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In the present work we report on a closed-form solution for the two-dimensional Compton transport
equation by the LTSN nodal method in the energy range of Compton effect. The solution is determined
using the LTSN nodal approach for homogeneous and heterogeneous rectangular domains, assuming
the Klein–Nishina scattering kernel and a multi-group model. The solution is obtained by two
one-dimensional SN equation systems resulting from integrating out one of the orthogonal variables of
the SN equations in the rectangular domain. The leakage angular fluxes are approximated by exponential
forms, which allows to determine a closed-form solution for the photons transport equation. The angular
flux and the parameters of the medium are used for the calculation of the absorbed energy in rectangular
domains with different dimensions and compositions. In this study, only the absorbed energy by
Compton effect is considered. We present numerical simulations and comparisons with results obtained
by using the simulation platform GEANT4 (version 9.1) with its low energy libraries.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Modern procedures for physical–medical diagnosis and imaging
is becoming increasingly sophisticated and thus need computer
simulation approaches in order to investigate performance of
methods and instruments. Radiation transport equations are the
starting point to meet the challenges involved in developing and
operating these instruments and methods. In order to be reliable,
simulations shall adequately represent the physical processes in-
volved. Many approaches for transport phenomena start from the
Boltzmann equation, where one finds applications in transport
problems from astrophysics to traffic flow (Badruzzaman, 1986).
Elegant analytical and numerical techniques have been developed
to solve the Boltzmann equation for a broad class of transport and
radiative transfer problems. These methods follow two distinct
schools of thought: the probabilistic school, such as the Monte
Carlo methods that solve the exact problem approximately, and
the deterministic school, such as the discrete ordinate methods,
which give an exact (closed-form) solution for an approximate
problem. Questions regarding accuracy and efficiency of determin-
ll rights reserved.
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istic transport methods are still an open issue even with modern
super-computers. The most versatile and widely used determinis-
tic methods are the PN approximation (Davison, 1957; Segatto
et al., 2000), the SN approach (discrete ordinate method) (Vilhena
and Barichello, 1995; Vilhena et al., 1995) and their variants (Seg-
atto and Vilhena, 1994; Rodriguez, 2007). In discrete ordinate for-
mulations of the transport equation, one assumes that the
linearised Boltzmann equation holds only for a set of distinct
numerical values of the direction-of-motion variables.

In the last decade, the LTSN method was presented in the
literature. This method solves, analytically, the discrete ordinates
equation (SN equation) in a slab by the Laplace transform tech-
nique. The main idea understands the following steps: application
of the Laplace transform technique to the set of SN equations, solu-
tion of the resulting algebraic equation by matrix diagonalization
and last, inversion of the transformed angular flux by a standard
procedure of Laplace transform theory. Here, analytical solution
means that no approximation is made along the derivation of the
solution, and its convergence is proven mathematically in Pazos
and Vilhena (1999, 2000). This methodology has been applied for
a broad class of transport and radiative transfer problems. In the
further are given a few references, which the authors consider rel-
evant for the present work: the LTSN solution for radiative transfer
problem without azimuthal symmetry with severe anisotropy
(Batistela et al., 1997) and an application of the LTSN method on
an inverse problem in hydrological optics (Velho et al., 2003). In
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a previous work (Rodriguez et al., 2006) the LTSN method was ap-
plied in the solution of the one-dimensional transport equation
with a Klein–Nishina scattering kernel and multi-group model
for the wavelength variable. Numerical simulations showed that
the resulting method generated solutions for transport problems
in an heterogeneous slab that coincide with those from a GEANT4
Monte Carlo simulation (Wright, 2001; Agostinelli et al., 2003).

As an extension of the one dimensional approach we determine
the solution of the two-dimensional transport equation consider-
ing the Klein–Nishina scattering kernel and a multi-group model.
To this end the bi-dimensional LTSN nodal approach is applied to
a homogeneous and a heterogeneous rectangular domain. The
main idea of the procedure discussed below relies on the solution
of the two one-dimensional SN equations resulting from transverse
integration of the SN equations in the rectangle by the LTSN method,
considering the leakage angular fluxes approximated by an expo-
nential. Note, that the explicit form of the leakage angular flux is
necessary in order to determine a closed-form solution for the
transport equation, but the specific choice maid in this work does
not restrict generality of the approach. A mathematical proof of
convergence of the LTSN nodal solution is discussed in Hauser
et al. (2005).

