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Abstract

The current work provides a comparison between two different methodologies for
solving convection-diffusion problems: the Generalized Integral Transform Technique
(GITT) and the Finite Volumes Method (FVM). The problem of thermally developing
laminar flow of non-Newtonian fluids between parallel plates is selected for illustrat-
ing purposes. Both solutions focus on the transformation of a partial-differential for-
mulation into an ordinary-differential form, either through integral transformation or
discretization of the directional variable transversal to the flow. The resulting ODE
systems are solved analytically and comparison results are presented, indicating ad-
vantages and disadvantages of each methodology. Once comparisons are performed
advantages and disadvantages of each methodology are discussed. The results indi-
cate that, in general, the integral transform technique presents a better convergence
rate.
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1 Introduction

Despite many fluids present Newtonian behavior, non-Newtonian fluids, whose apparent
viscosity varies with shear rate, are of great importance to several industrial applications.
The models of Generalized Newtonian fluids, specially Power-Law fluid and Bingham plas-
tic, due to its simplicity and ability to represent various problems of engineering interest is
used in this work.

Simulation of heat transfer in fluid flow usually requires a computational approach for
solving the associated partial differential equations. One such technique, which has been
growing in popularity, is the so called Generalized Integral Transform Technique (GITT)
(Cotta, 1993), a method which uses hybrid schemes, part analytical and part numerical.
Another popular method is the Finite Volume Method (FVM) (Patankar, 1980; Maliska,
1995), which appears as widely used option to a variety of convection-diffusion prob-
lems, due to its conservative nature and ease of application. Nevertheless, as with any
discrete method, approximations to integrals derivatives in terms of nodal points on a
computational domain are necessary, resulting in a solution error, which decays with grid
refinement.

The Integral Transform approach deals with expansions of the sought solution in terms
of a basis of infinite orthogonal eigenfunctions, maintaining the solution process always
within a continuum domain. However, since the infinite series representation must be trun-
cated for any possible solution implementation, a truncation error is involved. Then again,
this error decreases as the number of terms are increased and the solution converges
to a final value. Due to the nature of the series representation error estimates can be
easily obtained from this method, which results in a better control of the global solution
error. The usual drawback associated with this approach is the elaborate mathematical
manipulation; however this effort can be considerably minimized with the employment of
symbolical computation (Wolfram, 2003).

Interesting applications of the GITT include a variety of convection-diffusion problems.
For heat transfer in internal forced convection different investigations were carried out
employing the GITT. Among the recent advancements for these type of problems, one
should mention (Macêdo et al., 2000; Nacimento et al., 2002, 2006), which deals with non-
Newtonian flows in circular shaped ducts, (Maia et al., 2006), which presents a solution
for non-Newtonian flows in elliptical cross-section ducts, and (Lima et al., 2007), which
investigates the MHD flow and heat transfer within parallel-plates channels. For flow in
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ducts of arbitrary geometry, some particular solutions have been developed (Aparecido
and Cotta, 1990; Ding and Manglik, 1996; Barbuto and Cotta, 1997; Guerrero et al., 2000);
nonetheless, a general methodology was described in (Sphaier and Cotta, 2000, 2002),
being potentially promising for these types of geometries.

Both discrete and spectral approaches have been demonstrated to serve as effective
methodologies for solving convection-diffusion problems, but there is a relative lack of
comparative studies. This paper provides a performance comparison between the Gen-
eralized Integral Transform Technique and the Finite Volumes Method to the problem of
thermally developing laminar duct flow. Simulation results using both methodologies are
presented, as well as a preliminary study of the combined application of the spectral and
discrete approaches.

A recent investigation compared the performance of GITT and FVM solutions for steady
thermally developing laminar channel flow (Chalhub et al., 2008). however, only results
of the simplified cases with large Péclet values were examined. Numerical results are
calculated using the Mathematica system.

