UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG INSTITUTO DE CIÊNCIAS ECONÔMICAS, ADMINISTRATIVAS E CONTÁBEIS – ICEAC CURSO DE CIÊNCIAS ECONÔMICAS

MAICKER LEITE BARTZ

ROTATIVIDADE DO MERCADO DE TRABALHO NO COREDE SUL: UMA
ANÁLISE *EX-ANTE* E *EX-POST* A IMPLEMENTAÇÃO DO POLO NAVAL NO
MUNÍCIPIO DE RIO GRANDE

Rio Grande 2015

MAICKER LEITE BARTZ

ROTATIVIDADE DO MERCADO DE TRABALHO NO COREDE SUL: UMA ANÁLISE *EX-ANTE* E *EX-POST* A IMPLEMENTAÇÃO DO POLO NAVAL NO MUNÍCIPIO DE RIO GRANDE

Trabalho de conclusão de curso de graduação apresentado à Universidade Federal do Rio Grande, como requisito parcial para obtenção do grau de Bacharel em Ciências Econômicas.

Orientador: Gibran da Silva Teixeira

Rio Grande

MAICKER LEITE BARTZ

ROTATIVIDADE DO MERCADO DE TRABALHO NO COREDE SUL: UMA ANÁLISE *EX-ANTE* E *EX-POST* A IMPLEMENTAÇÃO DO POLO NAVAL NO MUNÍCIPIO DE RIO GRANDE

Trabalho de conclusão de curso de graduação apresentado à Universidade Federal de Rio Grande, como requisito parcial para obtenção do grau de Bacharel em Ciências Econômicas.

Aprovada em 17 de Junho de 2015
BANCA EXAMINADORA:
Prof ^a Dr ^a . Anne Pinheiro Leal
Prof ^a . Dr ^a . Vivian Queiroz
Prof. Dr. Gibran da Silva Teixeira

AGRADECIMENTOS

Em primeiro lugar a minha família, por todo o suporte fornecido durante esses quatro anos em que fiquei fora de casa, em especial à minha mãe Niura, meu pai Rodrigo e à minha irmã Kássia.

Ao meu orientador, o Professor Dr. Gibran Teixeira, pela confiança depositada em mim, desde os primórdios do nosso trabalho em 2013. A ele ainda por todo suporte e atenção durante todo esse processo de monografia.

À mulher da minha vida, Gabriela, por manter-se do meu lado, por me dar atenção nos momentos difíceis de trabalho, e pela paciência em me confortar nas horas de desespero.

Aos meus amigos pelos grandes momentos vivenciados nesses quatro anos, dentre os grupos de estudos e as grandes conversas sobre a monografia.

Enfim, um muito obrigado a todos que participaram da minha formação.

RESUMO

A presente monografia tem como objetivo analisar a dinâmica do mercado de trabalho do Corede Sul, e avaliar a rotatividade dos trabalhadores a partir do impacto que o polo naval de Rio Grande trouxe para a região sul do estado do Rio Grande do Sul. As metodologias utilizadas foram dados em painel e modelos de diferenças em diferenças, nos períodos de 2003 a 2010 e 2003 a 2013 respectivamente, com o intuito de estimar os determinantes da rotatividade e analisar os impactos posteriores à implementação do polo na região. Foram estimados dois modelos, primeiramente um painel, mas o mesmo demonstrou problemas de endogenia entre as variáveis, e posteriormente um modelo de diferenças em diferenças, que foi estimado para melhor captar os efeitos para as cidades consideradas como tratadas no modelo, obtendo alguns coeficientes significativos. Foram gerados resultados estatisticamente representativos para as cidades de Rio Grande, Pelotas e São José do Norte, tendo a cidade de Rio Grande o maior resultado encontrado um aumento de 132% na rotatividade após 2006. Além disso, foi descoberto um processo de antecipação no mercado de trabalho no município de Rio Grande, em que a população já almejava uma melhor oportunidade de emprego, à medida que a construção do polo se consolidava.

Palavras chave: Rotatividade; Polo Naval; Corede Sul.

ABSTRACT

This monograph aims to analyze the Regional Development Council of the southern state of Rio Grande do Sul - COREDE-SUL marked dynamics, and to evaluate the turnover of the workers caused by the impact that the Rio Grande's naval polo brought to the south region of the state. The methodologies used were panel data and difference in difference model, during the periods of 2003 to 2010 and 2003 to 2013 respectively, in order to estimate the determinants of the turnover and analyze the further impacts of the polo implementation on the region. Two models were estimated, first a panel, but it showed endogeny problems between the variables, then later a difference in difference model, which was estimated to better capture the effects to the cities considered as treated in the model, obtaining some significant coefficients. Statistically representative results were generated for the cities of Rio Grande, Pelotas and São José do Norte, having the city of Rio Grande the highest result found: an increase of 132% in the turnover before 2006. Besides, an anticipation process on the labor market was discovered in the city of Rio Grande, in which the population already longed for a better work opportunity, as the polo construction was consolidated.

Key words: Turnover, Naval Polo, Corede Sul

LISTA DE GRÁFICOS

Gráfico 1: Restrição orçamentária	13
Gráfico 2: A decisão das horas de trabalho	14
Gráfico 3: A curva de oferta de trabalho	15
Gráfico 4: Produto marginal e produto médio	16
Gráfico 5: A curva de demanda	17
Gráfico 6: Equilíbrio no mercado de trabalho:	18
Gráfico 7: Estoque de trabalhadores: Brasil, Rio Grande do Sul, Corede	Sul e
Rio Grande – Variação em relação ao período anterior (%) 2003-2012:	29
Gráfico 8: Rotatividade média anual (2003-2013):	30

LISTA DE TABELAS

Tabela 1: Evolução do emprego formal: Brasil, Rio Grande do Sul, Core	de Sul e
Rio Grande (2003-2012)	28
Tabela 2: Resultados gerados com o painel para o Corede Sul	31
Tabela 3: Resultados gerados com o painel para a Aglomeração un Sul	
Tabela 4: Resultado do modelo de diferenças em diferenças com	painel e
efeitos fixos	34

LISTA DE SIGLAS

- **AGDI -** Agência de Desenvolvimento Investimento
- APL Arranjo Produtivo Local
- BNDES Banco Nacional de Desenvolvimento Econômico e Social
- **CAGED -** Cadastro Geral do Emprego e Desemprego
- COREDE SUL Conselho Regional de Desenvolvimento da Região Sul
- IEDU Índice de Educação
- **ECOVIX -** Engevix Construções Oceânicas S\A
- ERG Estaleiro Rio Grande
- FEE Fundação de Estatística e Economia
- FMM Fundo de Marinha Mercante
- FPOS Floating Procuction, Storage and Offloading (trad. Unidade Flutuante de

Produção, Armazenamento e Escoamento)

- MDIC Ministério do Desenvolvimento Indústria e Comércio
- **MTE** Ministério do Trabalho e Emprego
- PIB Produto Interno Bruto
- RAIS Relatórios Anuais de Informações Sociais

SUMÁRIO

LIST	TA DE GRÁFICOS	6
LIST	TA DE TABELAS	7
LIST	TA DE SIGLAS	8
1	INTRODUÇÃO	10
2	REVISÃO TEÓRICA	13
2.1	OFERTA DE TRABALHO	13
2.2	DEMANDA POR TRABALHO	16
2.3	EQUILÍBRIO DO MERCADO DE TRABALHO	19
2.4	ROTATIVIDADE	20
3	METODOLOGIA	22
3.1	CÁLCULO DA ROTATIVIDADE	22
3.2	DADOS EM PAINEL	23
3.2.	1 Modelos de Efeitos Fixos	24
3.2.	2 Modelos de Efeitos Aleatórios	25
3.2.	.3 Modelos com Efeitos fixos ou aleatórios?	26
3.3	A METODOLOGIA DE DIFERENÇAS EM DIFERENÇAS	27
4	RESULTADOS	29
4.1	EVOLUÇÃO DO MERCADO DE TRABALHO NO BRASIL	29
4.2	ROTATIVIDADE	31
4.3	RESULTADOS DO PAINEL	32
4.4	RESULTADOS DO MODELO DE DIFERENÇAS EM DIFERENÇAS	34
5	CONSIDERAÇÕES FINAIS	37
REF	FERÊNCIAS	39
APÊ	ÊNDICE A – ESTIMAÇÕES PARA OS GRUPOS TRATADOS	42
APÉ	ÊNDICE B – ESTIMANDO OS EFEITOS PLACEBOS (2005)	48
APÊ	ÊNDICE C – ESTIMANDO OS EFEITOS PLACEBOS (2004)	54
APÊ	ÊNDICE D - ESTOQUE DE EMPREGO DOS MUNICÍPIOS DO C	OREDE
SUL	L	60

1 INTRODUÇÃO

A presente monografia tem por objetivo o estudo da dinâmica do mercado de trabalho do Conselho Regional de Desenvolvimento do Sul do estado do Rio Grande do Sul – Corede Sul/RS, com finalidade de identificar o efeito da implementação do Polo Naval de Rio Grande sobre a rotatividade dos trabalhadores do Corede Sul/RS.

Nos últimos dez anos, um volume expressivo de empreendimentos vem sendo realizados no âmbito do Corede Sul, mais precisamente no município de Rio Grande, inicializados com a construção da obra referente ao Dique Seco, em 2003, implementada pela empresa W-Torre. Outro marco inicial foi a confecção da P-53 - cujos investimentos para a construção começaram em 2005 - realizada pela empresa QUIP, finalizada em 2008. A obra teve custos de R\$ 2,5 bilhões, e ainda gerou 4,3 mil empregos.

Além dessas plataformas, no município, tivemos finalizadas as construções das plataformas P-55, que teve início em 2009 e finalização em 2013, P-58 com obras inicializadas em 2010, e concluídas em 2013, e a P-63, que o começo da construção em 2011, e a conclusão em 2013, ambas foram realizadas pela mesma empresa, QUIP, que juntas geraram um investimento de US\$ 7 bilhões, conforme a Petrobras (2013), bem como, a construção dos estaleiros Rio Grande II (ERG I) e (ERG II), que darão suporte, na próxima década, à construção de 8 cascos FPOS e 3 navios sonda, pela empresa ECOVIX, com contrato de US\$ 4 bilhões, todos financiados com recursos da Petrobras e também do BNDES (Paes et. al., 2014).

Além destes investimentos, no município vizinho, São José do Norte, está sendo construído, desde o ano de 2013, um estaleiro operado pela empresa Empreendimento Estaleiros do Brasil (EBR), vencedora do processo licitatório realizado pela Petrobras em abril de 2013 para a construção da plataforma P-74 ao qual, de acordo com a Subcomissão do Polo Naval (2011), a realização do projeto trará investimentos diretos a São José do Norte na ordem de US\$ 500 milhões, financiados 20% pela própria empresa e 80% pelo Fundo de Marinha Mercante – FMM, criando 6 mil empregos diretos e 15 mil indiretos.

A Região Sul, mais precisamente a jurisdição do Conselho de Desenvolvimento do Sul do estado do Rio Grande do Sul – Corede Sul -, responsável por 10% da formação do Produto Interno Bruto do estado, contempla os seguintes municípios: (i) Amaral Ferrador; (ii) Arroio do Padre; (iii) Arroio Grande; (iv) Canguçu; (v) Capão do Leão; (vi) Cerrito; (vii) Chuí; (viii) Herval; (ix) Jaguarão; (x) Morro Redondo; (xi) Pedras Altas; (xii) Pedro Osório; (xiii) Pelotas; (xiv) Pinheiro Machado; (xv) Piratini; (xvi) Rio Grande; (xvii) Santa Vitória do Palmar; (xviii) Santana da Boa Vista; (xix) São José do Norte; (xx) São Lourenço do Sul; (xxi) Tavares; (xxii) Turuçu.

