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Abstract: In this paper, we report a formulation for the exposure buildup factor 
by solving the one-dimensional photon transport equation in a heterogeneous 
slab by the LTSN method, assuming the Klein-Nishina scattering kernel as  
the scattering differential cross-section as well as the multigroup model in the 
wavelength variable. We present numerical simulations and comparisons with 
available results in the literature for a multilayered slab composed of water, 
iron and lead. We also report an analytical solution to the exposure buildup 
factor by solving the photon transport equation in a rectangle applying the 
LTSN nodal method. 
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1 Introduction 

In the last decade, the LTSN method, which solves, analytically, the discrete ordinates 
equation (SN equation) in a slab by the Laplace transform technique, has made an 
appearance in related literature. The main idea consists of the following steps: application 
of the Laplace transform technique to the set of SN equations, solution of the resulting 
algebraic equation by the matrix diagonalisation approach and inversion of the 
transformed angular flux by standard results of the Laplace transform theory. Here, 
analytical solution means that no approximation is made along the solution derivation. 
This methodology has been applied to a broad class of transport and radiative transfer 
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problems. Some situations in which this methodology appears are the following: a 
general analytical approach to the one-group, one-dimensional transport equation by 
Barichello and Vilhena (1993); determination of the criticality parameters in 
heterogeneous slabs by the LTSN method by Borges and Derivi (2001); the LTSN method: 
a new analytical approach to solve the neutron transport equation by Vilhena and 
Barichello (1991); an analytical solution to the multigroup slab geometry discrete 
ordinates problems by Vilhena and Barichello (1995); extension of the LTSN formulation 
for discrete ordinates problems without azimuthal symmetry by Segatto and Vilhena 
(1994); a new iterative method to solve the radiative transfer equation by Vilhena and 
Segatto (1996); the LTSN solution for radiative transfer problems without azimuthal 
symmetry with severe anisotropy by Brancher et al. (1999); analytical solution of the 
discrete ordinates problem by the decomposition method by Vargas and Vilhena (1997); 
a closed-form solution for the one-dimensional radiative conductive problem by the 
decomposition and LTSN methods by Vargas and Vilhena (1998); a closed-form solution 
to one-dimensional linear and non-linear radiative transfer problems by Vilhena and 
Barichello (1999); inverse problems for estimating bottom boundary conditions of natural 
waters in engineering by Velho et al. (2003); determining source term and boundary 
conditions in hydrological optics by Retamoso et al. (2001); estimation of boundary 
conditions in hydrologic optics by Retamoso et al. (2002); determination of the effective 
multiplication factor in a slab by the LTSN method by Batistela et al. (1999); criticality by 
the LTSN method by Batistela et al. (1997); recent advances in the LTSN method for 
criticality calculations in slab geometry by Orengo et al. (2004); the LTSN solution to the 
neutron transport equation in spherical geometry by Vasques et al. (2003); particle 
transport in the 1-D diffusive atomic mix limit by Larsen et al. (2005); and the 
convergence of the LTSN method was proved by Pazos and Vilhena (1999; 2000). On 
the other hand, recently, the LTSN method has been applied to the solution of the 
multidimensional SN nodal equations in cartesian geometry by Hauser (2002), Pazos et al. 
(2003) and Zabadal et al. (1995), and in the convex domain by Zabadal et al. (1997), 
considering one-group energy and isotropic scattering. To our knowledge, this 
methodology has not yet been applied to the solution of the transport equation assuming 
the Klein-Nishina scattering kernel and multigroup model for the wavelength variable. 