In order to perform a consistent comparison between the two methodologies, the FVM
solution is carried out by discretizing in a single spatial variable. With this strategy a cou-
pled ODE system for the other variable is obtained. This system is solved using analytical
and numerical methods, as done for the GITT solution. This approach is the so-called
Method of Lines, which in the classical sense analytical solutions for the transformed sys-
tem are obtained. A generalization to this method can be made if the solution to the
resulting ODE system is handled numerically, and the approach becomes the Numerical
Method of Lines (Schiesser, 1991). An advantage of this approach is that the ODE system
is usually solved by routines that enable user prescribed error control. A recent investi-
gation (Sphaier and Worek, 2008) employed this approach for periodic heat and mass
exchangers, which was showed to be very effective.

2 Mathematical Formulation

2.1 Problem presentation

The studied problem is that of heat transfer in steady incompressible laminar flow between
two parallel plates. The flow is considered hydrodynamically developed, but thermally
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developing. The problem is given by the following dimensionless equations:

1

2
u∗
∂θ

∂ξ
= Pe−2H

∂2θ

∂ξ2
+
∂2θ

∂η2
, (1)

θ(ξ, 1) = 0,

(
∂θ

∂η

)
η=0

= 0, (2)

θ(0, η) = 1,

(
∂θ

∂ξ

)
ξ→∞

= 0, (3)

where the dimensionless quantities are given by:

θ =
T − T0
Tin − T0

, η =
y

H/2
, ξ =

x

L
, (4)

and the value of L is chosen from a scale analysis of the thermal entry length:

L =
H

2
PeH , with PeH =

ū H

α
. (5)

Two different non-Newtonian fluids are considered, leading to the following fully devel-
oped velocity profiles.

Power-law:

u∗ =
u

ū
=

1 + 2n

1 + n
(1− η1+1/n), 0 ≤ η ≤ 1 (6)

Bingham plastic:

u∗ =
u

ū
=

3

2

[
(1− η2)− 2 η0(1− η)

1− 3
2
η0 + 1

2
η30

]
, η0 ≤ η ≤ 1 (7)

u∗ =
u

ū
=

3

2 + η0
, 0 ≤ η < η0 (8)

where n is the power-law exponent and η0 is a Bingham fluid parameter related to the yield
stress.
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The Nusselt number in terms of the dimensionless variables is given by:

NuDH
=
−4 (∂θ/∂η)η=1∫ 1

0
u∗θdη

. (9)

For large Péclet values the axial diffusion term can be neglected and the energy equa-
tion is reduced to:

1

2
u∗
∂θ

∂ξ
=

∂2θ

∂η2
, (10)

and only the boundary condition at the inlet (ξ = 0) is necessary for the axial direction.

2.2 Finite Volumes Method

The solution of the studied problem via finite volumes is accomplished by integrating
eq. (1) within a finite volume of height ∆η = 1/J and employing second-order approxi-
mations for integration and interpolation, which leads to the following discretized system:

−Pe−2H
d2θ̂j
dξ2

+
1

2
û∗j

dθ̂j
dξ

= Fj(ξ), (11)

θ̂j(0) = 1,

(
dθ̂j
dξ

)
ξ=ξmax

= 0, (12)

for j = 1, 2, . . . , J . The F -functions, which carry all the η-discretization information, are
given by:

Fj(ξ) =
θ̂j+1 − θ̂j

∆η2
, for j = 1, (13)

Fj(ξ) =
θ̂j+1 − 2 θ̂j + θ̂j−1

∆η2
, for 1 < j < J, (14)

Fj(ξ) =
θ̂j−1 − 3 θ̂j

∆η2
, for j = J, (15)

For cases with small to moderate Péclet numbers, this system is solved numerically using
the NDSolve function available in the Mathematica software. Using the obtained solu-
tions, the Nusselt number is then calculated from eq. (9), by computing the derivative and
integral numerically.
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2.2.1 Solutions for large Péclet

For cases of large Péclet numbers, the previous system is simplified, by the elimination of
the second derivative terms. Considering these cases and denoting the discrete variables
with an over-hat, the discretized equations for all volumes are written in compact form:

dθ̂j
dξ

=
2

û∗j
Fj(ξ), for j = 1, 2, . . . , J (16)

this initial-value system is solved numerically using the Mathematica function NDSolve.
Equation (16) can also be written in matrix form, as displayed below:

θ̂′(ξ) = M̂ θ̂(ξ) (17)

where the coefficients of M̂ are given by:

• for j = 1:

M̂j,j = − 2

û∗j ∆η2
, M̂j,j+1 =

2

û∗j ∆η2
, (18)

• for 1 < j < J :

M̂j,j−1 =
2

û∗j ∆η2
, M̂j,j = − 4

û∗j ∆η2
, (19)

M̂j,j+1 =
2

û∗j ∆η2
, (20)

• for j = J :

M̂j,j−1 =
2

û∗j ∆η2
, M̂j,j = − 6

û∗j ∆η2
, (21)

and the remaining M̂j,k coefficients are zero. The analytical solution for the dimensionless
temperature at the discrete points can be then written in the following form:

θ̂(ξ) = Ĉ(ξ)·b̂, with Ĉ(ξ) = exp(M̂ ξ). (22)

where Ĉ is a matrix exponential Greenberg (1998). The coefficients of b̂ are the discrete
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values of the inlet conditions. Hence, b̂j = θ̂j(0) = 1.

2.3 Generalized Integral Transform Technique

The integral transform solution of the considered problem is accomplished employing the
Generalized Integral Transform Technique Cotta (1993). The solution of the problem is
started by defining the transformation pair:

Transform =⇒ θ̄n(ξ) =

∫ 1

0

θ(ξ, η)Yn(η) dη, (23)

Inversion =⇒ θ(ξ, η) =
∞∑
n=1

θ̄n(ξ)Yn(η)

N(λn)
, (24)

where Yn’s are orthogonal solutions to a Sturm-Liouville eigenvalue problem. For the
convection-diffusion problem considered in this work, the following eigenvalue problem is
selected:

Y ′′n (η) + λ2nYn(η) = 0, for 0 ≤ η ≤ 1, (25)

Y ′(0) = 0, Y (1) = 0. (26)

The previous problem leads to infinite nontrivial solutions in the form:

Yn(η) = cos(λn η), λn =

(
n− 1

2

)
π, (27)

for n = 1, 2, 3, . . . . The norm of the Yn eigenfunctions are given by:

N(λn) =

∫ 1

0

Y 2
n (η) dη =

1

2
. (28)

The transformation of the given problem is accomplished by multiplying eq. (1) by
Yn, integrating within 0 ≤ η ≤ 1, and applying the inversion formula (24) to the non-
transformable terms. This process yields:

Pe−2H θ̄′′n(ξ) − 1

2

∞∑
m=1

An,m θ̄
′
m(ξ) − λ2nθ̄n(ξ) = 0, (29)
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with the following boundary conditions:

θ̄n(0) = bn =

∫ 1

0

Yn(η) dη, lim
ξ→∞

θ̄′n(ξ) = 0, (30)

where the An,m coefficients are given by:

An,m =
1

N(λm)

∫ 1

0

u∗(η)Yn(η)Ym(η) dη (31)

For a general case of small to moderate Péclet numbers, this boundary value problem
is solved numerically using the Mathematica function NDSolve and the dimensionless
temperature is calculated using the inversion formula (24). For simpler cases, as de-
scribed below, fully analytical solutions can be obtained. Regardless of the simplification
considered, the Nusselt number is computed from the following expression:

NuDH
=

−4
∞∑
n=1

θ̄n/N(λn)Y ′n(1)

∞∑
n=1

θ̄n/N(λn)
∫ 1

0
u∗Yndη

(32)

2.3.1 Solution for large Péclet

A simplified first-order form of system (29, 30), is obtained for large Péclet numbers:

1

2

∞∑
m=1

An,m θ̄
′
m(ξ) + λ2nθ̄n(ξ) = 0. (33)

where only the first boundary condition (30) is required. This system can be solved nu-
merically using the NDSolve routine. Nevertheless, an alternative analytical solution can
be obtained. Writing the simplified system in matrix form yields

Aθ̄
′
(ξ) + D∗ θ̄(ξ) = 0, θ̄(0) = b, (34)

where A is given by the integral coefficients in equation (31) and D∗ is given by

D∗n,n = 2λ2n δn,m, (35)
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leads to the following closed-form analytical solution:

θ̄(ξ) = C b, with C = exp
(
−A−1D∗ ξ

)
(36)

and the temperature profile is obtained using the inversion formula (24).

