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ABSTRACT

The Asymptotic Expansion Homogenization (AEH) technique is used to estimate the
effective properties of heterogeneous media with periodical microstructure. A consid-
erable computational effort can be necessary even though the adopted models are
quite simple. For this reason, parallelization is often necessary to achieve good perfor-
mance. This work presents a first attempt to parallelize the AEH implementation code.
Although the parallelization process is in a very early stage, the preliminary results
show that the parallel version provides up to a 30% improvement in application speed.
This work consists on a step towards a numerical tool for the analysis of more complex
and three-dimensional periodic cells. The two-dimensional AEH was implemented in
the C programming language for the future generalization to three-dimensional prob-
lems employing the available parallelization tools.

KEYWORDS: Asymptotic Homogenization, Heterogeneity, Periodicity, Finite Element
Method, Parallel Computing

1. INTRODUCTION

The Asymptotic Expansion Homogenization (AEH) is a multiscale technique ap-

plied to the estimation of effective properties of heterogeneous media with periodi-

cal microstructure. Synthetic and natural composite materials may be modelled by

means of this numerical technique. The macroscopic mechanical behavior of hetero-

geneous materials - which, in general, may look like homogeneous in a macroscopic

level - may be significantly affected by their microscopic structure - where the hetero-

geneities are observed. For this reason, multiscale techniques, which take into account

the microscale characteristics, are important to an adequate simulation of heteroge-

neous systems, as well as to the industrial development of new materials based on

pre-defined properties.
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During a preliminary study Ferreira et al. (2007); Farage et al. (2008) developed

at the NUMEC (Núcleo de Pesquisa em Métodos Computacionais em Engenharia -

Research Group on Computational Methods in Engineering, Federal University of Juiz

de Fora, Brazil), the AEH was employed to evaluate the effective mechanical properties

of plane periodic structures. Even though the adopted models were quite simple, the

need for refined meshes resulted in considerable computational efforts, demanding

rather long processing time. In order to reduce the processing time, parallelization can

be used. In this work we present a first attempt to parallelize the code using OpenMP.

Preliminary results show that the parallel version provides up to a 30% improvement in

application speed.

The rest of the paper is organized as follows. Section 2 presents the Asymptotic

Expansion Homogenization technique, while section 3 presents its implementation.

In section 4 we discuss the parallelization approach. Sections 5 and 6 present the

experiments, and section 7 concludes the work.

2. ASYMPTOTIC EXPANSION HOMOGENIZATION

The Asymptotic Expansion Homogenization (AEH) is based on the assumption

that a heterogeneous medium may be represented by a homogeneous counterpart

since its microstructure is periodic or repetitive. The technique is based on the un-

coupling of the different scales of a material, extrapolating the results from inferior or

heterogeneous scales in order to obtain global or homogenized properties Sanchez-

Palencia (1980); Murad et al. (2001); Murad and Moyne (2002); Romkes and Oden

(2004); LNCC (2005).

As applying the AEH, a very important aspect is the definition of the geometric

characteristics of the periodic cell, which is the smaller microstructural volume able to

adequately represent the global constitutive behavior of the medium. By knowing the

heterogeneous properties of a cell, it is assumed that those properties are periodically

repeated over the structure.

Basically, in periodic structures that present two scales, the AEH consists of un-

coupling those scales into a microscale and a macroscale. The general procedure of

the AEH applying the F inite E lements Method (FEM) consists of the following steps,

as stated in reference Chung et al. (2001):

1. definition of a global body X in a coordinate system xi, consisting of the structure

without the microstructural details, and a local body Y in coordinates yi, consist-

ing of one microstructure period;

2. meshing of X and Y in finite elements;

3. approximation of a primary variable of the problem into asymptotic series around

a scale parameter ǫ, which relates the two coordinate systems (xi and yi);
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4. derivation of hierarchical equations, specific for the treated problem;

5. definition of a homogenized quantity in the microscale Y ;

6. resolution of the homogenized problem in the macroscale X.

The homogenization deals with partial differential equations related to heteroge-

neous materials with periodical structure considering the assumption that the amount

of periodic cells tends to infinity. The scale parameter ǫ is the characteristic dimension

of the period (or periodic cell). Figure 1, adapted from reference Cioranescu and Do-

nato (1999), illustrates the physical meaning of periodicity and the scales uncoupling

in a two-dimensional problem.