A partir de 2006, com a implementação do Polo Naval no município de Rio Grande, uma série de transformações tanto no âmbito econômico quanto social está se desencadeando nesta Região, com destaque para o município de Rio Grande, Pelotas e São José do Norte, que juntos representam mais de 65% e 75,65% do PIB e da população do Corede Sul, segundo a Fundação de Estatística e Economia – FEE (2010). Estes três municípios em conjunto, a partir de julho de 2013, foram reconhecidos institucionalmente pela Agência de Desenvolvimento e Investimento – AGDI-RS, assim como pelo Ministério do Desenvolvimento Indústria e Comércio – MDIC, como um Arranjo Produtivo Local – "APL Polo Naval e *Offshore* de Rio Grande e Entorno".

Um dos principais efeitos gerados por esses investimentos é sobre o mercado de trabalho da região. Analisando-se previamente os efeitos destes investimentos sobre o mercado de trabalho nestes municípios, com base nos dados do MTE (2015), verifica-se um aumento expressivo na geração de emprego no período de 2006 a 2012. Na comparação com 2006, o número de postos de trabalho formalizados no município de Rio Grande teve um acréscimo de 41,81%, passando de 35.096, para 49.773 empregos formais em 2012. No município de Pelotas o aumento no número de postos de trabalho formal, no período, foi de 24,87%, passando de 54.800 para 68.429 empregos formais no município e em São José do Norte, no período de 2006 a 2012 ocorreu um aumento de 18,62%, saindo de 1.987 para 2.357 empregos, também impulsionados pelos investimentos no Polo Naval.

Diante deste cenário, torna-se necessária à existência de pesquisas que tratem efetivamente da análise da dinâmica do mercado de trabalho desta região, destacando as relações das principais variáveis macroeconômicas como PIB, receitas e despesas dos municípios, saúde, assim como dando ênfase o efeito da

implementação do Polo Naval sobre a rotatividade no mercado de trabalho do Corede Sul/RS.

Assim, a pergunta a ser respondida com a presente monografia é qual o efeito da implementação do Polo Naval de Rio Grande sobre a rotatividade do mercado de trabalho do Corede Sul. Para tanto a mesma se encontra estruturada além desta introdução, da seguinte maneira: (ii) Revisão teórica; (iii) Metodologia; (iv) Resultados e (v) Considerações finais.

2 REVISÃO TEÓRICA

Nesse tópico será feita uma análise do mercado de trabalho, analisando como se dá a oferta e a demanda de trabalho, assim como ver como se dá o equilíbrio entre ambos. Além disso, nesse tópico será enfatizada a revisão teórica do objetivo do trabalho, que é a rotatividade. Boa parte dessa análise será feita sobre o Livro "Economia do Trabalho" do autor BORJAS (2012), com algumas outras fontes citadas diretamente no texto.

2.1 OFERTA DE TRABALHO

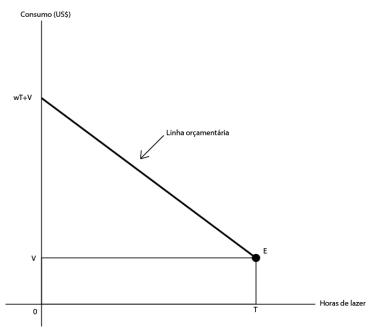
A oferta de trabalho é dada pela soma das escolhas – trabalhar, não trabalhar, quantidade de horas que pretende trabalhar - feitas entre as pessoas em uma população.

O conceito mais usado pelos economistas para estudar o comportamento da oferta de trabalho é chamado de modelo neoclássico da escolha entre trabalholazer.

$$U = f(C, L) \tag{1}$$

Sendo C todos os bens adquiridos em determinado período, já o L representa o número de horas em lazer adquiridos no mesmo período, e U mede o grau de satisfação entre o consumo e lazer, sendo quanto mais alto esse índice, maior o nível de satisfação do agente. Temos que essas duas variáveis – consumo e lazer - estão restritas a duas coisas: renda e tempo.

$$C = wh + V \tag{2}$$

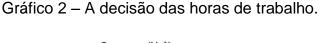

Temos que a equação acima é função de restrição orçamentária, que é dada pela igualdade entre o valor contábil das despesas em bens (C) e a soma entre os ganhos com o trabalho (wh)¹ e a renda "não trabalho" (V)².

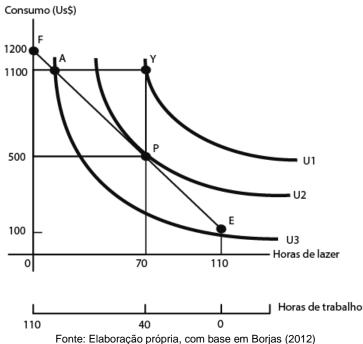
A taxa salarial possui um papel de grande importância nas decisões de oferta de trabalho. Supomos que para um agente específico da economia, a taxa salarial seja constante, ou seja, o salário recebido por hora independe da quantidade de horas trabalhadas, não diferenciando os que trabalham meio período dos que possuem carga horária integral.

Para traçarmos uma restrição orçamentária, seguimos a suposição de que a taxa salarial é constante. Sendo assim, a pessoa tem duas alternativas para alocar seu tempo: lazer ou trabalho. Assim, o tempo total alocado em cada uma dessas alternativas precisa ser igual ao tempo total disponível, sendo T horas por semana, T = h + L.

$$C = (wT + V) - wL \tag{3}$$

Gráfico 1 – Restrição Orçamentária


Fonte: Elaboração própria, com base em Borjas (2012)


¹ "h" é número de horas que seriam alocadas pelo agente em determinado período e "w" é a taxa salarial por hora.

² V é a "renda não trabalho", ou seja, é aquela renda que independe da quantidade de horas trabalhadas, podendo ser, por exemplo, um valor x adquirido num prêmio de loteria.

No ponto E do gráfico temos uma pessoa que decide não trabalhar, e dedicar todo o seu tempo ao lazer, podendo comprar V dólares de bens de consumo. Se o agente estiver disposto a abrir mão de uma hora de lazer, ele pode comprar w dólares de bens, o que ocasionará um deslocamento ao longo da restrição orçamentária. Caso abra mão de todos os bens de lazer, ele chegará no intercepto, podendo comprar wt+v dólares.

No gráfico abaixo temos a decisão de quantas horas trabalhar. Primeiramente, supomos que determinada pessoa deseja escolher uma combinação de bens e lazer que maximiza sua utilidade. Temos que no ponto B o agente possui 110 horas de lazer e renda de 110 unidades monetárias, já no F possui 0 horas de lazer e renda de 1200. A melhor alocação nesse caso seria o ponto P, onde ele consegue balancear horas de lazer com renda, tendo então 500 de renda e 70 horas de lazer. No entanto, como percebe-se no gráfico, U1 está acima de U*, possuindo um valor maior de horas de lazer e renda, porém esse cesta não pode ser atingida, dado a restrição orçamentária do agente. Conclui-se que, o ponto ótimo, ou seja, onde a utilidade é maximizada, é dado onde uma curva de indiferença tangência a linha orçamentária, sendo o ponto P no exemplo.

No gráfico 3 temos a curva de oferta de trabalho, que mostra a relação entre horas de trabalho e taxa salarial. Onde temos taxa salarial igual a \$10, a pessoa é indiferente entre trabalhar ou não, já quando estiver acima de \$10, a pessoa decide trabalhar. No exemplo do gráfico, temos que a pessoa trabalhará 20 horas quando seu salário for de 13 dólares, 40 horas quando for \$20, e assim, por conseguinte. Analisando o gráfico da direita, percebe-se que até uma taxa salarial de \$20 temos uma curva de oferta positivamente inclinada, no entanto a partir do efeito renda, notado no gráfico da esquerda, a curva de oferta fica com inclinação negativa, indo de 40 horas de trabalho para 30, frente a um aumento da taxa salarial de \$20 para \$25.

Consumo (US\$) Taxa salarial (US\$) Curva de oferta 25 de trabalho w=\$25 20 W = \$20 13 W= \$13 10 w=\$10 0 70 80 90 110 Horas de lazer Horas de trabalho Fonte: Elaboração própria, com base em Borjas (2012)

Gráfico 3 – A curva de oferta de trabalho

2.2 DEMANDA POR TRABALHO

Na oferta por mão-de-obra vimos que ela é dada pelo quanto os trabalhadores estão dispostos a alugar aos empregadores no mercado de trabalho. Agora na demanda será o contrário, veremos a disponibilidade da empresa em contratar funcionários. Segundo Mankiw (2001), a empresa contratará um determinado número de funcionários, dado a sua produção, ou seja, avaliará a necessidade de funcionários, com a quantidade que será produzida. Para analisar essa quantidade de trabalho necessária a produção, usa-se a função de produção.

A função de produção da demanda da empresa se dá pelo número de trabalhadores na empresa (E) e capital (K) em função da produção (q).

$$q = f(E, K) \tag{4}$$

Para a definição da quantidade de insumos empregados no trabalho, temos duas suposições: primeiramente, o número de horas é dado pelo número de trabalhadores contratados vezes o número médio das horas por pessoa, no entanto "E" é tratado como o número de trabalhadores contratados pela empresa. Em segundo lugar, temos que uma função de produção pode agrupar-se com diferentes tipos de trabalhadores, no entanto temos que em alguns casos, trabalhadores com maior capital humano, causarão um maior impacto na produção da empresa.

Dentro da função de produção, temos o conceito de produto marginal, que é o impacto da contratação de um trabalhador na produção. Na curva do produto total, temos que o produto marginal do trabalho é a inclinação dessa curva.

Produção

120

100

80

Produto total

10

Produto médio

Produto marginal

5

Produto marginal

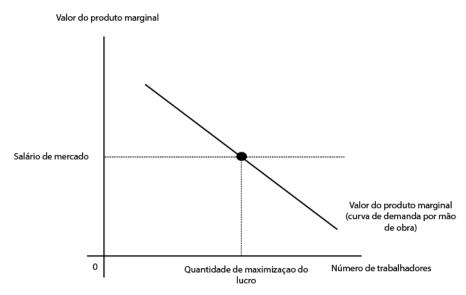
Gráfico 4 – Produto marginal e produto médio

Número de trabalhadores (a)

Fonte: Elaboração própria, com base em Borjas (2012)

Número de trabalhadores (b)

Como se percebe no gráfico, a produção primeiramente aumenta com um número maior de trabalhadores, o que ocasiona num produto marginal maior. Com o aumento de mais trabalhadores, a produção vai aumentando, entretanto o produto marginal é decrescente. Esse produto marginal decrescente é respondido pela lei dos retornos decrescentes. No inicio da produção aumenta com incrementos de trabalhadores, dado que eles podem se especializar em tarefas específicas aos trabalhadores. Conforme Mankiw (2001), o resultado da contribuição do trabalhador na receita da empresa, se dá pela conversão do produto marginal do trabalho, pelo


valor desse produto marginal, ou seja, o seu preço. Para achar os lucros da empresa, diminuímos as receitas pelas custos, sendo nesse caso o quanto que o trabalhador trouxe a receita da empresa menos o seu custo – salário. Podemos ver melhor essa função logo abaixo:

$$Lucros = pq - wE - rK (5)$$

Em que "p" é o preço que empresa vende seu produto, w é custo para manter um empregado, ou seja, o seu salário e r é o preço do capital. Esse valor de "p" é constante, não ocasionando mudanças na produção.