3 Results and Discussion

Before calculating the results using the non-Newtonian velocity profiles, the proposed al-
gorithms were validated using the traditional Hagen-Poiseulle profile obtained for laminar
Newtonian flow. The results were in perfect agreement with literature data.

Table 1 presents the results for different power-law fluids calculated by the Finite Vol-
umes Method. Numerical integration with NDSolve was employed for solving the resulting
ODE system. As can be seen, in general, the convergence rate is spatially uniform and
does not depend on the n number.

Table 2 presents similar Nusselt results calculated for different Bingham fluids. As one
can observe, the convergence rate is becomes worse as η0 is increase for positions in the
neighborhood of the channel entrance; nevertheless, the convergence becomes better for
larger η0 away from the channel entrance.

Table 3 displays the Nusselt results calculated with the Integral Transform Technique.
As can be seen, the convergence is worse for positions near the entrance, where more
than 100 terms are needed for obtaining six significant figures. Nonetheless, a much
better convergence rate is obtained for other positions. The same observation can be
made to the table 4, where the Nusselt is calculated for a Bingham plastic.

Tables 5 and 6 present a comparison of the estitimated relative error for selected cases.
The columns indicate relative error estimates at each position, calculated, for the Finite
Volumes Method, by

ε =
|Nu2 I − NuI |

Nu2I

, (37)

and for Generalized Integral Transform Technique by:

ε =
|Nuimax+10 − Nuimax|

Nuimax+10

. (38)
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Table 1: Nusselt number for FVM with power-law fluids.
I ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1

n = 0.5 25 26.6409 12.8973 8.04642 7.93629
50 26.8171 12.9068 8.04848 7.93899

100 26.8413 12.908 8.04891 7.93959
200 26.8444 12.9082 8.049 7.93972
400 26.8448 12.9082 8.04902 7.93975
800 26.8448 12.9082 8.04903 7.93976

1600 26.8448 12.9082 8.04903 7.93976
n = 1 25 24.5393 12.0064 7.62977 7.53754

50 24.6685 12.0134 7.63164 7.53998
100 24.6857 12.0144 7.63204 7.54054
200 24.6879 12.0145 7.63212 7.54066
400 24.6882 12.0145 7.63214 7.54069
800 24.6882 12.0145 7.63215 7.54070

1600 24.6882 12.0145 7.63215 7.54070
n = 2 25 23.2731 11.4551 7.35664 7.27489

50 23.3782 11.4608 7.35841 7.27721
100 23.3921 11.4616 7.35879 7.27773
200 23.3938 11.4617 7.35887 7.27786
400 23.394 11.4618 7.3589 7.27789
800 23.3941 11.4618 7.3589 7.2779

1600 23.3941 11.4618 7.3589 7.2779
n = 10 25 22.1113 10.9413 7.09375 7.02135

50 22.1972 10.9461 7.09539 7.0235
100 22.2084 10.9468 7.09575 7.02399
200 22.2099 10.9469 7.09584 7.02411
400 22.2101 10.9469 7.09586 7.02414
800 22.2101 10.9469 7.09586 7.02415

1600 22.2101 10.9469 7.09586 7.02415
n = 50 25 21.8591 10.8289 7.03536 6.96496

50 21.9412 10.8335 7.03696 6.96706
100 21.9519 10.8342 7.03731 6.96754
200 21.9533 10.8343 7.03739 6.96765
400 21.9535 10.8343 7.03741 6.96768
800 21.9535 10.8343 7.03742 6.96769

1600 21.9535 10.8343 7.03742 6.96769

These quantities provide an estimate of the local error.
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Table 2: Nusselt number for FVM with Bingham fluids.
I ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1

η0 = 0 25 24.5393 12.0064 7.62977 7.53753
50 24.6685 12.0134 7.63164 7.53998
100 24.6857 12.0144 7.63204 7.54054
200 24.6879 12.0145 7.63212 7.54066
400 24.6882 12.0145 7.63214 7.54069
800 24.6882 12.0145 7.63215 7.5407

