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ABSTRACT 
Many steel structures such as ships and offshore structures are composed by 
welded stiffened or unstiffened plate elements. Cutouts are often provided in 
these plate elements for inspection, maintenance, and service purposes, and 
the size of these holes could be significant. In many situations, these plates 
are subjected to axial compressive forces which make them prone to instability 
or buckling. If the plate is slender, the buckling is elastic. However, if the plate 
is sturdy, it buckles in the plastic range causing the so-called inelastic (or 
elasto-plastic) buckling. Furthermore, the presence of these holes redistributes 
the membrane stresses in the plate and may cause significant reduction in its 
strength in addition to changing its buckling characteristics. So, the objective 
of this paper is to investigate the changes that the presence of circular holes 
produces in the elastic and inelastic buckling of steel rectangular plates. The 
finite element method (FEM) has been used to evaluate the elastic and elasto-
plastic buckling load of uniaxially loaded rectangular plates with circular 
cutouts. By varying the hole diameter, the plate aspect ratio and the plate 
thickness during the analyses, the changes in the plate buckling behavior can 
be determined. The results show that while the circular hole can in some 
cases even increase the elastic buckling load, the elasto-plastic buckling load 
is reduced by the presence of the cutout. 
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1.        INTRODUCTION 

 

Many thin-walled structures contain holes. In marine and offshore structures, the 

perforated panels are used to make a way of access or to reduce the total weight of the 

structure. When these plates are subject to compression loads, the structure could buckle 

if the load exceeds the critical load. Thus, to know how this phenomenon occurs and to 

analyze the buckling behavior of these perforated panels has great importance for an 

efficient structural design. An example of a ship hull with circular holes is shown in 

FIGURE 1. 
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The elastic buckling is an instability phenomenon that can occur if a slender and 

thin-walled plate (plane or curved) is subjected to axial compression. At a certain given 

critical load the plate will suddenly bend in the out-of-plane transverse direction. However, 

if the plate is sturdy, it buckles in the plastic range causing the so-called inelastic (or 

elasto-plastic) buckling.  

 

 

 

Figure 1. Circular holes in the ship hull. 

 

The buckling behavior of perforated plates has been the object of a large number of 

researches in the last decade. The main objective of the published articles can be divided 

into two categories, i.e., elastic buckling and elasto-plastic buckling. Among the elastic 

buckling studies category, El-Sawy and Nazmy [2] investigated the effect of aspect ratio 

on the elastic buckling critical loads of uniaxially loaded rectangular plates with eccentric 

circular and rectangular (with curved corners) holes. El-Sawy and Martini [4] used the 

finite element method to determine the elastic buckling stresses of biaxially loaded 

perforated rectangular plates with longitudinal axis located circular holes. Alternatively, 

Moen and Schafer [5] developed, validated and summarized analytical expressions for 

estimating the influence of single or multiple holes on the elastic buckling critical stress of 

plates in bending or compression.  

In the group of studies dedicated to the problem of elasto-plastic buckling, El-Sawy 

et al. [3] investigated the elasto-plastic buckling of uniaxially loaded square and 

rectangular plates with circular cutouts by the use of the finite element method, including 

some recommendations about hole size and location for the perforated plates of different 

aspect ratios and slenderness ratios. Afterwards, Paik [6,7,8] studied the ultimate strength 

characteristics of perforated plates under edge shear loading, axial compressive loading 
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and the combined biaxial compression and edge shear loads, and proposed closed-form 

empirical formulae for predicting the ultimate strength of perforated plates based on the 

regression analysis of the nonlinear finite element analyses results. 

So, the objective of this paper is to investigate the changes that the presence of 

circular holes produces in the elastic and inelastic buckling of steel rectangular plates. The 

finite element method (FEM) has been used to evaluate the elastic and elasto-plastic 

buckling load of uniaxially loaded rectangular plates with circular cutouts. By varying the 

hole diameter, the plate aspect ratio and the plate thickness during the analyses, the 

changes in the plate buckling behavior can be determined. 

 

2.       METHOD OF ANALYSIS 

 

The objective of this work is to study the elastic and the inelastic buckling behavior 

of perforated rectangular thin plates under uniaxial compression loading as it can be seen 

in FIGURE 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Plate with centered circular hole subject to uniaxial compression. 