A decisão da empresa em contratar está ilustrada no gráfico abaixo. Ele mostra à curva do valor do produto marginal, sendo a mesma negativa pelo motivo que o produto marginal é decrescente ao aumento de trabalhadores. Outra coisa a se notar no gráfico é a linha de "salário de mercado". No ponto onde temos um equilíbrio, temos a maximização de lucros da empresa. Abaixo desse ponto, temos que o salário de mercado está acima do produto marginal, ou seja, não se torna atrativo\lucrativo a contratação de mais um funcionário. Já acima temos que a contratação de outro funcionário é lucrativa, dado que o produto marginal é superior ao salário de mercado.

Gráfico 5 – A curva de demanda

Fonte: Elaboração própria, com base em Mankiw (2001)

"A curva de valor do produto marginal é a curva de demanda por mão-de-obra de uma empresa competitiva maximizadora de lucro." (MANKIW, 2001, p. 403)

2.3 EQUILÍBRIO DO MERCADO DE TRABALHO

Temos que no mercado o trabalhador irá preferir um salário mais alto, e as empresas contratar com um salário mais baixo. Visto isso, o equilíbrio visa mostrar qual a melhor alocação que será o mais eficiente para trabalhadores e empresários. Sendo mais preciso, temos que no equilíbrio a demanda é igual a oferta, o que gera um salário w* e um emprego E*.

Dólares

S

V*

Q

Q

D

EL

E*

EH

Emprego

Gráfico 6 – Equilíbrio no mercado de trabalho

Fonte: Elaboração própria, com base em Borjas (2012)

Num mercado competitivo, a quantidade E* de trabalhadores contratados é assalariada a w*, trazendo benefícios para a economia como um todo. A receita total adquirida é dada pela soma dos produtos marginais de todos trabalhadores até E*. Dado que a curva de demanda mostra o valor do produto marginal, temos que a área sob ela demostra o total produzido. Como nota-se no gráfico, a área "P" é o excedente dos produtores.

A curva de oferta mostra o quanto se precisa pagar aos empregados para que mais empregos sejam gerados no mercado de trabalho, sendo assim notamos que os trabalhadores também podem lucrar. Esse ganho dos trabalhadores é dado pela diferença entra o salário w* e o tempo que o trabalhador tá fora da mercado de

trabalho, o que chamamos de excedente do trabalhador, sendo a área "Q" do gráfico acima.

2.4 ROTATIVIDADE

Segundo Camargo (1996), é de grande importância para o desempenho da economia analisar o comportamento do mercado de trabalho, pois ele afeta o volume de emprego criados, o grau de conflito entre os agentes, as taxas de desemprego e de aumento da produtividade, o montante de investimentos em treinamento e qualificação entre muitas outras variáveis importantes que, em conjunto, determinam o desempenho econômico de um país ou região. Quando se têm no mercado muitas vagas de emprego, a busca por um melhor emprego e por um salário maior, crescem, levando os trabalhadores a migrarem de emprego, caracterizando o *turnover*, é o que dizem Eckert, Mecca, Denic, Giacomet (2011). Entretanto, Chiavenato (2010 p. 90) indica que:

A rotatividade não é causa, mas o efeito de algumas variáveis internas e externas. Dentre as variáveis externas estão a situação de oferta e procura do mercado de RH, a conjuntura econômica, as oportunidades de empregos no mercado de trabalho, etc. Dentre as políticas internas estão a política salarial e de benefícios que a organização oferece, o estilo gerencial, as oportunidades de crescimento interno, o desenho dos cargos, o relacionamento humano, as condições físicas e psicológicas de trabalho. A estrutura e a cultura organizacional são responsáveis por boa parte dessas variáveis internas.

O nível de rotatividade da mão de obra é um dos instrumentos que mais influencia sobre o grau de investimento das empresas em capacitação profissional, como no treinamento e reciclagens dos seus funcionários. Conforme Gonzaga (1998), treinamento instaurado pela própria empresa no ambiente de trabalho é um investimento em que trabalhadores e empresa tendem a ganhar. Porém esse tipo de investimento é de alto risco, pois, por exemplo, os trabalhadores podem pedir demissão e usar esse capital humano adquirido em outra empresa, e, ainda, as firmas podem desligar esse trabalhador treinado, que poderá ter dificuldades em vender seu novo conhecimento para outra empresa. Por isso, segundo Chiavenato (2010), temos que dada à alta competitividade de trabalho, as empresas, com o intuito de manter seus talentos humanos, acabam procurando evitar a rotatividade de pessoal/turnover.

Segundo o DIEESE (2011), a rotatividade, mais precisamente, é a substituição de um posto de trabalho por outro, isto é, uma demissão seguida de uma admissão, em um posto específico, individual, ou em diversos postos, envolvendo vários trabalhadores. Uma alta taxa de rotatividade mostra que grande percentagem dos trabalhadores acumula pouco tempo de serviço na mesma empresa, fato que demostra a fragilidade do vínculo entre empregador e empregado e uma falta de comprometimento entre ambas as partes. Conforme Chiavenato (2010), é correto afirmar-se que a rotatividade de pessoal influencia de forma significativa os resultados de uma empresa, pois é um importante componente na dinâmica organizacional. As consequências desse fenômeno são os elevados custos de transação na contratação de trabalhadores e a perda de eficiência econômica (ORELLANO; PAZELLO, 2006). "Uma alta rotatividade da mão-de-obra, ao prejudicar o investimento em treinamento, impede um aumento da produtividade e da qualidade do emprego" (GONZAGA, 1998, p. 120).

Segundo Ramos e Carneiro (2002), a taxa de rotatividade no Brasil tem um comportamento pró-cíclico e apresenta uma ruptura no início dos anos 90, aumentando com períodos de crescimento econômico e diminuindo em períodos de recessão. Essa correlação positiva, entre taxa de rotatividade e ciclo conjuntural, demonstra que o principal motivo de ocorrência de rotatividade é o comportamento dos assalariados. Quando a economia está em crescimento, mais oportunidades de emprego são geradas, o que se torna mais atrativo o afastamento dos trabalhadores, o contrário vale para o período descendente do ciclo.

De acordo com o Departamento Intersindical de Estatísticas e Estudos Socioeconômicos – DIEESE (2011), classificar de forma precisa a rotatividade e mensurá-la depende de outros fenômenos, de diversas naturezas, que influem sobre o mercado de trabalho, como: os econômicos; os reguladores do mercado de trabalho; os sociológicos, que determinam relações de trabalho e emprego; os de natureza tecnológica, que orientam as escolhas produtivas e influem sobre o volume de força de trabalho empregada, entre outros.

3 METODOLOGIA

A metodologia inicialmente aplicada foi um modelo com dados em painel, analisado para os municípios do Corede Sul, entretanto os resultados encontrados não foram satisfatórios. Em vista disso, para tentar captar melhor os efeitos do polo naval na região foi feito um modelo aplicado para as cinco cidades que formam a Aglomeração urbana do Sul – formada por Pelotas, Rio Grande, São José do robustos. Por fim, é usado outro modelo, o de diferenças em diferenças, que acaba encontrando melhores resultados, podendo explicar os impactos da rotatividade na região. Todos esses resultados gerados serão apresentados na monografia logo abaixo, sendo detalhado um em cada tópico. Entretanto, primeiramente, será mostrado como é calculada a rotatividade, para então serem explicados os modelos utilizados.

3.1 CÁLCULO DA ROTATIVIDADE

Segundo o MTE (2015), a taxa de rotatividade é um importante instrumento para analisar o comportamento do mercado de trabalho formal. Segundo Barros *et al.* (2009) a taxa de rotatividade da mão de obra é variável de fluxo que mede o percentual dos trabalhadores substituídos mensalmente no total de trabalhadores empregados. Especificamente, o MTE considera o mínimo entre as admissões e desligamentos no mês de referência em relação ao estoque de empregos no mês imediatamente anterior, multiplicado por 100. Desta forma a taxa de rotatividade por ser escrita pela equação (6) como segue:

$$T(r)_t = [\min(A_t; D_t)/E_{t-1}] * 100$$
(6)

Sendo:

 $T(r)_t$ = é a taxa de rotatividade no tempo t;

 $A_t = \acute{\rm e}$ o total de admissões no tempo t;

 $D_t = \acute{\rm e}$ o total de demissões no tempo t;

 $E_{t-1} = \acute{\text{e}}$ o estoque de empregos no tempo t-1;

Conforme citam Orellano e Pazello (2006), analisa-se a rotatividade da seguinte forma: primeiramente, supõe-se um total de 100 empregados em um período t. Agora, que nesse período t, 35 trabalhadores tenham sido admitidos e 40 tenham se desvinculado da firma (de forma voluntária ou involuntária). A rotatividade no período será, 35/100 (ou 0,35). No numerador, para cálculo, entra o número de contratados, e não os 40 demitidos. A explicação para isso é que o índice de rotatividade deve considerar a quantidade de trabalhadores substituídos no período.

O índice de rotatividade é definido por vários autores, sendo que Cardozo (2005), afirma que, um índice de turnover adequado pode ser próximo ou menor que 10% ao ano, significando um índice pouco menor que 1% ao mês.

A base de dados usada para descrever avaliar a rotatividade de trabalho do Corede Sul do Rio Grande do Sul será a partir dos dados mensais do Cadastro Geral de Emprego e Desemprego – CAGED, bem como a partir das informações anuais de estoque de empregos disponibilizadas pelos Relatórios Anuais de Informações Sociais – RAIS, ambas as bases de dados do Ministério do Trabalho e do Emprego – MTE, no período de 2003 a 2013.

3.2 DADOS EM PAINEL

Temos que, segundo Gujarati (2011), os dados em painel possuem uma dimensão espacial e outra temporal, ou seja, combina séries temporais com dados de corte transversal.

Segundo Baltagi (2005) e Marques (2000), as principais vantagens de uma aplicação com dados em painel são:

 Primeiramente é a existência de heterogeneidade individual, isso porque os dados em painel se relacionam a indivíduos, empresas, Estados, países, etc., com o tempo. Dessa forma sugere-se que os indivíduos possuem características diferentes. Sem essa heterogeneidade, teremos, na maioria das vezes, resultados viesados.

- 2. Com a combinação das observações entre dados de corte transversal com séries temporais, estimando um modelo com dados em painel, temos uma quantidade maior de dados informativos, o que acarreta numa maior variabilidade nos dados, uma menor colinearidade entre variáveis, assim como um maior grau de eficiência na estimação, a partir do aumento dos graus de liberdade.
- Com um estudo repetido das observações em corte transversal, os dados em painel são mais indicados para examinar uma dinâmica da mudança.
 Sendo esse tipo de modelo o mais indicado para analisar a rotatividade da mão de obra.

Entretanto, temos que segundo Marques (2000), um modelo com dados em painel também possui problemas, sendo eles:

- Dificuldade na coleta de dados, podendo resultar em amostras incompletas.
- 2. Viesamento da heterogeneidade, acarretado pela não consideração de coeficientes diferentes ao longo do tempo.
- 3. Problemas resultantes da má coleta de dados, que pode acarretar em amostras que não são aleatórias.

Quanto a terminologia aplicada ao modelo, temos que de várias especificações, duas se sobressaem, sendo: efeitos fixos e efeitos aleatórios. Esses dois modelos serão melhor explicados nos tópicos abaixo.

3.2.1 Modelos de Efeitos Fixos

Numa visão mais resumida, segundo Marques (2000), temos que o modelo de efeitos fixos é aquele em que são retiradas grandes amostras de uma população, ou quando se pretende analisar o comportamento individual. O modelo em si conta com a heterogeneidade entre indivíduos, o que permite que cada indivíduo possua seu intercepto no modelo.

Um modelo simples de efeitos fixos está representado abaixo:

$$Y_{it} = v_i + \beta_1 X_{1it} + e_{it} \tag{7}$$

Onde v_i é um vetor de variáveis *dummies* para cada indivíduo.