1600 24.6882 12.0145 7.63215 7.5407
3200 24.6882 12.0145 7.63215 7.5407

η0 = 0.25 25 25.8499 12.6181 7.96895 7.86526
50 26.0076 12.6267 7.97097 7.86788
100 26.0289 12.6279 7.97138 7.86846
200 26.0316 12.628 7.97147 7.86859
400 26.0319 12.628 7.97149 7.86862
800 26.0319 12.628 7.9715 7.86863

1600 26.0319 12.628 7.9715 7.86863
3200 26.0319 12.628 7.9715 7.86863

η0 = 0.5 25 28.3295 13.7627 8.51352 8.3803
50 28.5519 13.7749 8.51583 8.3833
100 28.5829 13.7765 8.51628 8.38395
200 28.5868 13.7767 8.51638 8.38409
400 28.5873 13.7767 8.5164 8.38412
800 28.5873 13.7767 8.5164 8.38413

1600 28.5874 13.7767 8.5164 8.38414
3200 28.5874 13.7767 8.5164 8.38414

η0 = 0.75 25 33.7999 15.9977 9.23878 9.06493
50 34.2116 16.0212 9.242 9.06893
100 34.2757 16.0243 9.24257 9.06973
200 34.2839 16.0247 9.24267 9.0699
400 34.2849 16.0247 9.2427 9.06994
800 34.285 16.0247 9.2427 9.06994

1600 34.285 16.0247 9.2427 9.06995
3200 34.285 16.0247 9.2427 9.06995
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Table 3: Nusselt number for GITT with power-law fluids.
nmax ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1

n = 0.5 10 28.0266 12.9309 8.05013 7.94062
20 26.9060 12.9111 8.04917 7.93987
30 26.8630 12.9091 8.04907 7.93980
40 26.8525 12.9086 8.04904 7.93978
50 26.8488 12.9084 8.04904 7.93977
70 26.8462 12.9083 8.04903 7.93977
80 26.8458 12.9082 8.04903 7.93977
90 26.8455 12.9082 8.04903 7.93976

100 26.8453 12.9082 8.04903 7.93976
n = 1 10 25.2425 12.0299 7.63289 7.54128

20 24.7301 12.0165 7.63224 7.54077
30 24.7006 12.0151 7.63218 7.54072
40 24.6934 12.0147 7.63216 7.54071
50 24.6909 12.0146 7.63216 7.54071
70 24.6892 12.0145 7.63215 7.54070
80 24.6888 12.0145 7.63215 7.54070
90 24.6887 12.0145 7.63215 7.54070

100 24.6885 12.0145 7.63215 7.54070
n = 2 10 23.7099 11.4739 7.35940 7.27826

20 23.4274 11.4633 7.35897 7.27795
30 23.4038 11.4622 7.35892 7.27791
40 23.3982 11.4620 7.35891 7.27790
50 23.3962 11.4619 7.35891 7.27790
70 23.3948 11.4618 7.35890 7.27790
80 23.3946 11.4618 7.35890 7.27790
90 23.3944 11.4618 7.35890 7.27790

100 23.3943 11.4618 7.35890 7.27790
n = 10 10 22.4064 10.9570 7.09595 7.02410

20 22.2373 10.9482 7.09588 7.02415
30 22.2178 10.9473 7.09587 7.02415
40 22.2134 10.9471 7.09587 7.02415
50 22.2118 10.9470 7.09586 7.02415
70 22.2107 10.9469 7.09586 7.02415
80 22.2105 10.9469 7.09586 7.02415
90 22.2104 10.9469 7.09586 7.02415

100 22.2103 10.9469 7.09586 7.02415
n = 50 10 22.1354 10.8440 7.03737 6.96749

20 21.9796 10.8355 7.03741 6.96766
30 21.9609 10.8346 7.03742 6.96768
40 21.9566 10.8344 7.03742 6.96768
50 21.9551 10.8344 7.03742 6.96769
70 21.9541 10.8343 7.03742 6.96769
80 21.9539 10.8343 7.03742 6.96769
90 21.9538 10.8343 7.03742 6.96769

100 21.9537 10.8343 7.03742 6.96769
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Table 4: Nusselt number for GITT with Bingham fluids.
nmax ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1