Therefore, in the first part of this work, we step forward by solving the transport 
equation in a slab considering the Klein-Nishina scattering kernel and multigroup model 
by the LTSN method. Bearing in mind the analyticity and the mentioned proved 
convergence of the LTSN method, we are confident to emphasise that we can generate 
benchmark results in the exposure buildup factor by this methodology, controlling the 
accuracy by increasing N. In the second part, we report a two-dimensional LTSN solution 
for a homogeneous rectangle assuming the Klein-Nishina scattering kernel and 
multigroup model. The main idea relies on the solution of the two one-dimensional SN 
equations resulting from transverse integration of the SN equations in the rectangle by the 
LTSN method, considering the leakage angular fluxes approximated exponentially, which 
allow us to determine a closed-form solution for the exposure buildup factor. Despite the 
lack of numerical validation, we are confident to affirm that the reported solution is 
actually a solution to the considered problem because the convergence of the LTSN nodal 
solution discussed by Hauser et al. (2005) has been proven. Indeed, to reach our 
objectives, we organised the paper as follows: In Section 2, we present the LTSN 
analytical solution to the exposure buildup factor in a slab assuming Klein-Nishina 
scattering kernel and multigroup model. In Section 3, we report numerical simulations 
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and comparisons with available results in the literature. In Section 4, we display the 
two-dimensional LTSN nodal solution for the exposure buildup factor considering the 
Klein-Nishina scattering kernel and multigroup model. Finally, in Section 5, we present a 
discussion about the methodology considered. 

2 The LTSN solution 

In order to determine an analytical solution to the exposure buildup factor in a slab by the 
LTSN method, let us consider the following SN problem: 

0

1 1

2 1
( ) ( )

3 2

(1 ) ( ) ( ) ( ) ,

L

n jn lj jn
l

G N

r rj l r j l n l i ri i
r i

l
I x I x

x

c k P P P I x

µ µ

α λ λ µ µ ω

=

= =

∂ ∆ +
+ = ×

∂

× + −

∑

∑ ∑
 (1) 

subject to vacuum boundary conditions, for j = 1 : G, n = 1 : N, 

where: 

G = the number of energy groups (wavelengths) 
N = the Gaussian quadrature’s order 
µn = the roots of Legendre polynomial, ordered in decreasing  

  fashion: –1 < µN < ... <
1

2
+

Nµ < 0 < 
2

Nµ  < ... < µ1 < 1, 

ωi = the weights of Gaussian quadrature 
µlj = the linear attenuation coefficient, 

Ijn(x) = I(x, λj, µn) = the angular flux at µn direction for the j-th group 
krj = k(λr, λj) = Klein-Nishina scattering kernel, defined as follows: 

23
( , ) sin .

8

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠

jr r
r j

j j r

k
λλ λ

λ λ θ
λ λ λ

 (2) 

Following the idea of the LTSN method, we begin applying the Laplace transform 
technique to Equation (1), with the resulting linear algebraic system: 

0 1

1

2 1
( ) ( ) (1 ) ( )

3 2

( ) ( ) (0),

= =

=

∆ +
+ − + −

× =

∑ ∑

∑

L G
l j

jn jn r rj l r j l n
l rn n

N

l i i ri jn
i

l
sI s I s c k P P

P I s I

µ
α λ λ µ

µ µ

µ ω
 (3) 

for j = 1 : G, n = 1 : N, which can be recast in matrix form, as shown below: 

1( ) ( ) (0) ( ).−= +jn jn jn jA s I s I Z s  (4) 

Here, ( )jnI s  is the N component of the angular flux Laplace transformed vector and Ijn(0) 
is the N component of the angular flux vector at x = 0. They have the form 

1 2( ) [ ( ) ( ) ( )] ,= … T
jn j j jNI s I s I s I s  (5) 
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1 2(0) [ (0) (0) (0)] .= … T
jn j j jNI I I I  (6) 

On the other hand, the entries of the (N × N) matrix Ajn(s) are written as follows: 

0

0

2 1
( ) ( )   se 

3 2

2 1
( ) ( )              se 

3 2

Llj
j jj l p l p ql

p p
pq

L

j jj l p l q ql
p

l
s c k P P p q

a
l

c k P P p q

µ
α µ µ ω

µ µ

α µ µ ω
µ

=

=

⎧ ∆ +
+ − =⎪

⎪= ⎨
∆ +⎪− ≠⎪

⎩

∑

∑
 (7) 

and the scattering term reads 

1

1
1

( ) ( ),
j

j i in
i

Z s H I s
−

−
=

= ∑  (8) 

where the components of constant matrix Hi are given by the following: 

0
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(1 ) ( ) ( )    se .