No modelo, dizemos que o termo fixo deve-se ao fato de que o intercepto de cada individuo não varia com o tempo, mesmo que haja diferenciação nos interceptos de cada um.

No entanto, precisa-se estar atento para os problemas que um modelo com efeitos fixos pode trazer. Segundo Gujarati (2011), primeiramente, quando começamos a introduzir muitas variáveis *dummies* no modelo, teremos um falta de graus de liberdade, ou seja, terá poucas observações para ter-se uma análise eficiente. Em segundo lugar, com muitas *dummies* no modelo, podemos ter um problema de multicolinearidade, o que dificultaria a estimação exata de alguns parâmetros.

3.2.2 Modelos de Efeitos Aleatórios

Nesse tipo de modelo, pressupõe-se que o comportamento dos indivíduos é desconhecido, assim como os períodos de tempo que não podem ser observados. Dessa forma, quando analisa-se grandes séries, os efeitos medidos serão dados por uma variável aleatória normal.

$$Y_{it} = \alpha_i + \beta_1 X_{1it} + e_{it}$$
 (8)

Onde $\alpha_i = \alpha + u_i$. Ao invés de termos α fixo, suporemos agora que ele é uma variável aleatória, com um valor médio α e um desvio aleatório u_i deste valor médio. Substituindo $\alpha_i = \alpha + u_i$ em (8), temos:

$$Y_{it} = \alpha + \beta_1 X_{1it} + u_i + e_{it}$$
 (9)

Diferentemente do que foi visto no modelo de efeitos fixos, não temos mais a indução da heterogeneidade pelo termo independente, mas sim pela variância da variável endógena.

Dentre as vantagens de um modelo com efeitos aleatórios, segundo Marques (2000), temos:

- 1. Uma melhor capacidade em trabalhar com qualquer tipo de dados;
- 2. Uma maior facilidade em resolver problemas;
- 3. Maior facilidade na interpretação dos dados;
- 4. Menos exigência em termos de *softwares*.

3.2.3 Modelos com efeitos fixos ou aleatórios?

Conforme constatado em Gujarati (2011), um dos principais métodos para descobrimos qual o melhor modelo a aplicar-se ao trabalho, é realizar o teste de Hausman. A hipótese nula do teste diz que os estimadores do modelo de efeito fixo e do modelo de efeito aleatório não diferem. Se rejeitarmos a hipótese nula, concluímos que o modelo com efeitos aleatórios não é adequado, pois podemos ter correlação entre um ou mais regressores. Sendo assim, escolhemos um modelo com efeitos fixos quando rejeitarmos a hipótese nula. Vale o contrário para a aceitação da hipótese.

Ao analisar os resultados do modelo, temos então que se ε i e os X não forem correlacionados, o modelo de efeitos aleatórios pode ser adequado, entretanto se ε i e os X forem correlacionados, o modelo de efeitos fixos se torna mais adequado.

Conforme Judge *et al* (1982), para escolhermos o modelo também podemos levar em consideração as observações abaixo:

- Se o número de dados de séries temporais T- for grande e o número de dados de corte transversal – N – for pequeno, um modelo de efeitos fixos se torna mais atrativo.
- Quando T é pequeno e N é grande, dependerá de como os dados de corte transversal foram coletados. Se for de forma aleatória, o melhor modelo é o de efeitos fixo. Já se não forem extrações aleatórias, o modelo de efeitos fixos é melhor.
- Caso ɛi e algum regressor seja correlacionado, os estimadores do modelo com efeito aleatório são tendenciosos, já o de efeito fixo é não tendencioso.

4. Diferentemente do modelo com efeitos fixos, o modelo com efeitos aleatórios pode obter estimadores para variáveis que não se alteram ao longo do tempo, como gênero e raça.

Conforme chegaram Johnston e Dinardo (1997, p.403), na hora de decidir entre qual modelo a ser usado, temos que "[...] não existe uma regra simples para ajudar o pesquisador a ir além da Scylla de efeitos fixos e o Charybdis de erro de medição e seleção dinâmica. Embora seja um aprimoramento em relação aos dados de corte transversal, os dados em painel não oferecem a cura para os problemas do econometrista".

Com relação a amostra de dados, foram utilizados dados do MTE (2015) e da RAIS (2015), dentre os anos de 2003 e 2010. Esse período foi escolhido em vista de não termos dados suficientes para analises de períodos anteriores e posteriores ao analisado.

3.3 A METODOLOGIA DE DIFERENÇAS EM DIFERENÇAS

Segundo Wooldridge (2003) a escolha desta estratégia empírica se justifica principalmente por termos informações da rotatividade ao longo do tempo de dois ou mais grupos distintos, sendo que a intervenção que se deseja avaliar é o efeito dos investimentos da política de incentivo ao setor naval sobre os municípios de Rio Grande, Pelotas, São José do Norte, em detrimento dos demais municípios do Corede Sul/RS.

A hipótese central para identificação do impacto dos investimentos sobre a rotatividade destes três municípios reside em assumirmos que na ausência da política os municípios seguiriam em trajetórias paralelas aos demais. Ou seja, quaisquer outros choques que pudessem vir a afetar as trajetórias das variáveis de interesse entre o grupo tratado (municípios do APL) e o grupo controle (demais municípios do Corede Sul) exerceriam a mesma influência. Assim sendo, quaisquer desvios observados nas trajetórias das variáveis de interesse entre os dois grupos, em períodos posteriores a intervenção de fato, pode ser atribuída ao efeito da política sobre o grupo de municípios diretamente afetados.

Formalmente, será estimada a seguinte equação:

$$Y_{it} = \alpha_0 + \alpha_1 G_i + \alpha_2 P_t + \alpha_3 G_i * P_t \tag{10}$$

sendo: i=1,...22 e t=2003,...,2013.

A variável dependente Y é rotatividade anual. Já a variável G é uma variável binária que assume valor 1 para o grupo tratado, e valor 0 para o grupo controle. A variável P é também uma variável binária que assume valor 1 para todos as observações de períodos posteriores a 01/01/2006 (Início dos Investimentos em série no Polo Naval), e zero para os anos que antecedem essa data.

De acordo com Cameron e Trivedi (2005) o coeficiente de interesse a ser estimado é o α_3 que captura a diferença das diferenças condicionais da variável dependente entre os dois grupos ao longo do tempo. Para a visualização do que está sendo dito tomemos as quatro seguintes esperanças condicionais:

$$E[Y_{it}|G_i = 1, P_i = 1] = \alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 + E[\varepsilon_{it}|G_i = 1, P_i = 1]$$
 (a)

$$E[Y_{it}|G_i = 1, P_i = 0] = \alpha_0 + \alpha_1 + E[\varepsilon_{it}|G_i = 1, P_i = 0]$$
 (b)

$$E[Y_{it}|G_i = 0, P_i = 1] = \alpha_0 + \alpha_2 + E[\varepsilon_{it}|G_i = 0, P_i = 1]$$
 (c)

$$E[Y_{it}|G_i = 0, P_i = 0] = \alpha_0 + E[\varepsilon_{it}|G_i = 1, P_i = 1].$$
 (d)

Agora, fazendo as diferenças (a) - (b) e (c) - (d) teremos:

(a)
$$-$$
 (b) $= \alpha_2 + \alpha_3 + \{E[\varepsilon_{it}|G_i = 1, P_i = 1] - E[\varepsilon_{it}|G_i = 1, P_i = 0]\}$ (e)

(c)
$$-$$
 (d) $= \alpha_2 + \{E[\varepsilon_{it}|G_i = 1, P_i = 1] - E[\varepsilon_{it}|G_i = 1, P_i = 0]\}.$ (f)

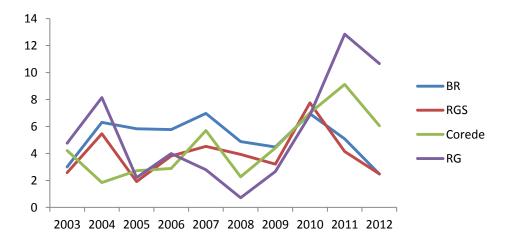
Por fim, com a hipótese de identificação do método de diferenças em diferenças temos que $\{E[\varepsilon_{it}|G_i=1,P_i=1]-E[\varepsilon_{it}|G_i=1,P_i=0]\}=\{E[\varepsilon_{it}|G_i=1,P_i=1]-E[\varepsilon_{it}|G_i=1,P_i=0]\}$ e obtemos α_3 a partir de (e) - (f) que é considerado o efeito médio do tratamento.

Com relação a base de dados, foram estimados modelos num período de 2003 a 2013, não podendo utilizar períodos anteriores pela falta de dados necessários para o cálculo da rotatividade.

4 RESULTADOS

Nesse tópico serão abordados os resultados encontrados na monografia. Por início, iremos apresentar uma breve análise do mercado de trabalho do Brasil, e algumas regiões, além de demonstrar os índices de rotatividade encontrados, e logo após serão demonstrados os resultados dos modelos econométricos aplicados.

4.1 EVOLUÇÃO DO MERCADO DE TRABALHO NO BRASIL


Tabela 1 – Evolução do emprego formal: Brasil, Rio Grande do Sul, Corede Sul e Rio Grande – 2003 a 2012.

Comportamento do emprego formal 200				ormal 2003-201	2	
Nível Geográfico	Movimentações de mão-de-obra no período					
	2003	2006	2009	2012	2003-2012	
		Número de admissões em número de pessoas				
Brasil	9.809.343	12.831.149	16.187.640	20.432.039	153.503.755	
Rio Grande do Sul	777.864	881.310	1.112.226	1.470.496	11.018.746	
Corede Sul	36.774	42.321	52.173	79.567	517;836	
Rio Grande	7.863	10.812	12.852	31.572	143.436	
	١	lúmero de desli	gamentos em n	úmero de pesso	oas	
Brasil	9.163.910	11.602.463	15.192.530	19.563.798	140.216.442	
Rio Grande do Sul	730.183	829.211	1.048.000	1.402.915	10187.110	
Corede Sul	34.202	38.952	49.656	72.264	475.132	
Rio Grande	7.033	9.035	12.263	24.830	123.429	
	Va	ariação absoluta	a (geração de er	mprego no perío	odo)	
Brasil	645.433	1.228.686	995.110	868.241	13.287.313	
Rio Grande do Sul	47.681	52.099	64.226	67.581	831.636	
Corede Sul	2.572	3.369	2.714	7.303	42.704	
Rio Grande	830	1.777	639	6.742	20.007	
	Estoque de mão-de-obra em número de pessoas					
Brasil	29.544.927	35.155.249	41.207.546	47.458.712	-	
Rio Grande do Sul	2.079.813	2.320.747	2.602.320	2.993.031	-	
Corede Sul	114.232	122.972	138.801	171.888	-	
Rio Grande	30.530	35.093	37.303	52.897	-	

Fonte: Elaboração própria com base nos dados do MTE (2015)

Na tabela 1 podemos notar o comportamento do emprego formal no Brasil, destacando algumas áreas, como o Rio Grande do Sul, o Corede Sul e o munícipio de Rio Grande. Primeiramente percebe-se que na última década o aumento na geração de empregos tem crescido consideravelmente, como, por exemplo, no município de Rio Grande onde obtiveram-se 20.007 empregos gerados no ano de 2012, sendo quase metade dos empregos gerados no Corede Sul. Esse aumento é dado por um maior número de trabalhadores ingressando no mercado de trabalho, que como demonstra a tabela, tem crescido em Rio Grande e no resto do Estado. Entretanto, o número de trabalhadores desligados tem aumentado num patamar semelhante, o que tem gerado altas taxas de rotatividade, que serão melhores explicadas ainda no decorrer do trabalho.