In our numerical experiments we assume mono-energetic
(E = 1.25 MeV) and mono-directional photon beam incident on
the edge of a rectangle which is composed by water, bone or soft
tissue, according the description of NCRP Report 44 (National
Council of Radiation Protection and Measurements, 1975). We con-
sidered homogeneous as well as heterogeneous rectangular target
media. The incoming photons are tracked until their whole energy
is deposited or they leave the domain of interest. In this study only
the Compton effect will be considered as interaction mechanism,
which is justified by the fact that in the energy range of interest
and for low Z the Compton effect is the dominant process for en-
ergy deposit, so that remaining effects may be neglected. Energy
deposit is determined for a collection of spatial points of interest
and compared to GEANT4 simulations (version 9.1) which makes
use of low energy libraries for a two-dimensional problem. It is
noteworthy, that previous versions of GEANT4 yielded different re-
sults, which indicates that developments of the Compton scatter-
ing package are still in progress.

Our article is organised as follows. In Section 2 we describe in
detail LTSN nodal solution of the Boltzmann transport equation in
a rectangular domain assuming the Klein–Nishina scattering ker-
nel and multi-group model. In Section 3 we report on numerical
simulations for the absorbed energy in homogeneous and hetero-
geneous rectangular target media and compare our findings with
results obtained from an implementation using the GEANT4 (ver-
sion 9.1) platform (Wright, 2001). Finally, in Section 4 we present
some concluding remarks and suggestions for future work.
2. The LTSN nodal solution in a rectangular domain

The two-dimensional transport problem for the spectral angular
flux I(x,y,k,X) contains besides a linear attenuation term (with
coefficient clj) also a Klein–Nishina single scattering term. Here k
denotes the dimensionless wave length in multiples of the Comp-
ton wavelength. The integral over initial wavelengths (before scat-
tering) may be decomposed into G intervals, where each of them
corresponds to an energy group. A further modification of the con-
tinuous problem enters upon substitution of the Klein–Nishina dif-
ferential cross section in the angular integral by a finite expansion
in terms of Legendre polynomials Pl, a target matter parameter a,
which depends on the atom number, the atom mass number, the
density of the target matter and the Thomson cross section, besides
the Klein–Nishina scattering kernel krj. The angular integral may be
replaced by an approximation using Gaussian quadrature with
weights xi. These modifications lead to the two-dimensional mul-
ti-group SN nodal problem.
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subject to vacuum boundary conditions in a rectangular domain
0 < x < a and 0 < y < b. Here j = 1, . . . ,G is the energy group index,
n = 1, . . . ,N, denotes the discrete angular directions, N = M(M + 2)/2
is the cardinality of the discrete ordinate set (number of discrete
directions), M represents the order of the angular quadrature, the
angular flux Ijn(x,y) = I(x,y,kj,Xn) into the discrete direction
Xn = (ln,gn) for the jth group, the values of xi are the Lewis and
Miller quadrature weights (Lewis and Miller, 1984). In Eq. (1) D sig-
nifies the interval from Simpson integration over the initial wave-
lengths, and cr is a spectral weight. Further, the Klein–Nishina
scattering kernel is known as
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where h is the scattering angle and k is the wavelength. In Rodriguez
(2007) the one-dimensional problem was solved. Thus, the same
procedure may be used without major changes once the spatial
transverse variable is integrated out, which yields the set of two
coupled SN equations:
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for all energy groups j = 1, . . . ,G, and all angular directions n =
1, . . . ,N. Here Ijn(a,y) and Ijn(0,y) are the angular fluxes that exit at
the boundary and the average angular flux is IjnyðyÞ ¼
1
a

R a
0 Ijnðx; yÞ dx. In analogy the integration over the longitudinal

variable results in
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for j = 1, . . . ,G, n = 1, . . . ,N. Here Ijn(x,b) and Ijn(x, 0) is the angular flux
that exits at the respective boundary. The average angular flux is
IjnxðxÞ ¼ 1

b

R b
0 Ijnðx; yÞdy.