3 2

=

=

∆ +⎧ + − =⎪
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i ij l i j l p l p ql
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pq
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i ij l i j l p l q ql
p

l
c k P P P p q

h
l

c k P P P p q

α λ λ µ µ ω
µ

α λ λ µ µ ω
µ

 (9) 

Bearing in mind that for the Klein-Nishina scattering kernel the wavelength ranges from 
λ0 to λ0 + 2 (λ0 is the wavelength of the slab incoming radiation), we discretise, without 
loss of generality, this interval in five sub-intervals, meaning five groups, with the main 
feature that the first group (Group 1) corresponds to the sub-interval with the shortest 
wavelength and higher energy and Group 5, to the sub-interval with the longest 
wavelength and lowest energy. 

Solving Equation (4) recursively for increasing wavelength ( j from 1 to 5), due to the 
down-scattering, we come out with the result: 

1 1
1( ) [ ( )] (0) [ ( )] ( ).jn j jn j jI s A s I A s Z s− −
−= +  (10) 

Making the Laplace inversion of the above ansatz, we have 

1 1 1 1
1( ) {[ ( )] (0)} {[ ( )] ( )},− − − −
−= +L Ljn jn jn jn jI x A s I A s Z s  (11) 

which by the Heaviside expansion technique can be recast as follows: 

1 1
1

1

( ) (0) ( )* {[ ( )] },− −
−

=

= +∑ Lk

jn
s x

jn k jn j jn
k

I x e I Z x A sβ  (12) 

where: 
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=

=
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k
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s s

Adj A s

d
detA s

ds

β  (13) 
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and the values of sk are the roots of the characteristics polynomial of the Ajn(s) matrix. 
Here, a star denotes convolution. The exponential character of the generic method 
combined with the fact that the sk parameters increase in magnitude with N implies that 
this formulation, in the proposed form, is not appropriate to solving large thickness 
transport problem. Fortunately, this difficulty was suppressed by introducing the ensuing 
modification for the basis space solution: 

0 0

( ) 1 1
1

1 1

( ) (0) ( ) {[ ( )] },
> <

−− ∗ − −
−

= =

⎛ ⎞
⎜ ⎟= + + ∗
⎜ ⎟
⎝ ⎠
∑ ∑ Lk k

s sk k

jn jn
s a x s x

jn k k jn j j
k k

I x e e I Z x A sβ β  (14) 

where (0) ( ) (0)∗ = ×jn jnI C a I  is the N component modifying column vector and C(a) reads 

as follows: 

0 0

1

1 1

( ) .k

s sk k

jn jn
s a

k k
k k

C a eβ β
> <

−

−

= =

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠
∑ ∑  (14a) 

We determine the new arbitrary constant (0)∗
jnI  applying the boundary conditions. 

The generalisation of the LTSN solution for a heterogeneous slab assumes the  
Klein-Nishina scattering kernel and multigroup model is done in a straightforward 
manner. Indeed, we apply the LTSN solution to each sublayer and evaluate the integration 
constants applying the boundary and interface conditions. This procedure leads to the 
following result for an arbitrary slab in the domain depicted in Figure 1: 

1

0 0

[( ) ] 1 1
1

1 1

( ) (0) ( ) {[ ( )] },−

> <

− −− ∗ − −
−

= =

⎛ ⎞
⎜ ⎟= + + ∗
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∑ ∑

r r
k r r k

r rs sk k

jn jn
s x x x s xr r r r r r

jn k k jn j j
k k

I x e e I Z x A sβ β L  (15) 

where 0 < x < xR – xR–1, r = 1 : R and 

11 1 1( ) [ ( ) ( ) ( ) ( )] ,= … … …r r r r r T
jn N j jNI x I x I x I x I x  (16) 

11 1 1(0) [ (0) (0) (0) ( )] .= … … …r r r r r T
jn N j jNI I I I I s  (17) 

Here ( )r
jnI x  is the angular flux for the generic slab r. 