Gráfico 7 – Estoque de trabalhadores: Brasil, Rio Grande do Sul, Corede Sul e Rio Grande – Variação em relação ao período anterior (%) 2003-2012.

Fonte: Elaboração própria com base nos dados do MTE (2015)

No gráfico 7 é demostrada a variação do estoque de trabalhadores, em relação ao período anterior. É importante notar no gráfico as altas taxas de crescimento do município de Rio Grande, que acabam impulsionando as taxas do Corede Sul, dado que o município possui uma grande influência sobre essa região. No Rio Grande do Sul as taxas se mantiveram praticamente constantes entre 2005 e 2008, depois acaba tendo uma queda pós-crise mundial, e logo em seguida um alto crescimento, contrabalanceado com as taxas decrescentes após esse período.

4.2 ROTAVIDIDADE

No gráfico 8 é demostrada a rotatividade calculada para o Brasil, o Rio Grande do Sul, e para a região sul do estado. Primeiramente, notamos que a rotatividade do Rio Grande do Sul possui índices maiores que a do Brasil em todos os anos da análise, ou seja, há uma maior movimentação nos empregos no estado em relação ao país. Em relação ao Corede Sul, o mesmo tem rotatividade abaixo da média do estado, com exceção do ano de 2013, que alcançou uma rotatividade média maior, sendo de 4,3029%. Esse índice foi justificado pela grande rotatividade de empregos encontrada em Rio Grande nesse ano, em que a mesma alcançou um índice médio de 6,50%, ou seja, no ano de 2013, em média, 6,50% das pessoas trocaram de emprego mensalmente no município.

A cidade de Rio Grande, como notado no gráfico, apresenta uma rotatividade constante nos períodos anteriores a implementação do polo naval, tendo a partir de 2006 taxas de rotatividade em considerável crescimento. O município de São José do Norte apresenta uma rotatividade sazonal, isso porque possui um pequeno estoque de emprego, ficando vulnerável a mudanças. Já o munícipio de Pelotas segue uma rotatividade estável, como pode ser observado no gráfico abaixo.

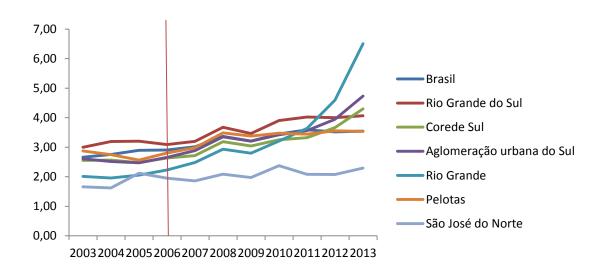


Gráfico 8 – Rotatividade média mensal no ano (2003-2013)

Fonte: Elaboração própria com base nos dados do MTE (2015)

4.3 RESULTADOS DO PAINEL

Na tabela abaixo temos os resultados obtidos após gerar os modelos com dados em painel. São estimados 5 modelos, com o intuito de captar os impactos dos determinantes da rotatividade, e avaliar, através da dummy Polo, se o crescimento da rotatividade é maior no período posterior a 2006 no Corede Sul.

Tabela 2 – Resultados gerados com o painel para o Corede Sul

VARIÁVEIS	Pool (1)	Efeitos Fixos (2)	Efeitos Aleatórios (3)	Efeitos Fixos Robusto (4)	Efeitos Aleatórios Robusto (5)
LOGPIB	0,4276**	0,3386	0,4018	0,3386	0,4018
	(0,0635)	(0,2173)	(0,1257)	(0,2281)	(0,1464)
LOGIEDU	-2,9561**	3,5235	2,0339	3,5235	2,0339
	(2,5019)	(2,9111)	(2,5932)	(3,5635)	(2,8693)
POLO	-,1077	-0,0642	-0,08230	-0,0642	-0,08230
	(0,1705)	(0,0977)	(0,0711)	(0,1180)	(0,0945
CONSTANTE	`-8,11** [′]	-5,2404	-6,7110	-5,2404	-6,7110
	(1,3809)	(4,2696)	(2,5213)	(4,3300)	(2,6557)
OBSERVAÇÕES	153	153	153	153	153
R ²	0,2185	0,1961	0,2138	0,1961	0,2138
MUNICÍPIOS	22	22	22	22	22
	Sta	ndard errors in par	entheses		

Fonte: Elaboração própria com base nos resultados gerados

Como podemos notar acima o modelo pool obteve o melhor R², no entanto ele não pode ser considerado o melhor, pois o mesmo não consegue captar alguns efeitos como fixos e aleatórios que possam estar influenciando o resíduo do modelo. Começamos então analisando o modelo com efeitos aleatórios que obteve um melhor resultado em relação ao modelo de efeitos fixos.

A primeira variável explicativa analisada é o log do PIB, a mesma obtém um coeficiente de 0,4018, o que nos diz que um aumento de 1% no PIB, impactará em 0,4018% na rotatividade. O log do PIB ainda apresenta um p valor menor que 0,05, avaliando-se como significativo no modelo. Esse coeficiente positivo é explicado pelos grandes investimentos que a região sul recebeu nos últimos anos, fazendo com que o aumento do PIB leve as pessoas a trocarem de um emprego para outro.

Outra variável explicativa do modelo, é o log do IEDU – índice de educação do IDESE -, o mesmo encontrou um coeficiente de 2,0339, e p valor de 0,4333, o que nos diz que essa variável não foi representativa para explicar a rotatividade. Essa variável teve efeito positivo, mas se impactasse negativamente, poderia contrariar de certa forma o esperado, mas é explicado pelo fato "do crescimento econômico da região não estar diretamente dependente da melhor qualidade do capital humano e sim em função da política de fortalecimento à atividade naval estabelecida do sul do País e que por sua vez, para o período avaliado, não foi intensiva em capital humano de qualidade" (TEIXEIRA; GONÇALVES, 2014).

Ainda nesse modelo a *dummy* do Polo naval, essa variável nos diz que nos períodos de 2003 a 2005 temos um valor 0, e de 2006 a 2010 é 1. Ela tem como objetivo captar o maior crescimento da rotatividade no mercado de trabalho da região após 2006, no entanto esse modelo não encontrou tal resultado, como podemos notar na estatística t do coeficiente, que foi de 0,528. Por último temos a constante do modelo que nos diz que quando o PIB e o IEDU forem 0, a rotatividade será o valor da constante, nesse caso, -8,11.

O modelo abaixo é o resultado de um painel estimado para a Aglomeração urbana do Sul, com o intuito de tentar captar o efeito do polo naval nessas cidades, o qual não foi encontrado no Corede Sul.

Tabela 3 – Resultados gerados com o painel para a Aglomeração urbana do Sul

VARIÁVEIS	Pool (1)	Efeitos Fixos (2)	Efeitos Aleatórios (3)	Efeitos Fixos Robusto (4)	Efeitos Aleatórios Robusto (5)
LOGPIB	0,6085	1,1334	0,6085	1,1334	0,6085
	(0,0633)	(0,8179)	(0,0633)	(0,8206)	(0,0520)
LOGIEDU	-16,5005	6,0817	-16,5005	6,0817	-16,5005
	(2,1963)	(8,6470)	(2,1963)	(7,7145)	(1,0000)
POLO	0,2009	-0,0493	0,2009	-0,0493	0,2009
	(0,2464)	(0,3889)	(0,2464)	(0,1926)	(0,3748)
CONSTANTE	-15,0216	-20,9322	-15,0216	-20,9322	-15,0216
	(1,4196)	(16,7060)	(1,4196)	(17,0074)	(1,0936)
OBSERVAÇÕES	34	34	34	34	34
R^2	0,8057	0,3221	0,8057	0,3221	0,8057
MUNICÍPIOS	[´] 5	[´] 5	, 5	[´] 5	[´] 5
	Sta	ndard errors in par	entheses		

Fonte: Elaboração própria com base nos resultados gerados

Como se percebe acima, o modelo *pool* encontrou coeficientes iguais ao modelo de efeitos aleatórios, no entanto os dois não encontraram resultados

confiáveis. Primeiramente analisando todos os modelos, notamos que em relação a variável log do PIB, apena o modelo com efeitos fixos não encontrou significância na estimação, e acabou encontrando nos outros modelos coeficiente de 0,6085, ou seja, um aumento de 1% no PIB impactaria em 0,6085% na rotatividade. Quando é analisado o log do IEDU, constata-se que há algum problema de estimação, dado que o coeficiente encontrado é muito alto. Em relação a dummy e a constante, também há problemas. Em relação à primeira não encontrou-se significância, e em relação a segunda é constatado o mesmo problema do IEDU. Nesse modelo temos ainda a análise do coeficiente de determinação, que foi de 0,8057 no modelo de efeitos aleatórios, ou seja, 80,57% das variações da rotatividade são explicadas pelas variáveis explicativas do modelo.

Como foi explicado nesse tópico, o modelo com dados em painel não encontrou resultados satisfatórios em nenhuma das estimações. Primeiramente, obteve-se dificuldade na escolha e na coleta de dados para que o painel fosse estimado. Em segundo lugar, percebe-se que há alguma endogeneidade entre variáveis explicativas e explicadas, podendo ser o PIB essa variável que acarretou em viesamento dos coeficientes, contrariando alguns resultados esperados. Em vista disso, no tópico abaixo, estimar-se-á um modelo de diferenças em diferenças, ou seja, será analisada a rotatividade das três cidades que formam o APL, em relação à média das outras cidades do Corede Sul.

4.4 RESULTADOS DO MODELO DE DIFERENÇAS EM DIFERENÇAS

O modelo diferenças em diferenças será explicado nesse tópico. Primeiramente serão explicados os grupos dos tratados (municípios analisados), em relação ao grupo do controle – restante dos municípios do Corede Sul, conforme abaixo:

Os grupos a seguir foram considerados os tratados para as análises:

t0 = Rio Grande, Pelotas e São José do Norte;

t1 = Rio Grande;

t2 = Pelotas;

t3 = São José do Norte;

t4 = Pelotas e Rio Grande;

t5 = Rio Grande, Pelotas, São José do Norte, Capão do Leão e Arroio do Padre

Como podemos notar logo acima, serão analisados 5 grupos para ver onde tivemos impactos significativos do polo. Na tabela abaixo encontram-se os coeficientes estimados para analisar qual foi o impacto do polo naval nas cidades consideradas como tratadas. Os coeficientes foram estimados em painel com base em modelos de efeitos-fixos de modo robusto, com *dummies* de ano, pois assim pode-se controlar os efeitos temporais bem como as especificidades de cada município avaliado.

Tabela 4 – Resultado do modelo diferenças em diferenças com painel e efeitos fixos

Deteticidede	Choque (2006)	Choque (2005)	Choque (2004)	
Rotatividade –	coef/se	coef/se	coef/se	
T0	0,4300	0.5198	0,3345	
	(0,4664)	(0.3487)	(0,3033)	
T1	1,3288**	1.2209**	0,9155**	
	(0,1690)	(0,1731)	(0,1741)	
T2	0,3930**	0,2600	0,0111	
	(0,1690)	(0,1731)	(0,1741)	
Т3	-0,4318**	0,0784	0,0798	
	(0,1690)	(0,1731)	(0,1741)	
T4	0,8609**	0,7405	0,4633	
	(0,3862)	(0,3963)	(0,3780)	
T5	0,1926	0,3301	0,1735	
	(0,3723)	(0,3103)	(0,2731)	

Fonte: Elaboração própria a partir dos resultados.