FIGURE 1: Periodic structure adapted from Cioranescu and Donato (1999).

In practical purposes, the main interest is getting to know the global behavior of

a composite by considering that the heterogeneities dimensions - or that the scale

parameter ǫ - tends to zero Cioranescu and Donato (1999).

The coefficients of the describing differential equations are the characteristics of

the studied material, depending on ǫ. Concerning a composite with a ǫ-periodic dis-

tribution, those coefficients are not easy to evaluate. Consideration of the limit case

of ǫ → 0 leads to a homogenized problem, with constant coefficients that may be

calculated with the help of numeric techniques, such as the Finite Element Method

Sanchez-Palencia (1980); Cioranescu and Donato (1999); LNCC (2005).
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In the present work, the AEH is employed to evaluate the homogenized elastic

properties of composites. The primary variable is a smooth displacement function

ui(x, y), which presents periodicity in the microscale Y , related to the macroscale by

means of the equation: y = x/ǫ.

2.1 AEH applied to Linear Elasticity

By considering a material whose microstructure is composed of multiple phases,

periodically distributed over the body Sanchez-Palencia (1980); Chung et al. (2001),

the periodic elastic material properties are defined by the following relation:

Dǫ
ijkl = Dijkl

(x

ǫ

)

(1)

where ( )ǫ denotes quantities related to the actual non-homogeneous medium; the

function Dǫ
ijkl stands for the material’s properties variations in the heterogeneous mi-

crostructure Y .

The linear elasticity problem is described by the equilibrium equation 2, boundary

conditions 3 and 4, strain-displacement relation 5 and constitutive relation 6:

∂σǫ
ij

∂xǫ
j

+ fi = 0 in Ω (2)

uǫ
i = 0 in ∂1Ω (3)

σǫ
inj = Fi in ∂2Ω (4)

εij(u
ǫ) =

1

2

(

∂uǫ
i

∂xǫ
j

+
∂uǫ

j

∂xǫ
i

)

(5)

σǫ
ij = Dǫ

ijklεkl(u
ǫ) (6)

where the scale parameter ǫ identifies quantities related to the actual heterogeneous

material behavior; σǫ
ij is the ij term of the internal stresses tensor and f1 is the body

force in the dominium Ω; uǫ
i is the displacement in direction i; nj is the vector normal to

the boundary ∂Ω and F1 is the external force applied on the boundary and εij is the ij

term of the strains tensor.

The displacements are approximated by an asymptotic series in ǫ, given by equa-

tion 7:

uǫ
i(x

ǫ) = u
(0)
i (x, y) + ǫu

(1)
i (x, y) + ǫ2u

(2)
i (x, y) + . . . (7)

where u
(0)
i is the macroscopic displacement and u

(1)
i , u

(2)
i , . . . stand for the periodic

displacements in more refined scales. As the heterogeneous actual medium is repre-

sented by two coordinate systems (x and y = x/ǫ), the derivatives originally in xǫ must
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be expanded in a chain rule given by:

∂

∂xǫ
i

=
∂

∂xi

+
1

ǫ

∂

∂yj

(8)

In order to obtain the uncoupled equations that describe the microscale and the

macroscale problems, the displacement ui is replaced by equation 7 in the set of equa-

tions 2 to 6. The basis of the approximation is the assumption of ǫ → 0, indicating

that the number of periodic cells tends to infinity and the actual non-homogeneous

structure is then approximated by a homogeneous one. In order to validate such an

approximation, the resulting coefficients of ǫ with negative exponent must be identi-

cally nulls. That leads to the conclusion that the homogenized solution u(0) is constant

over the microscopic scale (u(0) does not depend on y), as indicated by the following

equation:

∂

∂yj

Dijkl

(

∂u0
k

∂yl

)

= 0 (9)

Microscale and macroscale equation Equation 10 relates the perturbation term u
(1)
i

to the homogenized term u
(0)
i and represents the microscale problem:

−
∂

∂yj

Dijkl

∂u
(1)
k

∂yl

=
∂

∂yj

Dijkl

∂u
(0)
k

∂xl

(10)

where u(0) is a known quantity and u(1) is the unknown.