Figure 1 Multilayered domain 

 

3 Numerical results for the one-dimensional problem 

In order to illustrate the aptness of the discussed methodology to solve transport problems 
in a slab considering the Klein-Nishina scattering kernel and multigroup model, in the 
sequel we report numerical simulations for the discussed exposure buildup factor. To 
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reach this goal, we evaluate the exposure buildup factor defined according to Fitzgerald 
et al. (1967) as the sum of the product of the attenuation coefficient of the air 
with the scalar flux for all radiations, including the incident flux, divided by the 
attenuation coefficient of the air for the incident flux multiplied by the incident scalar 
flux, shown as follows: 

0

0 0 0

( ) ( , )
( ) .

( ) ( , )
== ∑
j air

l i i ii
e air

l

x
B x

x

µ λ ϕ λ

µ λ ϕ λ
 (18) 

Here, the subscript index 0 indicates the incident flux, ( )air
l iµ λ  is the attenuation 

coefficient of the air for the wavelength λi, 0( )air
lµ λ  is the attenuation coefficient of the 

air for the incident flux (for wavelength λ0), ϕ i(x, λi) is the scalar flux for the wavelength 
λi and ϕ 0(x, λ0) is the incident scalar flux. In what follows, we present numerical results 
for three problems. 

Problem 1 Let us consider a multilayered slab with two regions, composed of water 
(µlj = 0.0707 cm2/g, mfp = 1.0) and lead (µlj = 0.06848 cm2/g, mfp = 4.0, 
5.0, 10.0, 20.0, 30.0 and 40.0) and under vacuum boundary conditions. 

In Table 1 we present the LTSN numerical simulations for the exposure buildup factor 
and comparisons with the ones (EGS4 results) attained by Hirayama and Shin (1998). 
Bearing in mind that EGS4 results are generated for the one-group model, given a closer 
look to the results in Table 1, we promptly realise a good coincidence. To underline the 
proved convergence of the LTSN method in Table 2, we display the numerical 
convergence of the LTSN results for increasing N. In fact, observing the results for N = 14 
and N = 16, we notice a coincidence of six significant digits. Recalling the character of 
the solution, in the sense that no approximation is made along its derivation, except for 
the round-off error, this means that we may affirm that Be(x) = 2.30 and Be(x) = 3.57 are 
the exact results for Problem 1 and, consequently, are benchmark results for Problem 1. 
We bolster this affirmative recalling the proved convergence of the LTSN method. 

Table 1 Numerical exposure buildup factor simulations in water and lead composition 

 Water 1.0 mfp + Lead 

Mfp LTS16 EGS4 

4.0 2.30 2.31 

5.0 2.07 2.08 

10.0 3.57 3.59 

20.0 5.29 5.31 

30.0 6.77 6.79 

40.0 8.26 8.27 

Problem 2 To check the influence of the attenuation coefficient on the exposure 
buildup factor solution, let us consider the two-layered slab composed of 
water (µlj = 0.0707 cm2/g, mfp = 1.0) and iron (µlj = 0.0596 cm2/g, 
mfp = 4.0, 5.0, 10.0, 20.0, 30.0 and 40.0) and under vacuum 
boundary conditions. 
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Table 2 LTSN numerical convergence 

N 4 mfp 10 mfp 

2 2.29043291 3.56575823 

4 2.29124721 3.56773931 

6 2.29593785 3.56981458 

8 2.29921456 3.57019857 

12 2.30013541 3.57022344 

14 2.30014775 3.57022455 

16 2.30014786 3.57022457 

Table 3 Numerical exposure buildup factor simulations in water and iron composition 

