for a complete rewrite). In VLDB, 2006. 

 

Vetor, Rio Grande, v.16, n.2, p. 5-15, 2006. 15