The variational formulation of the problem described by equation 10 is:

∫

Y

Dijkl

∂u
(1)
k

∂yl

∂ν

∂yk

dy =
∂u

(0)
k

∂xl

∫

Y

∂Dijkl

∂yl

νdy (11)

where ν is a weight function. In order to avoid the necessity of solving u
(1)
i in the peri-

odic cell for every variation of u
(0)
i , the solution of the variational problem described by

expression 11 is given by an auxiliary equation in Y , solved through the Finite Element

Method, relating u
(1)
i to ∂u

(0)
i

∂xj
as follows:

u
(1)
i = ξkl

i

∂u
(0)
k

∂xl

+ ũ
(1)
i (x) (12)

where ũ
(1)
i (x) is an integration constant and ξkl

i is the solution to the auxiliary variational

problem consisting of determining ξkl
i ∈ VY so that:

∫

Y

Dijkl

∂ξmn
k

∂yl

∂νi

∂yj

dy =

∫

Y

νj

∂Dijmn

∂yi

dy; ∀νi∈VY (13)
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The function ξkl
i is known as elastic corrector or characteristic function Chung et al.

(2001), independent of u(0). Once ξkl
i is determined, the stresses and strains in the

microscale are calculated with the help of the following relations:

ε
(0)
ij =

(

δimδjn +
∂ξmn

i

∂yi

)

∂u
(0)
m

∂xn

(14)

σ
(0)
ij = Dijmn

(

δimδjn +
∂ξmn

i

∂yi

)

∂u
(0)
m

∂xn

(15)

which describe the microscopic problem (in y).

In order to solve the macroscale problem it is necessary to determine the elastic

properties tensor relating the homogenized stresses and strains in x. To this end, the

average operator defined as 〈.〉 = 1
Y

∫

Y
(.)dy is applied to σ(0) and ε(0) in expression 15,

leading to:

〈σ(0)〉 = Dh
ijmn〈ε

(0)〉 (16)

where 〈σ(0)〉 and 〈ε(0)〉 are the macroscale stresses and strains, respectively, and the

homogenized elastic properties tensor is given by:

Dh
ijmn =

1

|Y |

∫

Y

Dijmn

[

δimδjn +
∂ξmn

i

∂yj

]

dy (17)

Equations 16 and 17 define the macroscale problem.

3. AEH IMPLEMENTATION

3.1 Problem Description

This work derives from two previously published studies Ferreira et al. (2007);

Farage et al. (2008, 2009) in which the HEA2D program was introduced. These works

validated the use of the HEA2D program to the evaluation of homogenized elastic

properties of plane periodic cells. For this purpose, numerical results obtained via the

HEA2D program were compared to experimental measurements of lightweight aggre-

gate concretes Ke et al. (2006b,a), showing good agreement.

The current versions of the program evaluate the effective or homogenized elastic

tensor of two-dimensional cells through the finite element methods, employing six-

noded finite triangular elements. The HEA2D application was initially implemented in

the integrated technical computing environment MATLAB c© Mathworks (2007). How-

ever, by observing that complex meshes severely hurts performance, it was decided

to port the application to the C programming language Quintela et al. (2009). The

C version of HEA2D was then used to implement the parallel version. Its purpose is

the same: the evaluation of the effective elastic tensor for periodic cells, to obtain the
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macroscopic properties of periodic n-component composites.

3.2 The program

The HEA2D inputs are the geometrical and mechanical characteristics of the cell

and the output is the effective elastic tensor for the material. The following steps are

performed to calculate the homogenized properties:

1. Data input. Information about the finite element mesh, boundary conditions of the

periodic cell and mechanical properties of their α phasis (elastic modulus Eα and

Poisson’s ratio να);

2. Assemblage of the stiffness matrix [K] and the independent tensor [F ] (right-hand

side of the equilibrium equation).

[K] =

[

nelm
∑

i=1

BT DBJ

]

(18)

and

[F ] =

[

nelm
∑

i=1

BT DJ

]

(19)

where nelm is the number of elements in the mesh, B is the derivation tensor,

D is the local elastic property tensor (for each α phase that composes the mi-

crostruture) and J is the Jacobian tensor, which relates the coordinate system to

the parametric representation of the geometry;

3. Solution of the linear equations system. The system of equations is solved to obtain

the elastic corrector tensor U, represented by ξi in Eq. (13):

[

nelm
∑

i=1

BT DBJ

]

[U ] =

[

nelm
∑

i=1

BT DJ

]

(20)

4. Determination of the homogenized property tensor, by means of the averaging pro-

cedure described by Eq. (17), rewritten herein as:

[Def ] =
1

Y

[

nelm
∑

i=1

D(I − BU)|J |

]