The previously introduced step prepared the system for applica-
tion of the LTSN method. Laplace transform renders the differential
equation an inhomogeneous linear equation so that Eq. (4) reads
now
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for j = 1, . . . ,G and n = 1, . . . ,N.
The transformed solution for Eq. (4) is then given by

IjnyðsÞ ¼ ðsI � BjnyÞ�1½Ijnyð0Þ þ Zðj�1ÞyðsÞ þ SjnyðsÞ�: ð6Þ
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Here IjnyðsÞ ¼ ðIj1yðsÞ; Ij2yðsÞ; . . . ; IjNyðsÞÞT are the N components of the
Laplace transformed angular flux vector in the y variable and Ij-

ny(0) = (Ij1y(0), Ij2y(0), . . . , IjNy(0))T are the N components of the
angular flux vector at y = 0. The components of matrix Bjny are given
by
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and the scattering term reads
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where the entries of the constant matrix Hiy are
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The vector SjnyðsÞ has the generic component
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An analogue procedure in the x variable leads to the LTSN nodal
solution for Eq. (5)

IjnxðsÞ ¼ ðsI � AjnxÞ�1½Ijnxð0Þ þ Zðj�1ÞxðsÞ þ SjnxðsÞ�: ð11Þ

Here IjnxðsÞ ¼ ðIj1xðsÞ; Ij2xðsÞ; . . . ; IjNxðsÞÞT are the N components of the
Laplace transformed angular flux vector in the x variable and Ijn-

x(0) = (Ij1x(0), Ij2x(0), . . . , IjNx(0))T are the N components of the angular
flux vector at x = 0. The entries of matrix Ajnx are

axðp; qÞ ¼
� clj

lp
þ D

3gp

PL
l¼0

2lþ1
2 cjakjjPlðlpÞPlðlpÞxq if p ¼ q;

D
3lp

PL
l¼0

2lþ1
2 cjakjjPlðlpÞPlðlqÞxq if p – q;

8>>><
>>>:

ð12Þ

and the scattering term reads
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where the constant matrix Hix has the elements
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and the vector SjnxðsÞ is
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In order to determine the angular fluxes the inverse Laplace trans-
form is applied to Eqs. (6) and (11).

IjnyðyÞ ¼ L�1fðsI � BjnyÞ�1½Ijnyð0Þ þ Zðj�1ÞyðsÞ þ SjnyðsÞ�g; ð16Þ
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One of the standard inversion methods is given by the Heaviside
expansion
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Here the star operator denotes convolution.
To complete the solution still depends on the unknown leakage

angular fluxes at the boundary, namely Ijn(x,0), Ijn(0,y), Ijn(x,b) and
Ijn(a,y). To this end we follow the work of Hauser et al. (2002)
which states that the exponential approximation gives the best re-
sults for the two-dimensional LTSN nodal solution for deep penetra-
tion problems. Note, that for the procedure discussed here there
are no restrictions on the specific form of the leakage angular flux
except that it shall be analytical in order to obtain an analytical
expression for the solution of the problem.

Ijnðx;0Þ ¼ Fjne�signðlnÞKx;

Ijnð0; yÞ ¼ Gjne�signðgnÞKy;

Ijnðx; bÞ ¼ Ojne�signðlnÞKx;

Ijnða; yÞ ¼ Pjne�signðgnÞKy;

ð20Þ

where sign(l) denotes the signal function:

signðlÞ ¼
1 if l > 0;
�1 if l < 0;

�
ð21Þ

and K represents the decay constant parameter, which has to be
chosen a priori. In this work, we assume K (see also Hauser et al.,
2002) to represent the absorption cross section

K ¼ ra ¼ rt � rs: ð22Þ

The functions sign(ln) and sign(gn) which appear in Eq. (20)
guarantee that the approximated angular fluxes will decay for
any discrete direction. Replacing (20) in Eqs. (18) and (19) then
the x-averaged and y-averaged angular fluxes solutions are com-
plete after the Laplace Transform inversion. Applying the boundary
conditions determines the integration constants so that the two-
dimensional LTSN nodal solution is well determined. The LTSN nodal
solution may be generalised for a heterogeneous rectangular med-
ium, applying the LTSN solution for a homogeneous medium to
each sub-domain and evaluate the integration constants applying
boundary and interface conditions.