 Water 1.0 mfp + Iron 

mfp LTS16 EGS4 

4.0 4.99 5.01 

5.0 6.21 6.23 

10.0 13.9 13.9 

20.0 36.3 36.3 

30.0 67.6 67.5 

40.0 101 101 

Problem 3 Let us consider a heterogeneous slab with two regions, composed of lead 
(µlj = 0.06848 cm2/g, mfp = 1.0) and iron (µlj = 0.0596 cm2/g, mfp = 4.0, 
5.0, 10.0, 20.0, 30.0 and 40.0) and under vacuum boundary conditions. 

Table 4 Numerical exposure buildup factor simulations in lead and iron composition 

 Lead 1.0 mfp + Iron 

mfp LTS16 EGS4 

4.0  4.87 4.86 

5.0  6.34 6.28 

10.0 15.4 15.3 

20.0 41.5 41.4 

30.0 78.4 78.3 

40.0 118 117 

From the analysis of the results encountered for the above problems, we promptly realise 
a good agreement between the LTS16 and EGS4 results. Bearing in mind the previously 
mentioned LTS16 results accuracy in Problem 1, we can also emphasise, supported by  
the same arguments, that the LTS16 results encountered for the exposure buildup factor 
are also benchmark results. We must also mention that we have done all the calculations 
in an AMD Athlon 1700 (1.4 GHz) microcomputer. Furthermore, the maximum 
computational time observed to generate all the results in each table is 90 s. 



   

 

   

   
 

   

   

 

   

   110 B.D. Amaral Rodriguez, M.T. de Vilhena, V. Borges and C. Malamut    
 

    
 
 

   

   
 

   

   

 

   

       
 

4 The LTSN nodal solution in a rectangle 

Let us consider the two-dimensional SN nodal problem assuming the Klein-Nishina 
scattering kernel and multigroup model: 

0 1 1

( , ) ( , ) ( , )

2 1
(1 ) ( ) ( ) ( , ) ,

3 2

n jn n jn lj jn

L G N

r rj l r j l n l i ri i
l r i

I x y I x y I x y
x y

l
c k P P P I x y

µ η µ

α λ λ µ µ ω
= = =

∂ ∂
+ + =

∂ ∂
∆ +

= + −∑ ∑ ∑
 (19) 

subject to vacuum boundary conditions in a rectangle 0 ≤ x ≤ a and 0 ≤ y ≤ b. Here 

j = 1 : G, n = 1 : N, 
( 2)

2

+
=

M M
N  is the cardinality of the discrete ordinates set (number 

of discrete directions), M represents the order of the angular quadrature, G is 
the number of energy groups (wavelengths), µlj is the linear attenuation coefficient, 
Ijn(x, y) = I(x, y, λj, Ωn) is the angular flux at the discrete direction Ωn = (µn, ηn) for the 
j-th group, the values of ωi are the Lewis and Miller (1984) quadrature weights and 
krj = k(λr, λj) is the Klein-Nishina scattering kernel defined by Equation (2). 

To construct the LTSN nodal solution for Problem (19), we begin performing the 
transverse integration of this equation. This procedure yields to the set of the ensuing two 
coupled SN equations: 

0 1 1

( ) [ ( , ) (0, )] ( )

2 1
(1 ) ( ) ( ) ( ) ,

3 2

n
n jny jn jn lj jny

L G N

r rj l r j l n l i riy i
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l
c k P P P I y

µ
η µ

α λ λ µ µ ω
= = =

+ − + =

∆ +
= + −∑ ∑ ∑

 (20) 

for j = 1 : G, n = 1 : N. Here Ijn(a, y) and Ijn(0, y) are the angular fluxes exiting at the 
boundary and the average angular flux is written as follows: 

0

1
( ) ( , ) .

a

jny jnI y I x y dx
a

= ∫  (21) 

0 1 1

( ) [ ( ,0) ( , )] ( )