 

The approach adopted for the elastic buckling analysis was the eigenvalue buckling 

(linear). This numerical procedure is used for calculating the theoretical buckling load of a 

linear elastic structure. Since it assumes the structure exhibits linearly elastic behavior, 

the predicted buckling loads are overestimated. Therefore, if the component is expected 

to exhibit structural instability, the search for the load that causes structural bifurcation is 

referred to as a buckling load analysis. Because the buckling load is not known a priori, 
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the finite element equilibrium equations for this type of analysis involve the solution of 

homogeneous algebraic equations whose lowest eigenvalue corresponds to the buckling 

load, and the associated eigenvector represents the primary buckling mode [9]. In the 

finite element program ANSYS®, the eigenvalue problem is solved by using the Lanczos 

numerical method [1]. 

On the other hand, the determination of the inelastic buckling stress for perforated 

plates requires a more sophisticated analysis since the initial stress stiffness matrix, kg, is 

not proportional to the stress level in the plate anymore due to the geometric and material 

nonlinearities. A general-purpose finite element program, ANSYS® has been utilized in 

this investigation [1]. The plate material was assumed to be linear elastic–perfectly plastic, 

which is the most critical case for the steel material. An initial imperfect geometry that 

follows the buckling mode of an elastic eigenvalue pre-analysis is assumed. The 

maximum value of the imperfection is chosen to be b/2000, where b is the perforated plate 

width. The uniaxial load is gradually applied until the convergence cannot be attained 

anymore by Newton-Raphson method. The finite element analysis used is capable of 

modeling the material nonlinearity as well as the geometric nonlinearity due to large 

deformations and small strains. 

 

3.     VERIFICATION OF THE METHOD OF ANALYSIS 

 

For the first verification of the computational modeling, the critical load of a non 

perforated plate was numerically evaluated, and the result was compared with the 

analytical solution given by Timoshenko and Gere [10]. The main characteristics of the 

analyzed plate are shown in TABLE 1. 

 

Table 1. Characteristics of the solid plate. 

Characteristic Value 

Young’s modulus (E) 210.0 GPa 

Poisson’s ratio (ν) 0.3 

width of plate (H) 1.0 m 

length of plate (L) 2.0 m 

thickness of plate (t) 10.0 mm 

 

In all numerical simulations the ANSYS® SHELL93 reduced integration eight-node 

thin shell element was employed. This element has six degrees-of-freedom at each node: 

three translations (u, v, w) and three rotations (θx, θy, θz). The plate was discretized 
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adopting a triangular element with side size of 50.00 mm (b/20), generating a mesh with 

1814 finite elements (FIGURE 3(a)). The numerical result for the critical buckling load Ncr 

is 755.30 kN/m, showing a difference of -0.51% comparing with the analytical solution that 

is equal to 759.20 kN/m.  FIGURE 3(b) presents the buckled shape of the plate without 

hole. 

 

 

 

Figure 3. Plate without hole: (a) Finite element mesh; (b) Buckled shape. 

 

However, for plates with perforations there is no analytical solution available and the 

approach adopted for buckling analysis was the finite element eigenvalue buckling 

analysis. Here, the computational model previously presented was employed to analyze 

the buckling behavior of thin perforated plates already studied by El-Sawy and Nazmy [2]. 

The same plate used in the first verification was studied, however centered circular holes 

were considered. In TABLE 2 the results for the critical buckling load were compared with 

those obtained by the numerical study developed by El-Sawy and Nazmy [2]. Again an 

excellent agreement was obtained, being -0.53% the maximal difference encountered. 

 

Table 2. Comparison of critical buckling load for plate with centered circular hole. 

Hole diameter (m) 
Ncr (kN/m) 

Reference [1] 

Ncr (kN/m) 

Authors 

Difference 

(%) 

0.10 766.19 763.56 -0.34 

0.20 789.36 786.50 -0.36 

0.30 825.08 820.87 -0.51 

0.40 849.26 847.78 -0.17 

0.50 901.54 898.79 -0.31 

0.60 986.46 981.22 -0.53 
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In order to verify the method used in the nonlinear buckling analysis, a comparison 

with existing results in the literature on the inelastic buckling of square plates with 

concentric circular holes was performed. The results of El Sawy et al. [3], who also used 

the finite element program ANSYS to determine the inelastic buckling stress, were used 

for this purpose. The model used by El Sawy et al. [3] was composed of mainly four-

noded shell elements that had six degrees of freedom per node. Three-noded shell 

elements were only used in irregular zones around the hole. 

TABLE 3 shows a comparison between the authors’ results using ANSYS and El 

Sawy et al. [3], for a square plate of thickness t and side length b, with a central circular 

hole of dimension d. The steel used in both analyses is A572 Grade 50 steel (with σy = 

345 MPa), and the comparison is made for three values of plate slenderness ratio b/t = 

30, 40, 50, and three values of normalized hole size (d/b = 0.10, 0.20, 0.30). The 

comparison shows an excellent agreement for almost all values and the maximum 

difference was 4.50%. 