O primeiro resultado analisado é quando verificamos se houve impacto do polo no período posterior a 2006, quando verificamos as cidades de Pelotas, Rio Grande e São José do Norte, mas como podemos notar, o impacto não foi captado, isso porque o coeficiente, não foi significativo a 95% de confiança. Já em relação a outro grupo tratado, t1, verificamos que há um aumento de 132% da rotatividade no período posterior a 2006, demonstrando uma forte rotatividade nos postos de trabalho no município de Rio Grande após a implementação do polo. Em relação ao grupo t2, que é o município de Pelotas, observou-se um crescimento de 39,30% na rotatividade após 2006, indicando uma forte alteração nos postos de trabalho deste

município também com o fortalecimento do setor naval na região. O grupo t3, que leva em consideração São José do Norte, obteve um resultado estatisticamente representativo também, a 95% de confiança. Temos que nesse município houve um decréscimo de 43, 18% na rotatividade no período após 2006.

Um resultado negativo não chega a ser surpreendente para esse município, dado que o mesmo, como já exposto anteriormente, possui uma rotatividade sazonal, em virtude do setor agrícola, bem como possui um estoque de emprego pequeno que está passível de grandes alterações com pouca mudança, além disto, é possível que tenha ocorrido uma migração da força de trabalho deste município para o município de Rio Grande, o que reduziria o movimento de entrada de trabalhadores no mercado de trabalho local, baixando assim a rotatividade. Sobre o grupo de tratados T4, que avalia Pelotas e Rio Grande, em relação aos demais, encontra-se um resultado um crescimento de 86,09% na rotatividade após o choque de 2006 no município de Rio Grande. Por último temos o grupo T5, que avalia os municípios da Aglomeração urbana do Sul, e, como podemos notar, não tivemos um resultado estatisticamente significativo para esses municípios.

Outro resultado encontrado a partir da estimação desse modelo, é que houve uma antecipação ao polo naval no município de Rio Grande, ou seja, as pessoas se prepararam de certa forma para o início do polo. O polo teve suas obras iniciadas em 2003, porém sua atividade foi efetivamente potencializada em 2006, por isto, realizou-se mais duas análises considerando o efeito tratamento como sendo a partir de 2004 e 2005. Nesta análise pode-se obsevar um efeito antecipação do mercado de trabalho somente de Rio Grande, como demonstrado nas colunas do choque de 2005 e 2004.

Assim, com os resultados obtidos, constatou-se que o efeito polo foi observado principalmente sobre a rotatividade no mercado de trabalho dos municípios de Rio Grande e Pelotas a partir de 2006, em relação aos demais municípios do Corede Sul. A alteração foi maior no mercado de trabalho de Rio Grande, 132%, já em Pelotas a alteração foi de 39%.

5 CONSIDERAÇÕES FINAIS

A presente monografia apresentou um estudo do funcionamento do mercado de trabalho da região sul do estado do Rio Grande do Sul. Como foi explicado, essa região recebeu muitos investimentos desde a última década, com a implementação do polo naval no município de Rio Grande, e acabou sofrendo algumas variações no mercado de trabalho, principalmente na rotatividade de seus trabalhadores. Essa maior rotatividade pode ser explicada pelo desejo dos trabalhadores em obter rendimentos melhores, a partir da maior oferta de empregos na região.

Os níveis maiores de rotatividade começam a aparecer a partir de 2006 em alguns municípios, como Pelotas e Rio Grande. A cidade de São José do Norte, também acaba tendo algumas mudanças, mas mais explicado pela sazonalidade do seu estoque de trabalho, bem como pela possibilidade de migração de trabalhadores deste município para o município de Rio Grande. O Corede Sul, impulsionado por Rio Grande, também obteve altos níveis de rotatividade de emprego.

Para tentar precisar melhor esses resultados, foram estimados modelos econométricos. Primeiramente, estimaram-se dois modelos com dados em painel, mas devido a uma grande dificuldade de encontrar observações suficientes que não fossem também afetadas pela implementação do polo, os mesmos não apresentaram um ajuste satisfatórios.

Em vista disso, a alternativa encontrada para captar o efeito da implementação sobre o mercado de trabalho regional, foi à estimativa de alguns modelos de diferenças em diferenças. Ou seja, avaliar a diferença antes e depois da implementação do polo em relação aos municípios que tiveram suas dinâmicas afetadas pelo Polo. O maior impacto encontrado foi no município de Rio Grande, tendo um aumento de 132% na rotatividade após 2006. Além disso, o município de Pelotas, vizinho de Rio grande, sofreu algumas mudanças também, tendo um aumento de 39,30% na rotatividade após 2006. O município de São José do Norte teve uma queda da rotatividade, não explicado pelo polo, mas sim por uma possível redução no número de trabalhadores admitidos em relação aos demitidos, isto em

função da possível migração de trabalhadores deste município para o município de Rio Grande. Foram usados também, como grupo dos tratados, outros municípios, no entanto os maiores impactos encontrados foram em Pelotas e Rio Grande.

Por fim, ainda encontrou-se resultados sobre uma suposta antecipação da população de Rio Grande quanto a implementação do polo, sendo encontrados altos índices de rotatividade no ano anterior a plenitude do mesmo.

Essa monografia teve como objetivo avaliar somente uma variável que sofreu alteração com o Polo, por isto deixa-se como indicação de novos estudos, a análise de outras variáveis, ou mesmo, a dinâmica do mercado de trabalho a partir de novas metodologias. Além disso, dar continuidade nos estudos da rotatividade, visando as mudanças no cenário do polo, com a crise estabelecida no último ano.

REFERÊNCIAS

ASSEMBLÉIA LEGISLATIVA DO ESTADO DO RIO GRANDE DO SUL. Relatório da Subcomissão do Polo Naval do Rio Grande, 2011. Disponível em: http://www.al.rs.gov.br/download/SubPoloNaval/RFpolo_Naval.pdf Acesso 12 de Maio, 2014.

BARROS, R. P; CARVALHO, M; FRANCO, S; ROSALÉM, A. Uma avaliação da pertinência de um programa de bolsa qualificação para o combate a pobreza no Espírito Santo. **Instituto de Pesquisa Econômica Aplicada: textos para discussão**, Brasília, Março de 2011.

BALTAGI, Badi H., **Econometric analysis of panel data** – 3rd ed, 2005

BORJAS, George J., **Economia do trabalho**; tradução: R. Brian Taylor; revisão técnica: Giacomo Balbinotto Neto – 5^a ed. – Porto Alegre: AMGH, 2012

CAMARGO, J. M. Flexibilidade do mercado de trabalho no Brasil. Rio de Janeiro, **Editora Fundação Getúlio Vargas**, 1996

CAMERON, A. C.; TRIVEDI, P. K. **Microeconometrics: Methods and Applications**. Cambridge University Press, 2005.

CARDOZO, Carla Andréia; Gestão do turnover, Novo Hamburgo, 2005.

CHIAVENATO, Idalberto. **Gestão de Pessoas**. 3Ed. Rio de Janeiro: Elsevier, 2010.

DEPARTAMENTO INTERSINDICIAL DE ESTATÍSTICA E ESTUDOS SOCIOECONÔMICOS – DIEESE. Rotatividade e Flexibilidade no mercado de trabalho. **Editora DIEESE**. São Paulo, 2011

ECKERT, Alex; MECCA, M. S.; DENICOL, M. S. G. M.; GIACOMET, M. O. As motivações e os reflexos do turnover em termos contábeis e econômicos numa entidade sem fins lucrativos no município gaucho de Caxias do Sul. In: XIII Convenção de Contabilidade do Rio Grande do Sul, 2011.

FUNDAÇÃO DE ESTATÍSTICA E ECONOMIA – FEE. FEE dados. Disponível em: http://feedados.fee.tche.br/feedados/> Acesso 30 de junho de 2014.

TEIXEIRA, Gibran da Silva; GONÇALVES, Rodrigo Rocha. Indústria da construção naval e crescimento econômico: uma análise para o Corede Sul-RS, 2014

GONZAGA, Gustavo. Rotatividade e qualidade do emprego no Brasil. **Revista de Economia e Política**, v.18, nº1, jan.-mar.1998

GUJARATI, Damodar N.; PORTER, Dawn C., **Econometria básica**; tradução Denise Durante, Mônica Rosenberg, Maria Lúcia G. L. Rosa; revisão técnica: Claudio D. Shikida, Ari Francisco de Araújo Júnior, Marco Antônio Salvato. – 5ª ed.– Porto Alegre: AMGH, 2011

JOHNSTON, Jack; Dinardo, John. **Econometric methods**. 4. Ed. Nova York: McGraw-Hill, 1997

JUDGE, George G.R.; CARTER, Hill; GRIFFITHS, William E.; LUTKEPOHL, Helmut; LEE, Tsoung-Chao. Introduction to the theory and practice of econometrics. Nova York: John Wiley & Sons, 1982

MANKIW, N. Gregory, Introdução a economia: princípios de micro e macroeconomia; tradução da 2ª ed. Original Maria José Cyhlar Monteriro. – Rio de Janeiro: Elsevier, 2001

MARQUES, Luís D., Modelos dinâmicos com dados em painel: uma revisão de literatura, 2000.

MINISTÉRIO DO TRABALHO E EMPREGO - MTE. Cadastro Geral de Empregados e Desempregados. Disponível em: http://www.mte.gov.br/caged/default.asp> Acesso 10 de maio, 2014.

ORELLANO, V.I.F; PAZELLO, E.T. Evolução e determinantes da rotatividade da mão-de-obra nas firmas da indústria paulista na década de 1990. **Pesquisa e Planejamento Econômico**, v.36, n.1, 2006.

PAES, Rafael L. et al. Arranjo produtivo local polo naval e offshore de Rio Grande e entorno: caracterização territorial e plano de desenvolvimento. Rio Grande: **Ed. Da FURG**, 2014

PETRÓLEO BRASILEIRO – S.A- PETROBRAS. Plano de Negócio e Gestão 2013-2017, 2013 Disponível em: http://www.petrobras.com.br/pt/quem-somos/estrategia-corporativa/plano-de-negocios/ Acesso 13 de Maio, 2014.

RAMOS, C. A.; CARNEIRO, F.G. Os determinantes da rotatividade do trabalho no Brasil: instituições x ciclos econômicos. **Nova economia**. Belo Horizonte, 2002

WOOLDRIDGE, J. M. Econometric Analysis of Cross Section and Panel data. *The MIT Press*, 2003.