3. Numerical results

The solution derived in the previous section is applied to differ-
ent cases, where geometry and matter composition vary (water,
soft tissue or bone). We report on the numerical simulations for
the absorbed energy in the rectangular domains for the six case
studies, specified in more detail below. As projectile a mono-ener-
getic and mono-directional photon beam (E = 1.25 MeV) is consid-
ered, incoming on the edge of a rectangle. The incoming photons
will be tracked until their whole energy is deposited or they leave
the domain of interest. Because of the fact that for the initial pho-
ton energy and for the afore mentioned target matter composition
the Compton effect dominates, one expects by comparison to
GEANT4 simulations that other physical processes will have only
spurious effects and may be neglected.

The data were simulated using the GEANT4 platform (Allison
et al., 2006; Kelley et al., 1972) (version 9.1), which is a well estab-
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lished tool-kit for simulating the passage of particles through mat-
ter. It includes a complete range of functionality including tracking,
geometry, physics models and hits. The list of interactions covers
besides electromagnetic also hadronic and optical processes. The
simulator recognizes a large set of long-lived particles, materials
and elements, with interaction data over a wide energy range,
starting in some cases from 250 eV and extending in others up to
TeV. The program platform has been designed and constructed to
expose the physics models utilized, to handle complex geometries
and to enable its easy adaptation for optimal use in different sets of
applications.

The computational universe considered in this work contains a
mono-energetic and unidirectional photon source aligned with the
y-axis and incident in the centre line of the sheet. The geometries
have been chosen in a way to prevent particle loss on the lateral
borders. Table 1 shows the considered geometries, where the sen-
sitive volume is understood as the volume of a specific material
where energy is deposited. For each simulation 106 histories were
generated. The G4EMLowEnergy low energy library is based on the
Livermore Library. The cut-off energies applied for sensitive vol-
ume of water are 1.09571 keV for photons and 84.2696 keV for
electrons, considering the bone cortical and soft tissue they are
1.10688 keV for photons and 86.3701 keV for electrons. These
cut-off energies signify that particles or photons with energies
lower than this threshold deposit their remaining energy in this
step. From the GEANT4 physics process list we activated the pho-
toelectric effect, Compton scattering, Rayleigh scattering, and the
low energy electron processes.

In the following the six case studies, each for a variety of geom-
etries, are presented.

Case 1: The first case considers an incoming photon beam
aligned with the y axis and incident on three sheet geom-
etries (20 cm � 10 cm, 20 cm � 20 cm and 30 cm �
40 cm) for a homogeneous target of water with charge
to mass ratio Z/A = 0.55508 and density q = 1 g/cm3. Fur-
ther vacuum boundary conditions are understood. The
results represent the average absorbed energy in units
of keV per incoming photon and are shown in Table 2
for the LTSN solution and the GEANT4 simulations.
Table 1
Target sheet geometry for the homogeneous and non-homogeneous cases. In the
homogeneous cases the materials water, bone and soft tissue fill entirely each
rectangle. In the non-homogeneous cases the depth of the entrance medium (v1) is
1 cm or 5 cm and the remaining depth is filled with the second medium (v2). The
material combinations are water-bone and bone-water.

Dimensions

x (cm) y (cm)

Homogeneous sensitive volume 20 10
20 20
30 40

Non-homogeneous sensitive volume 20 10
v1 [ v2 20 20

30 40

Table 2
Absorbed energy in keV per photon incident on a homogeneous rectangular sheet
composed by water liquid.

Domain dimension LTS8 GEANT4 Discrepancy (%)

20 cm � 10 cm 0.00309 0.00315 1.9
20 cm � 20 cm 0.00457 0.00468 2.3
30 cm � 40 cm 0.01140 0.01160 1.7
Case 2: To check the influence of the material density in the
absorbed energy calculation, let us consider a rectangu-
lar domain composed by bone cortical (Z/A = 0.51478,
q = 1.92 g/cm3) and vacuum boundary conditions.