 

Table 3. Ratio between inelastic buckling stress and yielding stress for a square plate with 

centered circular hole. 

  

d/b = 0.10 d/b = 0.20 d/b = 0.3 

Authors Ref.[3] Authors Ref.[3] Authors Ref.[3] 

b/t = 30 0.900 0.910 0.800 0.810 0.700 0.710 

b/t = 40 0.895 0.880 0.793 0.790 0.695 0.690 

b/t = 50 0.784 0.750 0.700 0.690 0.620 0.610 

 

 

4.         RESULTS AND DISCUTION 

 

4.1      Linear Buckling Analysis of Perforated Plates 

 

All the plates analyzed in this study have the following constant dimensions: b = 

1.00 m and t = 0.01 m. The aspect ratio is variable: a/b = 1, 2, 3, 4 and 5. The hole 

diameter also varies: d = 0.10, 0.20, 0.30, 0.40, 0.50 and 0.60 m. Once the elastic 

buckling load, Ncr, has been evaluated, the elastic critical buckling stress σcr can be 

determined by dividing it by the plate thickness t. 
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The results obtained for the critical buckling stress of perforated plates are 

presented in FIGURE 4. The material yielding stress σy, was used to normalize critical 

stress σcr and the width b was adopted to normalize the hole diameter. 

 

 

 

Figure 4. Ratio between the elastic critical stress σcr and the material yielding stress σy 

for perforated plates 

 

The perforated plate with aspect ratio a/b = 2 has the best behavior among the 

studied cases. There is an increase in the critical buckling stress as the hole size also 

increases. This trend could be explained if one considers the buckled mode shapes of the 

plate, which are presented in FIGURE 5. In fact, the buckling resistance increases due to 

a redistribution of the membrane stresses towards the laterally supported side edges of 

the plate (FIGURE 5 (a, b, c)). When the ratio d/b increases the plate buckled shape 

changes from two half-waves to three half-waves. This explains the increasing of the 

buckling load in these cases (FIGURE 5 (d, e, f)). 
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Figure 5. Buckling modes for a plate with a/b = 2. 

 

4.2     Nonlinear Buckling Analysis of Perforated Plates 

 

A series of numerical tests were conducted to investigate the buckling behavior of 

perforated plates both in the linear as in the nonlinear material range. As a result, both 

elastic and inelastic buckling stress curves were plotted against the plate slenderness 

ratio in order to determine the governing failure mode as a function of the plate 

slenderness ratio, which is a very important aspect in the design of perforated plates.  

FIGURE 6 shows the behavior of the ratio between the critical buckling stress σcr 

and yield stress σy with increasing slenderness ratio b/t for square plates with varying d/b 

ratios (d is hole diameter and b is width of the plate).  A curve dividing the linear elastic 

behavior from the elasto-plastic behavior is also shown in FIGURE 6. 
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Figure 6. Buckling curves for a square plate. 

 

The curves shown in FIGURE 6 illustrate the change in the ‘‘governing’’ critical 

stress (smaller of both the elastic and inelastic buckling stresses) versus the plate 

slenderness ratio for different values of hole sizes (d/b = 0.0–0.6). It is clear from this 

figure that the critical stress σcr decreases as b/t increases, and the failure mode changes 

from elasto-plastic to pure elastic buckling. On the other hand, the critical buckling stress 

decreases with the hole size, and may occur after the plate material has reached the yield 

point at some portions of the plate, and that is called inelastic, or elasto-plastic, buckling, 

especially for large size holes (d/b = 0.6). 

 

5.      CONCLUSIONS 

 

The importance of thin perforated plates as structural members is evident in many 

engineering applications, especially in naval, marine and offshore structures. The failure 

of perforated plates subjected to uniaxial compression may be due to the plate’s out-of-

plane instability or material failure. For thin perforated plates (i.e., large values of b/t), 

instability occurs at an average stress σcr, that is much less than the yield stress σy, 

especially if the hole size is small. This is called elastic buckling. 
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      On the other hand, the buckling for relatively thicker plates (i.e., low b/t values), 

or plates with large holes, may occur after the plate material has reached the yield point at 

some portions of the plate, and that is called inelastic, or elasto-plastic, buckling.  

      The large utilization of perforated steel plates in the ship and offshore structures 

construction and the change of the failure mode of these elements with plate slenderness 

and hole size demonstrate that the development of additional researches on this subject 

are necessary. 
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