(21)

where Y is the total body area and I the identity matrix.
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Three factorization methods (LU, Cholesky, QR) can be choosen to deal specifi-

cally with sparse matrices such as those arising from the finite element method. Also,

the approximate minimum degree (AMD) permutation vector is used, since its choice

can have a dramatic effect on the amount of fill that occurs during the factorization

George and Liu (1989). Thus, the rows and columns of the matrix are reordered be-

fore performing the factorization. The user can choose the type of permutation to be

performed: natural (no permutation), amd(A + AT ), amd(ST ∗S) and amd(AT ∗A). The

CSparse (Concise Sparse Matrix Package) library Davis (2006) was used to implement

the factorization methods and the AMD permutation.

4. PARALLEL VERSION

The parallel version of HEA2D was implemented using OpenMP (Open Specifi-

cations for Multi Processing) Chapman et al. (2007). OpenMP offers a programming

interface for shared memory parallel machines. The programmer uses compilation di-

rectives to identify the portions of the source code that should be executed in parallel.

The programmer can also specify how the code should be executed. So the first step

is to identify the time consuming parts of the HEA2D code.

Two portions of the sequential code were identified as hotspots. The first one is

related to the resolution of the system of algebraic equations (the third step described

in subsection 3.2) and the other one is the initialization of the sparse matrix using the

CSparse library.

FIGURE 2: Algorithm for the sequential resolution of the system of equations.

The system of equations can be solved with QR, LU or Cholesky. The system is

represented by a matrix with dimensions gll x gll and a matrix of independent terms

with dimensions gll x 3, where the unknowns are a matrix with gll x 3. The dimension gll

means the total number of degrees of freedom on the global structure. The result is a

variational problem of finite elements. The function that solves the system of equations
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is called solve. It was the first part of the code to be parallelized.

To solve the unknown matrix, the solve function calls three times the resolution of

the chosen method (QR, LU or Cholesky), one for each column of the unknown matrix.

This part can be easily parallelized just solving these three columns at the same time.

Figure 2 shows the sequential schema for this portion of code.

FIGURE 3: Algorithm for the assemblage of the sparse matrix.

The assemblage of the sparse matrix requires dynamic memory allocation and

reallocation. The CSparse function cs_entry is responsible for this work. Figure 3

shows the sequential version of the code that uses the cs_entry function.

FIGURE 4: Parallelized code using OpenMP for the resolution of the system.

Three different approaches were adopted to parallelize the code:

1. Parallelization of the resolution of the system of equations (Figure 4);

2. Parallelization of the sparse matrix assemblage (Figure 5);

3. Parallelization of both (Figure 4+Figure 5).
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FIGURE 5: Parallelized code using OpenMP for the assemblage of the sparse matrix.

It should be emphasized that the directive ordered must be used to avoid conflicts

between the threads. Since the cs_entry method reallocs the memory used to store

the sparse matrix, the reallocation must be performed in order. The ordered direc-

tive specifies that code under a parallelized for loop should be executed exactly like a

sequential loop Wilkinson and Allen (2005).

5. NUMERICAL EXPERIMENTS

This section presents the results for numerical experiments performed with a 2

GHz Intel Core 2 Quad processor (Q8200), with 4 GB RAM and 2 MB L2 cache. The

system runs Rocks 5.2 (kernel 2.6.18). The gcc version 4.1.2 was used to compile the

program.

5.1 Experimental Methodology

Aiming to compare the performance of the sequential and parallel versions of the

program, distinct types of periodical cells were considered to represent composite ma-

terials.

FIGURE 6: Circular. FIGURE 7: Long fiber. FIGURE 8: Short fiber.

Figure 6 represents a square cell with a circular inclusion that may represent the

cross section of a composite reinforced with long aligned fibers. This composite mate-

rial exhibits isotropic behavior in the represented plane.
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The cell shown in Figure 7 is the elementary volume of a laminated composite, for

which the elastic tensor may be exactly evaluated. The laminate structured composites

are hierarchically a class of great importance among the macroscopically anisotropic

composites Torquato (2001). This structural conformation is largely employed to the

construction of structures from prescribed properties Torquato (2001).

Figure 8 represents another important class of composite materials, standing for

materials reinforced with short fibers. This example, taken from reference Ghosh et al.

(1995), presents anisotropic behavior and the effective properties are not exactly eval-

uated - the quality of the approximated results depend strongly on the refinement of

the finite elements mesh.