Case 3: This case considers a homogeneous rectangular sheet
composed by soft tissue with Z/A = 0.54996 and
q = 1.06 g/cm3 and vacuum boundary conditions.

For the three case studies the numerical results for the energy
deposit of the LTSN method together with the GEANT simulations
are shown in Tables 2–4. Although the LTSN considered only the
Compton contribution whereas the GEANT simulation included
other interactions the maximum discrepancy found was lower
than 4%, which in turn justifies the validity of the present approach
especially by virtue of having used two different methods.

Case 4: Biological targets subject to radiation treatment have
often a multi-layer structure. The simplest model in this
direction considers two layers, the first one of 1 cm
depth filled with water liquid (Z/A = 0.55508, q = 1 g/
cm3) and the second one (with depths of 9 cm, 19 cm
and 39 cm, resp.) composed by bone cortical (Z/
A = 0.51478, q = 1.92 g/cm3). Further vacuum boundary
conditions are understood.

Case 5: In order to get an idea on the influence of the thickness
of the first layer on the energy deposit in the heteroge-
neous rectangular sheet containing water and bone,
the thickness of the entrance sheet (containing water)
of the previous case was changed to 5 cm while the mat-
ter specification, the dimension of the total and bound-
ary conditions remained the same.

Case 6: A further comparison to case 4 was performed inter-
changing the materials for the entrance and subsequent
layer. The surface layer of 1 cm depth contained bone
cortical (Z/A = 0.51478, q = 1.92 g/cm3) and the second
layer was composed by water liquid (Z/A = 0.55508,
q = 1 g/cm3) and additionally vacuum boundary
conditions.

In Table 6 we report on the LTS8 numerical results together with
the GEANT simulation findings for the absorbed energy in a heter-
ogeneous rectangular geometry composed by water liquid and
bone cortical with an entrance layer of 5 cm depth. In Tables 5
and 7 the LTS8 and GEANT simulations are shown for the absorbed
energy in a double layer rectangular sheet composed either of
water liquid and bone cortical or with both materials interchanged.
The depth of the entrance layer was 1 cm. As already observed in
Table 3
Absorbed energy in keV per photon incident on a homogeneous rectangular sheet
composed by bone cortical (ICRU, 1989).

Domain dimension LTS8 GEANT4 Discrepancy (%)

20 cm � 10 cm 0.05588 0.05781 3.3
20 cm � 20 cm 0.09087 0.09405 3.4
30 cm � 40 cm 0.15771 0.16375 3.7

Table 4
Absorbed energy in keV per photon incident on a homogeneous rectangular sheet
composed by soft tissue (ICRU, 1989).

Domain dimension LTS8 GEANT4 Discrepancy (%)

20 cm � 10 cm 0.00307 0.00313 1.9
20 cm � 20 cm 0.00531 0.00542 2.0
30 cm � 40 cm 0.01523 0.01560 2.4



Table 7
Absorbed energy in keV per photon incident on a heterogeneous rectangular sheet
composed by bone cortical with 1 cm depth (v1) followed by water liquid of 9 cm,
19 cm or 39 cm depth (v2), resp. (ICRU, 1989).

Domain dimension
v1 [ v2

Sensitive
volume

LTS8 GEANT4 Discrepancy
(%)

20 cm � 10 cm v1 0.00225 0.00243 7.4
v2 0.00277 0.00296 6.4

20 cm � 20 cm v1 0.00403 0.00427 5.6
v2 0.00425 0.00451 5.8

30 cm � 40 cm v1 0.00711 0.00758 6.2
v2 0.01068 0.01142 6.5

Table 5
Absorbed energy in keV per photon incident on a heterogeneous rectangular sheet
composed by water liquid with 1 cm depth (v1) followed by bone cortical of 9 cm,
19 cm or 39 cm depth (v2), resp. (ICRU, 1989).