APÊNDICE A:

Regressão para To: Gerando grupos de tratados (Rio Grande, Pelotas e São José do Norte)

Rotatividad	e Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
toanopos	0,4300117	0,4664860	0,92	0,367	0,40099	1,400122
ano2004	0,2475953	0,2353599	1,05	0,305	-0,2418624	0,737053
ano2005	0,1463989	0,1073299	1,36	0,187	-0,0768059	0,3696037
ano2006	0,1766816	0,1917834	0,92	0,367	-0,2221538	0,575517
ano2007	0,1356392	0,2214587	0,61	0,547	-0,3249093	0,5961877
ano2008	0,3347633	0,2183330	1,53	0,140	-0,119285	0,7888115
ano2009	0,1378137	0,2384100	0,58	0,569	-0,3579871	0,6336145
ano2010	0,4853572	0,2635148	1,84	0,080	-0,0626519	1,033366
ano2011	0,4401123	0,2362563	1,86	0,077	-0,0512095	0,9314341
ano2012	0,3654871	0,2080987	1,76	0,094	-0,0672778	0,798252
ano2013	0,6728344	0,2225743	3,02	0,006	0,2099657	1,135703
_cons	2,028853	0,1395064	14,54	0,000	1,7387340	2,318973
sigma_u: 1	.5765131	sigma_e: .6	673492	43	rho: .8456	6374

Regressão para T1: Gerando grupos de tratados Rio grande [Pelotas e São José do Norte(missing)]

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t1anopos	1,328836	0,1690748	7,86	0,000	0,9749584	1,682714
ano2004	0,2639799	0,2593618	1,02	0,322	-0,2788707	0,806830
ano2005	0,1134123	0,1001413	1,13	0,272	-0,0961858	0,323010
ano2006	0,206057	0,1979616	1,04	0,311	-0,2082813	0,620395
ano2007	0,084948	0,2190321	0,39	0,702	-0,3734915	0,543387
ano2008	0,3070088	0,2304044	1,33	0,198	-0,1752332	0,789250
ano2009	0,1594484	0,247562	0,64	0,527	-0,3587048	0,677601
ano2010	0,5188782	0,2747087	1,89	0,074	-0,0560937	1,09385
ano2011	0,4342117	0,2446886	1,77	0,092	-0,0779274	0,946350
ano2012	0,3444105	0,2154147	1,60	0,126	-0,1064577	0,795278
ano2013	0,6494541	0,2304971	2,82	0,011	0,167018	1,13189
_cons	1,926733	0,1505269	12,80	0,000	1,611676	2,241789
sigma_u: 1.6	306426	sigma_e: 0	,67954	649	rho: 0,8520	2943

Regressão para T2: Gerando grupos de tratados Pelotas [Rio Grande e São José do Norte (missing)]

Rotatividad	de Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t2anopos	0,3930122	0,1690748	2,32	0,031	0,0391346	0,7468897
ano2004	0,2603765	0,2596318	1,00	0,329	-0,283039	0,8037921
ano2005	0,0957743	0,1023913	0,94	0,361	-0,1185333	0,3100818
ano2006	0,2384353	0,1886122	1,26	0,221	-0,1563346	0,6332053
ano2007	0,113725	0,2141077	0,53	0,601	-0,3344076	0,5618576
ano2008	0,3385843	0,2272334	1,49	0,153	-0,1370206	0,8141892
ano2009	0,1921079	0,2447092	0,79	0,442	-0,3200742	0,7042901
ano2010	0,5358617	0,273042	1,96	0,065	-0,0356219	1,107345
ano2011	0,4281415	0,2449527	1,75	0,097	-0,0845505	0,9408335
ano2012	0,2961092	0,2096539	1,41	0,174	-0,1427015	0,7349199
ano2013	0,504808	0,1866353	2,70	0,014	0,1141758	0,8954403
_cons	1,969801	0,1510334	13,04	0,000	1,653684	2,285917
sigma_u: 1	sigma_u: 1,6375702 sigma_e: 0,63417218 rho: 0,86958525					

Regressão para T3: Gerando grupos de tratados São José do Norte [Pelotas e Rio Grande(missing)]

Rotatividad	de Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
t3anopos	-0,4318132	0,1690748	-2,55	0,019	-0,7856907	-0,0779356		
ano2004	0,2812186	0,2587984	1,09	0,291	-0,2604526	0,8228898		
ano2005	0,1738916	0,1159311	1,50	0,150	-0,068755	0,4165382		
ano2006	0,2728415	0,1848062	1,48	0,156	-0,1139624	0,6596454		
ano2007	0,2061468	0,2253566	0,91	0,372	-0,26553	0,6778236		
ano2008	0,3774289	0,2296297	1,64	0,117	-0,1031916	0,8580494		
ano2009	0,1728157	0,2458467	0,70	0,491	-0,3417475	0,6873788		
ano2010	0,529656	0,2735235	1,94	0,068	-0,0428353	1,102147		
ano2011	0,4602338	0,2453512	1,88	0,076	-0,0532922	0,9737598		
ano2012	0,3242666	0,2116248	1,53	0,142	-0,1186692	0,7672025		
ano2013	0,5682755	0,193484	2,94	0,008	0,1633089	0,9732421		
_cons	1,987564	0,1516549	13,11	0,000	1,670147	2,304982		
sigma_u: 1	sigma_u: 1,673799 sigma_e: 0,64834936 rho: 0,8695338							

Regressão para T4: Gerando grupos de tratados Rio Grande e Pelotas [São José do Norte (missing)]

Rotatividad	de Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t4anopos	0,8609241	0,3862132	2,23	0,037	0,0552975	1,666551
ano2004	0,2454727	0,2471198	0,99	0,332	-0,2700102	0,760955
ano2005	0,0934923	0,0972988	0,96	0,348	-0,1094694	0,296453
ano2006	0,174286	0,1960143	0,89	0,384	-0,2345928	0,583164
ano2007	0,0674901	0,2147025	0,31	0,757	-0,3803713	0,515351
ano2008	0,3030494	0,2227007	1,36	0,189	-0,1614961	0,767594
ano2009	0,1573027	0,2422951	0,65	0,524	-0,3481161	0,662721
ano2010	0,5042747	0,2686505	1,88	0,075	-0,0561205	1,064670
ano2011	0,4220204	0,2400231	1,76	0,094	-0,0786589	0,922699
ano2012	0,3420423	0,21079	1,62	0,120	-0,097658	0,781742
ano2013	0,6314783	0,2245	2,81	0,011	0,1631796	1,099777
_cons	1,9717660	0,1464279	13,47	0,000	1,666322	2,277209
sigma_u: 1	1.5921491	sigma_e: 0,	667386	28	rho: 0,8505	5264

Regressão para T5: Gerando grupos de tratados (Rio Grande, Pelotas, São José do Norte, Arroio do Padre e Capão do Leão)

Rotatividad	de Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t5anopos	0,1926221	0,3723322	0,52	0,610	-0,581685	0,9669292
ano2004	0,2475953	0,2353599	1,05	0,305	-0,2418624	0,737053
ano2005	0,1463989	0,1073299	1,36	0,187	-0,0768059	0,3696037
ano2006	0,1915418	0,2049274	0,93	0,361	-0,234628	0,6177116
ano2007	0,1504994	0,2258634	0,67	0,512	-0,3192092	0,6202079
ano2008	0,3496235	0,2280995	1,53	0,140	-0,1247354	0,8239823
ano2009	0,1526739	0,2518826	0,61	0,551	-0,3711447	0,6764925
ano2010	0,5002175	0,2773949	1,80	0,086	-0,0766567	1,077092
ano2011	0,4549725	0,2528926	1,80	0,086	-0,0709464	0,9808914
ano2012	0,3803473	0,2280559	1,67	0,110	-0,0939209	0,8546155
ano2013	0,6876946	0,2308582	2,98	0,007	0,2075987	1,167791
_cons	2,028853	0,1406761	14,42	0,000	1,736301	2,321405
sigma_u: 1	1,5780755	sigma_e:	0,67608	939	rho: 0,84	4491623

APÊNDICE B:
Estimando os efeitos Placebos (2005) para T0:

Rotatividade	Coef.	Std. Err.	t F	P> t	[95% Conf. Interval]		
to1anoantepos	0,519842	0,348743	1,49	0,151	-0,2054095	1,245094	
ano2004	0,247595	0,235359	1,05	0,305	-0,2418624	0,737053	
ano2005	0,075511	0,132977	0,57	0,576	-0,201030	0,352052	
ano2006	0,164431	0,188598	0,87	0,393	-0,227781	0,556644	
ano2007	0,123389	0,211608	0,58	0,566	-0,3166751	0,563454	
ano2008	0,322513	0,211741	1,52	0,143	-0,1178263	0,762853	
ano2009	0,125564	0,237221	0,53	0,602	-0,367766	0,618894	
ano2010	0,473107	0,264096	1,79	0,088	-0,0761102	1,022325	
ano2011	0,427862	0,233959	1,83	0,082	-0,058682	0,914408	
ano2012	0,353237	0,203837	1,73	0,098	-0,070666	0,777141	
ano2013	0,660584	0,216939	3,05	0,006	0,209433	1,111730	
_cons	2,02885	0,139813	14,51	0,000	1,738095	2,31961	
sigma_u: 1,	5701867	sigma_	sigma_e: 0,67313557		rho: 0,844	rho: 0,84475027	

Estimando os efeitos placebos (2005) para T1:

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t11anoantepos	1,220956	0,173103	7,05	0,000	0,858647	1,58326
ano2004	0,263979	0,259361	1,02	0,322	-0,278870	0,806830
ano2005	0,052364	0,123024	0,43	0,675	-0,205127	0,309856
ano2006	0,211451	0,195266	1,08	0,292	-0,197246	0,620147
ano2007	0,090342	0,216986	0,42	0,682	-0,363816	0,544500
ano2008	0,312402	0,228181	1,37	0,187	-0,165186	0,789991
ano2009	0,164842	0,245261	0,67	0,510	-0,348496	0,678181
ano2010	0,524272	0,273454	1,92	0,070	-0,048074	1,09661
ano2011	0,439605	0,244053	1,80	0,088	-0,071203	0,950414
ano2012	0,349804	0,215171	1,63	0,120	-0,100554	0,800163
ano2013	0,654848	0,231956	2,82	0,011	0,169356	1,140339
_cons	1,92673	0,1506124	12,79	0.000	1,611497	2,241968
sigma_u: 1,6	307041	sigma_e:	0,6847	75342	rho: 0,8501	0397

Estimando os efeitos placebos (2005) para T2:

Rotatividade	Coef.	Std. Err.	t I	P> t	[95% Conf. l	nterval]
t21anoantepos	0,260075	0,173103	1,50	0,149	-0,102233	0,622383
ano2004	0,260376	0,259631	1,00	0,329	-0,283039	0,803792
ano2005	0,082770	0,109446	0,76	0,459	-0,146304	0,311845
ano2006	0,245082	0,186550	1,31	0,205	-0,145373	0,635537
ano2007	0,120371	0,212692	0,57	0,578	-0,324799	0,565542
ano2008	0,345231	0,225774	1,53	0,143	-0,127320	0,817782
ano2009	0,198754	0,243156	0,82	0,424	-0,310177	0,707687
ano2010	0,542508	0,272081	1,99	0,061	-0,026964	1,111981
ano2011	0,434788	0,244138	1,78	0,091	-0,076198	0,945775
ano2012	0,302756	0,208127	1,45	0,162	-0,132860	0,738372
ano2013	0,511454	0,183979	2,78	0,012	0,126381	0,896527
_cons	1,969801	0,150728	13,07	0,000	1,654322	2,28527
sigma_u: 1,6391549		sigma_e: 0,63506845 rho: 0,86948428				128

Estimando os efeitos placebos (2005) para T3:

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]	
t31anoantepos	0,078496	0,173103	0,45	0,655	-0,283812	0,440805	
ano2004	0,281218	0,258798	1,09	0,291	-0,260452	0,822889	
ano2005	0,169968	0,117149	1,45	0,163	-0,075230	0,415163	
ano2006	0,247326	0,186182	1,33	0,200	-0,142358	0,637010	
ano2007	0,180631	0,217403	0,83	0,416	-0,274399	0,635661	
ano2008	0,351913	0,225897	1,56	0,136	-0,120894	0,824722	
ano2009	0,147300	0,248265	0,59	0,560	-0,372325	0,666925	
ano2010	0,504140	0,276437	1,82	0,084	-0,074448	1,08273	
ano2011	0,434718	0,244140	1,78	0,091	-0,076273	0,945709	
ano2012	0,298751	0,208035	1,44	0,167	-0,136671	0,734173	
ano2013	0,54276	0,18577	2,92	0,009	0,153938	0,931581	
_cons	1,987564	0,150369	13,22	0,000	1,672837	2,30229	
sigma_u: 1,6	sigma_u: 1,6567592		sigma_e: 0,64988546			rho: 0,86664851	

Estimando os efeitos placebos (2005) para T4:

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
t41anoantepos	0,740515	0,396337	1,87	0,076	-0,086229	1,56726
ano2004	0,245472	0,247119	0,99	0,332	-0,270010	0,760955
ano2005	0,022967	0,123971	0,19	0,855	-0,235632	0,281566
ano2006	0,185753	0,191911	0,97	0,345	-0,214566	0,586073
ano2007	0,078957	0,211637	0,37	0,713	-0,362510	0,520426
ano2008	0,314516	0,219334	1,43	0,167	-0,143007	0,772041
ano2009	0,168770	0,238804	0,71	0,488	-0,329367	0,666907
ano2010	0,515742	0,266667	1,93	0,067	-0,040517	1,07200
ano2011	0,433487	0,238715	1,82	0,084	-0,064462	0,931438
ano2012	0,353509	0,209132	1,69	0,106	-0,082731	0,789751
ano2013	0,642945	0,223717	2,87	0,009	0,176279	1,10961
_cons	1,97176	0,146306	13,48	0,000	1,66657	2,27695
sigma_u: 1,5925	sigma_e: 0,0	672272	rho: 0,848749			

Estimando os efeitos placebos (2005) para T5:

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
t51anoantepos	0,330164	0,310348	1,06	0,299	-0,315241	0,97557
ano2004	0,247595	0,235359	1,05	0,305	-0,241862	0,737053
ano2005	0,071361	0,146966	0,49	0,632	-0,234272	0,376995
ano2006	0,160282	0,199656	0,80	0,431	-0,254925	0,575489
ano2007	0,119239	0,214677	0,56	0,584	-0,327206	0,565686
ano2008	0,318363	0,221843	1,44	0,166	-0,142985	0,779713
ano2009	0,121414	0,247292	0,49	0,629	-0,392859	0,63568
ano2010	0,468957	0,276098	1,70	0,104	-0,105221	1,043137
ano2011	0,423713	0,250374	1,69	0,105	-0,096969	0,944395
ano2012	0,349087	0,220877	1,58	0,129	-0,110252	0,808428
ano2013	0,656435	0,223146	2,94	0,008	0,192375	1,120494
_cons	2,028853	0,141058	14,38	0,000	1,735506	2,322201
sigma_u: 1,5603	883 s	igma_e: 0,67	747561	3 і	rho: 0,842463	315

APÊNDICE C:

Estimando os efeitos placebos (2004) para T0:

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]	
to2anoantepos	0,334569	0,303396	1,10	0,283	-0,296378	0,965516	
ano2004	0,201972	0,255061	0,79	0,437	-0,328457	0,732402	
ano2005	0,100775	0,123637	0,82	0,424	-0,156341	0,357893	
ano2006	0,189696	0,191015	0,99	0,332	-0,207541	0,586934	
ano2007	0,148654	0,214315	0,69	0,496	-0,297038	0,594346	
ano2008	0,347778	0,223018	1,56	0,134	-0,116013	0,81157	
ano2009	0,150828	0,242047	0,62	0,540	-0,352536	0,654193	
ano2010	0,498372	0,265371	1,88	0,074	-0,053499	1,05024	
ano2011	0,453127	0,233266	1,94	0,066	-0,031976	0,938231	
ano2012	0,378502	0,213063	1,78	0,090	-0,064587	0,821591	
ano2013	0,685849	0,233059	2,94	0,008	0,201176	1,170522	
_cons	2,028853	0,139504	14,54	0,000	1,738737	2,31897	
sigma_u: 1,5770349 sigma_e: 0,67626317 rho: 0,84467587							

Estimando os efeitos placebos (2004) para T1:

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]	
t12anoantepos	0,915574	0,174112	5,26	0,000	0,551153	1,27999	
ano2004	0,218201	0,271326 0,80 0,43		0,431	-0,349690	0,786093	
ano2005	0,067633	0,114865	0,59	0,563	-0,172783	0,308050	
ano2006	0,22672	0,193518	1,17	0,256	-0,178318	0,631758	
ano2007	0,105611	0,216471	0,49	0,631	-0,347469	0,558691	
ano2008	0,327671	0,231247	1,42	0,173	-0,156334	0,811678	
ano2009	0,180111	0,245887	0,73 0,473		-0,334537	0,694760	
ano2010	0,539541	0,273101	1,98	0,063	-0,032067	1,11115	
ano2011	0,454874	0,244037	1,86	0,078	-0,055902	0,965651	
ano2012	0,365073	0,221574	1,65	0,116	-0,098688	0,828835	
ano2013	0,670117	0,244835	2,74	0,013	0,157670	1,18256	
_cons	1,926733	0,150369	12,81	0,000	1,612005	2,24146	
sigma_u: 1,630732		sigma_e: 0,69088217			rho: 0,8478233		

Estimando os efeitos placebos (2004) para T2:

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]	
t22anoantepos	0,011145	0,174112	0,06	0,950	-0,353275	0,375566	
ano2004	0,259819	0,264517	0,98	0,338	-0,293821	0,813459	
ano2005	0,095217	0,105526	0,90	0,378	-0,125652	0,316086	
ano2006	0,257528	0,187882	1,37	0,186	-0,135714	0,650772	
ano2007	0,132818	0,214434	0,62	0,543	-0,315998	0,581635	
ano2008	0,357677	0,230981	1,55	0,138	-0,125771	0,841126	
ano2009	0,211201	0,245815	0,86	0,401	-0,303296	0,725698	
ano2010	0,554955	0,272765	2,03	0,056	-0,015950	1,125861	
ano2011	0,447234	0,243716	1,84	0,082	-0,062868	0,957338	
ano2012	0,315202	0,210901	1,49	0,151	-0,12622	0,756625	
ano2013	0,523901	0,187960	2,79	0,012	0,130495	0,917307	
_cons	1,969801	0,150369	13,10	0,000	1,655074	2,284528	
sigma_u: 1,6443936		sigma_e: 0,63550586			rho:0,87005117		

Estimando os efeitos placebos (2004) para T3:

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
t32anoantepos	0,076987	0,174112	0,44	0,663	-0,287433	0,441408
ano2004	0,277369	0,263674	1,05	0,306	-0,274507	0,829245
ano2005	0,170042	0,116705	1,46	0,161	-0,074224	0,414308
ano2006	0,247401	0,189171	1,31	0,207	-0,148539	0,643342
ano2007	0,180706	0,219598	0,82	0,421	-0,278918	0,640332
ano2008	0,351988	0,230716	1,53	0,144	-0,130905	0,834883
ano2009	0,147375	0,250395	0,59	0,563	-0,376708	0,671459
ano2010	0,504215	0,277293	1,82	0,085	-0,076166	1,08459
ano2011	0,434793	0,243731	1,78	0,090	-0,075341	0,944928
ano2012	0,298826	0,210014	1,42	0,171	-0,140738	0,738392
ano2013	0,542835	0,189682	2,86	0,010	0,145826	0,939844
_cons	1,987564	0,150369	13,22	0,000	1,672837	2,30229
sigma_u: 1,6565	sigma_e: 0,64990361			rho: 0,8666103		

Estimando os efeitos placebos (2004) para T4:

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
t42anoantepos	0,463359	0,378043	1,23	0,235	-0,325225	1,251945
ano2004	0,201343	0,262988	0,77	0,453	-0,347241	0,749927
ano2005	0,049362	0,113844	0,43	0,669	-0,188111	0,286837
ano2006	0,212149	0,191740	1,11	0,282	-0,187813	0,612112
ano2007	0,105353	0,21287	0,49	0,626	-0,338685	0,549392
ano2008	0,340912	0,227034	1,50	0,149	-0,132673	0,814498
ano2009	0,195166	0,241855	0,81	0,429	-0,309335	0,699667
ano2010	0,542138	0,267030	2,03	0,056	-0,014877	1,099154
ano2011	0,459883	0,238301	1,93	0,068	-0,037204	0,956971
ano2012	0,379905	0,217312	1,75	0,096	-0,073400	0,833211
ano2013	0,669341	0,238257	2,81	0,011	0,172346	1,166337
_cons	1,97176	0,145777	13,53	0,000	1,667678	2,275853
sigma_u: 1,5969	rho:0,84766	5535				

Estimando os efeitos placebos (2004) para T5:

Rotatividade	Coef.	Std. Err.	t	P> t	[95% Conf. Interval			
t52anoantepos	0,173579	0,273160	0,64	0,532	-0,394487	0,741647		
ano2004	0,208145	0,269093	0,77	0,448	-0,351465	0,767756		
ano2005	0,106949	0,137097	0,78	0,444	-0,178160	0,392058		
ano2006	0,195869	0,208176	0,94	0,357	-0,237057	0,628796		
ano2007	0,154827	0,225263	0,69	0,499	-0,313634	0,623289		
ano2008	0,353951	0,240073	1,47	0,155	-0,145308	0,853210		
ano2009	0,157001	0,257868	0,61	0,549	-0,379264	0,693268		
ano2010	0,504545	0,280885	1,80	0,087	-0,079588	1,08867		
ano2011	0,459300	0,248470	1,85	0,079	-0,057423	0,976023		
ano2012	0,384675	0,231364	1,66	0,111	-0,096473	0,865823		
ano2013	0,692022	0,245099	2,82	0,010	0,182309	1,201735		
_cons	2,028853	0,140666	14,42	0,000	1,736322	2,321385		
sigma_u: 1,5755	sigma_u: 1,5755615		sigma_e: 0,67682126			rho: 0,84421358		

APÊNDICE D:

Estoque de emprego dos municípios do Corede Sul:

Cidade	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Amaral	328	263	341	333	288	317	325	394	414	317	375
Ferrador											
Arroio do	126	118	156	161	192	174	241	265	257	239	249
Padre											
Arroio Grande	2.000	1.939	2.091	2.632	2.435	2.457	2.426	2.633	2.524	2.474	2.705
Canguçu	2.874	3.023	3.108	3.507	3.739	3.602	3.946	4.431	4.723	4.771	5.077
Capão do	2.043	2.385	3.089	2.576	3.064	2.998	3.019	3.745	3.978	3.359	3.372
Leão											
Cerrito	391	454	442	476	452	470	524	506	570	530	613
Chuí	826	951	885	884	811	768	872	920	971	964	1.286
Herval	631	611	728	711	761	671	760	741	971	752	779
Jaguarão	2.928	3.048	2.996	2.940	3.237	3.287	3.353	3.436	3.649	3.804	4.081
Morro	1.167	1.246	1.230	1.270	1.608	1.660	1.712	1.528	1.823	1.439	1.463
Redondo											
Pedras Altas	199	249	240	314	322	332	345	367	162	392	413
Pedro Osório	732	750	759	794	798	851	896	1.051	1.120	1.062	1.063
Pelotas	52.646	51.616	53.19	55.19	59.12	61.54	65.06	69.64	74.72	77.67	78.34
			5	3	6	9	8	3	6	0	0
Pinheiro	1.265	1.729	1.362	1.392	1.542	1.515	1.674	1.740	1.751	1.510	1.543
Machado											
Piratini	2.688	2.780	2.909	2.696	2.556	2.741	2.398	2.600	2.662	2.583	2.592
Rio Grande	30.530	33.015	33.74	35.09	36.07	36.33	37.30	39.85	44.97	52.89	56.35
			5	3	3	4	3	9	6	7	4
Santa Vitória	4.411	4.490	4.304	4.254	4.314	4.518	4.842	5.158	5.322	5.387	5.422
do Palmar											
Santana da	482	462	532	555	563	534	571	621	652	701	682
Boa Vista											
São José do	2.055	2.198	2.244	1.637	2.421	2.456	2.511	2.595	2.908	2.932	3.221
Norte											
São Lourenço	3.560	3.735	3.953	4.256	4.289	4.683	4.892	5.213	5.472	5.420	5.708
do Sul											
Tavares	387	402	419	479	544	647	684	666	666	578	632
Turuçu	989	879	787	819	854	372	439	419	470	467	476

Fonte: elaboração própria com base no MTE (2015)