η0 = 0 10 25.2425 12.0299 7.63289 7.54128
20 24.7301 12.0165 7.63224 7.54077
30 24.7006 12.0151 7.63218 7.54072
40 24.6934 12.0147 7.63216 7.54071
50 24.6909 12.0146 7.63216 7.54071
60 24.6898 12.0146 7.63215 7.5407
70 24.6892 12.0145 7.63215 7.5407
80 24.6888 12.0145 7.63215 7.5407
90 24.6887 12.0145 7.63215 7.5407
100 24.6885 12.0145 7.63215 7.5407

η0 = 0.25 10 26.9423 12.6474 7.97251 7.86944
20 26.0843 12.6305 7.97162 7.86873
30 26.0475 12.6288 7.97154 7.86866
40 26.0385 12.6283 7.97152 7.86865
50 26.0353 12.6282 7.97151 7.86864
60 26.0339 12.6281 7.9715 7.86864
70 26.0332 12.6281 7.9715 7.86864
80 26.0328 12.6281 7.9715 7.86864
90 26.0325 12.6281 7.9715 7.86864
100 26.0324 12.6281 7.9715 7.86864

η0 = 0.5 10 30.4416 13.8057 8.51789 8.38528
20 28.6656 13.7804 8.51659 8.38428
30 28.6106 13.7778 8.51646 8.38418
40 28.5972 13.7772 8.51643 8.38416
50 28.5924 13.777 8.51642 8.38415
60 28.5903 13.7769 8.51641 8.38414
70 28.5892 13.7768 8.51641 8.38414
80 28.5886 13.7768 8.51641 8.38414
90 28.5882 13.7768 8.51641 8.38414
100 28.588 13.7768 8.5164 8.38414

η0 = 0.75 10 38.4557 16.0866 9.24541 9.07194
20 34.4457 16.0331 9.24311 9.07025
30 34.3367 16.0273 9.24283 9.07004
40 34.307 16.0258 9.24275 9.06999
50 34.2963 16.0252 9.24273 9.06997
60 34.2916 16.025 9.24272 9.06996
70 34.2892 16.0249 9.24271 9.06996
80 34.2878 16.0248 9.24271 9.06995
90 34.287 16.0248 9.24271 9.06995
100 34.2865 16.0248 9.2427 9.06995
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Table 5: Estimated error for FVM with different fluids.
estimated relative error

I ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1
η0 = 0 25 3.40E-02 4.80E-03 1.42E-03 1.74E-03

50 5.24E-03 5.83E-04 2.45E-04 3.25E-04
100 6.97E-04 8.32E-05 5.24E-05 7.43E-05
200 8.91E-05 8.32E-06 1.05E-05 1.59E-05
400 1.22E-05 0.00E+00 2.62E-06 3.98E-06
800 0.00E+00 0.00E+00 1.31E-06 1.33E-06
1600 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3200 0.00E+00 0.00E+00 0.00E+00 0.00E+00

η0 = 0.5 25 2.47E-02 6.80E-03 1.66E-03 2.00E-03
50 7.79E-03 8.86E-04 2.71E-04 3.58E-04

100 1.08E-03 1.16E-04 5.28E-05 7.75E-05
200 1.36E-04 1.45E-05 1.17E-05 1.67E-05
400 1.75E-05 0.00E+00 2.35E-06 3.58E-06
800 0.00E+00 0.00E+00 0.00E+00 1.19E-06
1600 3.50E-06 0.00E+00 0.00E+00 1.19E-06
3200 0.00E+00 0.00E+00 0.00E+00 0.00E+00

n = 0.5 25 3.3E-02 5.7E-03 1.5E-03 1.9E-03
50 6.6E-03 7.4E-04 2.6E-04 3.4E-04

100 9.0E-04 9.3E-05 5.3E-05 7.6E-05
200 1.2E-04 1.5E-05 1.1E-05 1.6E-05
400 1.5E-05 0.0E+00 2.5E-06 3.8E-06
800 0.0E+00 0.0E+00 1.2E-06 1.3E-06
1600 0.0E+00 0.0E+00 0.0E+00 0.0E+00

n = 2 25 3.1E-02 4.2E-03 1.4E-03 1.7E-03
50 4.5E-03 5.0E-04 2.4E-04 3.2E-04

100 5.9E-04 7.0E-05 5.2E-05 7.1E-05
200 7.3E-05 8.7E-06 1.1E-05 1.8E-05
400 8.5E-06 8.7E-06 4.1E-06 4.1E-06
800 4.3E-06 0.0E+00 0.0E+00 1.4E-06
1600 0.0E+00 0.0E+00 0.0E+00 0.0E+00
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Table 6: Estimated error for GITT with different fluids.
estimated relative error

I ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1
η0 = 0 20 2.03E-02 1.11E-03 8.52E-05 6.76E-05

30 1.19E-03 1.17E-04 7.86E-06 6.63E-06
40 2.91E-04 3.33E-05 2.62E-06 1.33E-06
50 1.01E-04 8.32E-06 0.00E+00 0.00E+00
60 4.46E-05 0.00E+00 1.31E-06 1.33E-06
70 2.43E-05 8.32E-06 0.00E+00 0.00E+00
80 1.62E-05 0.00E+00 0.00E+00 0.00E+00
90 4.05E-06 0.00E+00 0.00E+00 0.00E+00

100 8.10E-06 0.00E+00 0.00E+00 0.00E+00
110 4.05E-06 0.00E+00 0.00E+00 0.00E+00
120 0.00E+00 0.00E+00 0.00E+00 0.00E+00

η0 = 0.5 20 5.83E-02 1.83E-03 1.53E-04 1.19E-04
30 1.92E-03 1.89E-04 1.53E-05 1.19E-05
40 4.68E-04 4.35E-05 3.52E-06 2.39E-06
50 1.68E-04 1.45E-05 1.17E-06 1.19E-06
60 7.34E-05 7.26E-06 1.17E-06 1.19E-06
70 3.85E-05 7.26E-06 0.00E+00 0.00E+00
80 2.10E-05 0.00E+00 0.00E+00 0.00E+00
90 1.40E-05 0.00E+00 0.00E+00 0.00E+00

100 7.00E-06 0.00E+00 1.17E-06 0.00E+00
110 7.00E-06 7.26E-06 0.00E+00 0.00E+00
120 3.50E-06 0.00E+00 0.00E+00 0.00E+00

n = 0.5 20 4.2E-02 1.5E-03 1.2E-04 9.4E-05
30 1.6E-03 1.5E-04 1.2E-05 8.8E-06
40 3.9E-04 3.9E-05 3.7E-06 2.5E-06
50 1.4E-04 1.5E-05 0.0E+00 1.3E-06
70 9.7E-05 7.7E-06 1.2E-06 0.0E+00
80 1.5E-05 7.7E-06 0.0E+00 0.0E+00
90 1.1E-05 0.0E+00 0.0E+00 1.3E-06

100 7.5E-06 0.0E+00 0.0E+00 0.0E+00
n = 2 20 1.2E-02 9.2E-04 5.8E-05 4.3E-05

30 1.0E-03 9.6E-05 6.8E-06 5.5E-06
40 2.4E-04 1.7E-05 1.4E-06 1.4E-06
50 8.5E-05 8.7E-06 0.0E+00 0.0E+00
70 6.0E-05 8.7E-06 1.4E-06 0.0E+00
80 8.5E-06 0.0E+00 0.0E+00 0.0E+00
90 8.5E-06 0.0E+00 0.0E+00 0.0E+00

100 4.3E-06 0.0E+00 0.0E+00 0.0E+00
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4 Conclusions

This paper presented a comparison between two solution strategies for calculating the
Nusselt number in thermally developing channel flow: the Generalized Integral Trans-
form Technique and the Finite Volumes Method. In order to properly compare both ap-
proaches, the original PDE problem was transformed into a ODE system, either through
integral transformation (GITT) or discretization (FVM). Then the resulting ODE systems
were solved using the same method. For this stage, both numerical solutions (using a
numerical ODE system solver) or analytical solutions (using matrix exponentials) were
employed.

The results, showed that, in general, the Finite Volumes solutions needed a very re-
fined mesh to achieve six-digits convergence, while the GITT ones only needed a few
terms of the sum, except near entry region. As suggestions for futures works, one should
compare these techniques solving problems in others geometries like a tube or a com-
plex geometry channel. In addition, a hybrid solution using both methodologies could be
attempted, combining the good characteristics of each methodology.
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