Domain dimension
v1 [ v2

Sensitive
volume

LTS8 GEANT4 Discrepancy
(%)

20 cm � 10 cm v1 0.00015 0.00016 6.2
v2 0.05289 0.05549 4.5

20 cm � 20 cm v1 0.00017 0.00018 5.6
v2 0.08629 0.09089 5.1

30 cm � 40 cm v1 0.00018 0.00019 5.3
v2 0.15322 0.16098 4.8

Table 6
Absorbed energy in keV per photon incident on a heterogeneous rectangular sheet
composed by water liquid with 5 cm depth (v1) followed by bone cortical of 5 cm,
15 cm or 35 cm depth (v2), resp. (ICRU, 1989).

Domain dimension
v1 [ v2

Sensitive
volume

LTS8 GEANT4 Discrepancy
(%)

20 cm � 10 cm v1 0.00091 0.00095 4.2
v2 0.13476 0.14375 4.4

20 cm � 20 cm v1 0.00113 0.00117 3.4
v2 0.06909 0.07221 4.3

30 cm � 40 cm v1 0.00131 0.00137 4.4
v2 0.13765 0.14376 4.2
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the homogeneous study cases also in the heterogeneous calcula-
tions the discrepancies were found to be lower than 8%.

From the analysis of the results encountered for the six cases one
can confirm a good agreement between the proposed methodology
and the results by the Monte Carlo technique. All calculations were
performed on microcomputers; the LTSN nodal calculations were
implemented on an AMD Athlon 1700 (1.4 GHz) computer while
the Geant4 results are obtained using a Pentium 4 (1.7 GHz) hard-
ware. The maximum computational time necessary to generate
the results for each case did not exceed 30 min for both methods,
the LTSN nodal approach and the Monte Carlo simulation by the
GEANT platform.
4. Conclusions

The present work focussed on the derivation of a closed-form
solution for a two-dimensional transport equation that considers
photons incident on a rectangular sheet which contained a
mono-or double-layer with specific material specification. The SN

transport equation was solved for energy deposit in the material
using the LTSN nodal approach. Since the mathematical proof of
convergence of this type of approach classifies the closed-form
solution an almost exact solution in the sense that once a precision
of the solution is required one may determine the number of dis-
crete directions and the number of wavelength groups that comply
with the specification.

The energy of the photon beam in the range below and up to
MeV energies indicates the Compton effect as the dominant process
for photon (biological) matter interaction, thus the Klein–Nishina
scattering kernel was implemented in a multi-group model. The
comparison with GEANT4 simulations, which is based on a physi-
cal Monte Carlo simulation, showed that for the considered energy
the Compton scattering kernel is sufficient to reproduce the energy
deposit with less than 5–10% discrepancy. It is noteworthy, that
the GEANT results are systematically but only slightly higher than
the LTSN calculations, which is to be expected since the used pro-
cess list in the Monte Carlo simulations contains other processes
besides the Compton effect.

In order to uniquely determine the solution an assumption for
the leakage angular flux was necessary, which was approximated
by exponential forms. Although the form seems to lack generality,
nevertheless, for the present considerations the specific approxi-
mation was the result of a variety of trials where the adopted form
suited best in order to reproduce results from other approaches.
Details of this analysis may be found in Hauser et al. (2002). More-
over, the explicit form of the leakage angular flux is necessary in
order to determine a closed-form solution for the transport equa-
tion, but the specific choice maid in this work does not restrict
the generality of the approach, other forms are possible and may
be used to fix ambiguities of the solution.

The agreement that was found between the GEANT results and
the present approach permit to use the LTSN solution as input for
Monte Carlo simulations. Longer term practice with GEANT4
showed that, although its flexibility with respect to complexity
of geometries and materials used in specific problems that may
be simulated, computational time increases almost exponentially
the larger the layer structure becomes. The LTSN approach has a
polynomial increase in computational time, so that the energy de-
posit in small patches of a multi-layer structure may be simulated
using the results from such a solution. Evidently, the important
question of the specific form of leakage angular fluxes has to be
solved, which we postpone to a future work. As a next step we fo-
cus our future attention to the extension of the present approach
for the solution of the three-dimensional transport problem in
Cartesian geometry.
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