2 1
(1 ) ( ) ( ) ( ) ,

3 2

n
n jnx jn jn lj jnx

L G N

r rj l r j l n l i rix i
l r i

d
I x I x I x b I x

dx b
l

c k P P P I x

η
µ µ

α λ λ µ µ ω
= = =

+ − + =

∆ +
= + −∑ ∑ ∑

 (22) 

for j = 1 : G, n = 1 : N. Here Ijn(x, b) and Ijn(x, 0) are the angular fluxes exiting at the 
boundary and the average angular flux is written as follows: 

0

1
( ) ( , ) .

b

jnx jnI x I x y dy
b

= ∫  (23) 

At this point we are in a position to apply the LTSN method. Indeed, we begin applying 
the Laplace transform technique in Equation (20). This procedure yields the following: 



   

 

   

   
 

   

   

 

   

    The exposure buildup factor formulation in a slab and rectangle geometry 111    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

0 1

1

2 1
( ) ( ) (1 ) ( )

3 2

( ) ( ) (0) [ ( , ) (0, )],

= =

=

∆ +
+ − + − ×

× = − −

∑ ∑

∑

L G
lj

jny jny r rj l r j l n
l rn n

N
n

l i riy i jny jn jn
i n

l
sI s I s c k P P

P I s I I a s I s
a

µ
α λ λ µ

η η
µ

µ ω
η

 (24) 

for j = 1 : G and n = 1 : N, which can be recast in matrix form as follows: 

( 1)( ) ( ) (0) ( ) ( ).−− = + +jny jny jny j y jnysI B I s I Z s S s  (25) 

Here ( )jnyI s  is the N component of the angular flux Laplace transformed vector in the y 
variable and (0)jnyI  is the N component of the angular flux vector in the y variable at 
y = 0. They have the form 

1 2( ) [ ( ) ( ) ( )] ,= … T
jny j y j y jNyI s I s I s I s  (26) 

1 2(0) [ (0) (0) (0)] .= … T
jny j y j y jNyI I I I  (27) 

On the other hand, the components of matrix Bjny are given by 

0

0

2 1
( ) ( )   se 

3 2
( , )

2 1
( ) ( )               se 

3 2

=

=

⎧ ∆ +
− + =⎪

⎪= ⎨
∆ +⎪ ≠⎪

⎩

∑

∑

Llj
j jj l p l p ql

p p
y

L

j jj l p l q ql
p

l
c k P P p q

b p q
l

c k P P p q

µ
α µ µ ω

η η

α µ µ ω
η

 (28) 

and the scattering term reads 

1

( 1)
1

( ) ( ),
j

j y iy iny
i

Z s H I s
−

−
=

= ∑  (29) 

where the entries of constant matrix Hiy are written as follows: 

0

0

2 1
(1 ) ( ) ( )     se 

3 2
( , )

2 1
(1 ) ( ) ( )   se .

3 2

L

i ij l i j l p l p ql
p

y
L

i ij l i j l p l q ql
p

l
c k P P P p q

h p q
l

c k P P P p q

α λ λ µ µ ω
η

α λ λ µ µ ω
η

=

=

∆ +⎧ + − =⎪
⎪= ⎨ ∆ +⎪− + − ≠
⎪⎩

∑

∑
 (30) 

The vector ( )jnyS s  has the generic component 

( ) [ ( , ) (0, )].= −i
jiy ji ji

i

S s I a s I s
a

µ
η

 (31) 

A similar procedure in the x variable leads to the ensuing linear algebraic system: 

0 1

1

2 1
( ) ( ) (1 ) ( )

3 2

( ) ( ) (0) [ ( , ) ( ,0)],

= =

=

∆ +
+ − + − ×

× = − −

∑ ∑

∑

L G
lj

jnx jnx r rj l r j l n
l rn n

N
n

l i rix i jnx jn jn
i n

l
sI s I s c k P P

P I s I I s b I s
b

µ
α λ λ µ

µ µ
η

µ ω
µ

 (32) 
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which again can be recast in the matrix form as follows: 