6. RESULTS

In all the numerical tests, the sequential and parallel versions of the program gen-

erated the same homogenized tensor.

The circular inclusion (Figure 6) was analysed with a 1512 elements mesh. The

mechanical properties of the components were adopted, for validation purposes, as:

matrix elastic modulus Em = 1, inclusion elastic modulus Ei = 10, matrix Poisson’s

ratio νm = 0.3 and inclusion Poisson’s ratio νi = 0.03.

The obtained effective isotropic tensor was:

Def =







1.205 0.0713 0

0.0713 1.205 0

0 0 0.5582






(22)

The long fiber cell (Figure 7) and the short fibers cell (Figure 8) were taken from

reference Ghosh et al. (1995), where the same multiscale technique was employed

to analyze a composite with the following properties: Em = 72.5GPa, Ei = 400GPa,

νm = 0.33 and νi = 0.2.

The long fiber cell (Figure 7) was modeled by a 1332 elements mesh. The evaluated

tensor agrees with the one obtained by Ghosh et al. (1995), given in Eq. 23:

Def =







136.1 36.25 0

36.08 245.8 0

0 0 47.31






(23)

The short fiber model (Figure 8) presented some differences in comparison to the

homogenized tensor obtained by Ghosh et al. (1995), whose non-null values are shown

in Table 1. Three different meshes, with varying refinement degrees, were adopted in

this case and the obtained results are compared to the reference ones in Table 1. The
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first mesh, with 2516 elements, generated the following non-null values for the coeffi-

cients Def13, Def23, Def31 and Def32: 0.0001, 0.0004, 0.0005 and 0.0009, respectively.

This problem was not observed for the two more refined meshes, with 7440 and 22000

elements. As observed in Table 1, some improvements were accomplished with the

higher refinement, specially concerning the D22 and D33 coefficients.

TABLE 1: Comparison of homogenized properties of the three short fiber meshes and refer-
ence values.

Ghosh et al. (1995) 2516 el 7440 el 22000 el
D11 122.4 122.3 122.3 122.3
D12 36.23 36.30 36.32 36.32
D21 36.23 36.29 36.31 36.31
D22 151.2 151.5 151.3 151.2
D33 42.10 42.22 42.16 42.11

A performance comparison between the sequential and the parallel code is pre-

sented in Table 2. Samd represents the theoretical speedup calculated using the Am-

dahl’s law Wilkinson and Allen (2005) and S is the speedup obtained for each ap-

proach. The indexes 1, 2 and 3 represents, respectively, the parallelization of the ma-

trix assemblage (Figure 5), the parallelization of the system solving (Figure 4) and the

usage of both approaches (Figure 4 + Figure 5).

TABLE 2: Ideal and obtained speedup factor for each analised case.
Samd(1) S(1) Samd(2) S(2) Samd(3) S(3)

Circular 1.2 0.9 1.5 1.3 2.0 1.2
1512 el
Long 1.2 0.9 1.3 1.3 1.7 1.2
1332 el
Short 1.2 0.9 1.3 1.2 1.6 1.1
2516 el
Short 1.3 0.9 1.3 1.2 1.8 1.1
7440 el
Short 1.5 0.9 1.3 1.0 2.0 0.9
22000 el

As one can see, the parallelization of the system solving (S(2)) obtained good re-

sults. In particular, we can observe that the ideal speedup is achieved for the long fiber

case. The circular and the short fiber cases, with 2516 and 7440 elements, achieved a

speedup near to the maximum theoretical values. The only exception is the short fiber

with 22000 elements, where the obtained speedup was not so good. The S(1) values

indicate a slowdown for all cases. This has impacted also in the third case, when both

approaches are used: the speedup factor decreased, when compared to the S(2) case.
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7. CONCLUSIONS

In this work, we presented the parallel implementation of the asymptotic expan-

sion homogenization technique using OpenMP. The experiment has shown that the

parallelization was effective in improving the performance, providing gains up to 30%.

We intend to continue our work developing a 3D version of the asymptotic expan-

sion homogenization method. We also plan to implement another parallel version of

our code, using new high-performance platforms, such as GPGPUs (General-Purpose

computation on Graphics Processing Units) Luebke et al. (2004). We hope that, by

using this new parallel 3D version, our code will be able to analyze more complex and

realistic models of composite materials.
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