( 1)( ) ( ) (0) ( ) ( ).−− = + +jnx jnx jnx j x jnxsI A I s I Z s S s  (33) 

Here ( )jnxI s  is the N component of the angular flux Laplace transformed vector in the x 
variable and Ijnx(0) is the N components of the angular flux vector in the x variable at 
x = 0. They have the form 

1 2( ) [ ( ) ( ) ( )] ,T
jnx j x j x jNxI s I s I s I s= …  (34) 

1 2(0) [ (0) (0) (0)] .T
jnx j x j x jNxI I I I= …  (35) 

On the other hand, the entries of matrix Ajnx are written as follows: 

0

0

2 1
( ) ( )    se 

3 2
( , )

2 1
       ( ) ( )        se .

3 2

=

=

⎧ ∆ +
− + =⎪

⎪= ⎨
∆ +⎪ ≠⎪

⎩

∑

∑

Llj
i jj l p l p ql

p p
x

L

j jj l p l q ql
p

l
c k P P p q

a p q
l

c k P P p q

µ
α µ µ ω

µ η

α µ µ ω
µ

 (36) 

and the scattering term reads 

1

( 1)
1

( ) ( ),
j

j x ix inx
i

Z s H I s
−

−
=

= ∑  (37) 

where the constant matrix Hix have elements given by 

0

0

2 1
(1 ) ( ) ( )    se 

3 2
( , )

2 1
(1 ) ( ) ( )   se ,

3 2

=

=

∆ +⎧ + − =⎪
⎪= ⎨ ∆ +⎪− + − ≠
⎪⎩

∑

∑

L

i ij l i j l p l p ql
p

x
L

i ij l i j l p l q ql
p

l
c k P P P p q

h p q
l

c k P P P p q

α λ λ µ µ ω
µ

α λ λ µ µ ω
µ

 (38) 

and the vector ( )jnxS s  reads 

( ) [ ( , ) ( ,0)].i
jix ji ji

i

S s I s b I s
b

η
µ

= −  (39) 

The LTSN solution for Equations (25) and (33) are given by the following: 

1
( 1)( ) ( ) [ (0) ( ) ( )]jny jny jny j y jnyI s sI B I Z s S s−
−= − + +  (40) 

and 

1
( 1)( ) ( ) [ (0) ( ) ( )].−
−= − + +jnx jnx jnx j x jnxI s sI A I Z s S s  (41) 

Taking the Laplace inversion of the above ansatz we get, 

1 1
( 1)( ) {( ) [ (0) ( ) ( )]}jny jny jny j y jnyI y sI B I Z s S s− −
−= − + +L  (42) 

and 
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1 1
( 1)( ) {( ) [ (0) ( ) ( )]}.jnx jnx jnx j x jnxI x sI A I Z s S s− −
−= − + +L  (43) 

Here, we do not proceed further to evaluate the Laplace inversion of Equations (42) and 
(43) because the inversion of these solutions has the same expression as the one in 
Equation (14). The explanation for this affirmative comes from the fact that the matrices 
Ajnx and Bjny are also nondegenerate. To complete the solution, we have to determine the 
unknown leakage angular fluxes at boundary, namely, Ijn(x, 0), Ijn(0, y), Ijn(x, b) and 
Ijn(a, y). Following the work of Hauser (2002), which states that the exponential 
approximation gives the best results for the two-dimensional LTSN nodal solution 
for deep penetration problems, we assume the ensuing approximation for the leakage 
angular fluxes: 

( )( ,0) nsign x
jn jnI x F e µ− Λ=  (44) 

( )(0, ) nsign y
jn jnI y G e η− Λ=  (45) 

( )( , ) nsign x
jn jnI x b O e µ− Λ=  (46) 

( )( , ) nsign y
jn jnI a y P e η− Λ=  (47) 

where sign(µ) denotes the signal function: 

  1  0
( )

1  0

if
sign

if

µ
µ

µ
>⎧

= ⎨− >⎩
 (48) 

and Λ represents the decay constant parameter, which has to be chosen a priori. In 
this work, we assume Λ, as Hauser (2002) did, as being the absorption cross-section 
given by: 

.a t sσ σ σΛ = = −  (49) 

The functions sign(µn) and sign(ηn), which appear in Equations (44)–(47), guarantee  
that the approximated angular fluxes will decay for any discrete direction. Replacing 
(44)–(47) in Equations (42) and (43), the x- and y-averaged angular fluxes solutions are 
complete after the Laplace transform inversion. Applying the boundary conditions, we 
determine the integration constants and consequently the two-dimensional LTSN nodal 
solution is well determined. Once the averaged angular fluxes are known, the closed-form 
solution for the two-dimensional exposure buildup factor is given by Equation (18), done 
by just replacing ϕ (x, λ) with ϕ (x, y, λ). 

5 Conclusion 

Concluding, we would like to point out our confidence that we hit our objective in this 
work because we succeeded in extending the LTSN solution for problems in cartesian 
geometry, requiring the Klein-Nishina scattering kernel and multigroup model. This 
procedure allows us to derive a closed-form solution to the exposure buildup factor.  
To this point, we must recall that, before this work, the LTSN solution was restricted  
to transport problems demanding isotropic and anisotropic scattering differential  
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cross-section. Indeed, beginning our final analysis by looking at the first part of this 
work, we must emphasise that the LTSN solution reported keeps the analytical feature, in 
the sense that no approximation is made along its derivation from the SN equations, 
except for the round-off error. Furthermore, the proved error-bound estimates and 
convergence by Pazos and Vilhena (1999; 2000), Hauser et al. (2005) assure that the 
LTSN solution converges to the exact solution when N goes to infinity. We must also 
underline that the LTSN method is quite general in the sense that it can now be applied to 
handle problems that demand the Klein-Nishina scattering kernel, which satisfies the 
error bound and convergence requirements. Therefore, we are emphasising that the 
mathematical analysis of the LTSN is complete, regarding the issues of solution 
construction, error-bound estimates, convergence and results validation. Consequently, 
this method is a quite robust approach under either the mathematical or computational 
point of view to generate benchmark results. We reinforce this affirmative bearing in 
mind that, besides the analytical character of the solution, the LTSN method solves 
transport problems that requires large N (N ≤ 2000) with a small computational time. On 
the other hand, concerning the second part, we begin by saying that the major claim 
refers to the issue of mathematical analysis that consists of the solution derivation 
presented in Section 2, as well as the proved error-bound estimates and convergence by 
Pazos and Vilhena (1999; 2000) and Hauser et al. (2005). The justificative for this 
affirmative comes from the fact that the solution to the two-dimensional SN nodal 
problem is reduced to the solution of a set of two one-dimensional SN equations, which 
are quite similar to the ones validated in Section 1. Therefore, we believe that the 
mathematical analysis, somehow, compensates for the lack of results validation for the 
two-dimensional LTSN nodal solution. Now, regarding the topic of analyticity, we must 
emphasise that the unique approximation made along the derivation of the LTSN nodal 
solution was in the leakage angular flux at boundary. In addition, we find it relevant to 
comment that our analysis is restricted to the homogeneous rectangle, because we attain, 
in a straightforward manner, the solution for the heterogeneous rectangle proceeding 
likewise in the heterogeneous slab. Finally, pursuing our objective of searching for 
analytical solutions, we focus our future attention on the issue of extending the LTSN 
nodal solution for the three-dimensional problem in a heterogeneous parallelepiped 
assuming the discussed kernels. We also intend to complete the mathematical analysis 
concerning the issues of error-bound estimates and convergence. We hope to show by 
this procedure the aptness and robustness of the LTSN method to solve a broad class of 
transport problems. 
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