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Abstract. Bayesian statistical analysis has become an important tool in modern fisheries sciences. We 
assert that this success is due to the ease in which uncertainty can be explicitly incorporated in inference 
and decision making. To appreciate the profound conceptual change implied by the switch from 
frequentist to Bayesian views, it is necessary to understand probability as a wider, more powerful 
concept: quantification of inductive logic. The advantages resulting for fisheries sciences are examined 
and illustrated with examples. Some alleged weaknesses of the Bayesian approach are questioned. The 
important ability and still under-explored potential of Bayesian decision analysis to keep facts and values 
apart, is also highlighted. 
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Resumo. Estatística Bayesiana em avaliação e manejo de estoques pesqueiros: uma síntese. A 
análise estatística Bayesiana tornou-se ferramenta importante na moderna ciência pesqueira. Nós 
propomos aqui que este sucesso se deve à simplicidade com que as incertezas podem ser explicitadas 
tanto em inferência quanto na tomada de decisão. Para perceber a profundidade da mudança conceitual 
envolvida na mudança do enfoque freqüentista ao Bayesiano, é necessário entender a sua concepção mais 
ampla e poderosa de probabilidade: quantificação de lógica indutiva. As vantagens que derivam disso 
para as ciências pesqueiras são examinadas e ilustradas com exemplos. Algumas alegadas fraquezas do 
enfoque Bayesiano são questionadas. A importante, porém ainda sub-explorada, habilidade da análise 
Bayesiana de decisão em distinguir os fatos científicos de valores e prioridades da sociedade é também 
destacada. 
 
Palavras-chave: Incerteza, plausibilidade, probabilidade posteriori, análise de decisão, bacalhau do 
Pacífico. 
 

1- Introduction 
The Bayesian approach to statistical 

inference and decision making has experienced fast 
growth over the last twenty years in environmental 
modeling, particularly fishery. Researchers, so far 
comfortably entrenched within the limits of 
orthodox (frequentist) statistics, feel that they have 
to drop the guard and seriously examine this new 
way of data analysis and statistical inference. 

However, this phenomenon entails a 
paradigm shift and is not free of resistance and 
criticism. An extract from Dennis (1996)  
an adversary of the Bayesian way, gives a flavor  
of the kind of sentiments involved in the 
controversy. 

Bayesian statistics (...) is not just a new set of tools 
for ecologists to use. It is a whole different way of 
doing business. Bayesian and frequentist statistics 
cannot logically coexist. – Dennis 1996 
 

In a more pragmatic tone, Jaynes (2003) 
suggest there might be no going back. 

 
In this old works there was a tendency, on both 
sides, to argue on the level of philosophy or 
ideology.(…). We are now in a position of proven 
theorems and masses of worked-out numerical 
examples. As a result, the superiority of Bayesian 
methods is now a thoroughly demonstrated fact in a 
hundred different areas. – Jaynes 2003. 



P. G. KINAS & H. A. ANDRADE 

Pan-American Journal of Aquatic Sciences (2007) 2 (2): 103-112 

104 

A major shift towards Bayesian data analysis 
in fisheries can be dated back to the works  
by Hilborn et al. (1993) and Ludwig et al. (1993), 
both very critical on the traditional way of  
doing business in fishery assessment and 
management. Their diagnostics pointed to the 
necessity for a full incorporation of scientific 
uncertainty into the process. The Bayesian approach 
became a natural choice since it has the tools to:  
(i) display inferences in the form of posterior 
probability distributions, (ii) include all relevant 
information outside the data by way of a prior 
probability distribution, and (iii) use Bayesian 
decision theory to compare and choose among 
alternative management options. 

Frederick & Peterman (1995) presented a 
formal analysis of the important effects  
that uncertainty could have on the choice of optimal 
management actions. They also noticed that  
the richness of information contained in a  
posterior probability distribution can not be  
matched by orthodox point estimates or confidence 
intervals. 

These facts and the increasing number of 
papers using the new approach over the last ten 
years gave credibility to Bayesian analysis. A good 
introduction on some of the technicalities of the 
method directed to practicing fishery scientists was 
given by Punt & Hilborn (1997).  

In our attempted synthesis of the expanding 
role of Bayesian analysis in fisheries assessment  
and management, we start in section 2 examining 
how the principles behind de Bayesian approach 
affect the philosophy of scientific investigation  
and contrast it with the orthodox view to facilitate 
perception of the differences. In section 3 we  
review basic elements present in any Bayesian 
inference and decision analysis related to fishery 
model formulation. In section 4 we discuss some 
alleged limitations of Bayesian data analysis in 
fishery sciences. In section 5 some relevant but  
still under-explored potentialities are examined.  
A final section with our concluding remarks 
completes the paper. 
 
2- Probability: the logic of Science 

We borrowed the title of this section from 
the excellent book by Jaynes (2003) who presents 
probability as plausibility measure of propositions. 
This extends classical Aristotelian logic, restricted to 
true (probability 1) or false (probability 0) 
propositions, to a continuum of possibilities in 
between. In other words, it involves a change from 
deductive to inductive logic. 

This interpretation of probability is radically 

different and much more general than the traditional 
(frequentist) alternative which defines probability as 
the limit of relative frequencies obtained from 
repetition of identical experiments. Due to its 
importance for a clear understanding of the Bayesian 
approach, we illustrate some aspects of the logic that 
is involved in plausible reasoning. 

Suppose you are told that a given population 
of bluefin tuna has a sex ratio female:male of 1:1. 
With this information you can calculate the 
probability that in a sample of 10 bluefin tuna there 
will be nine females, and so on. The sort of pre-data 
reasoning that goes into this calculation is within the 
framework of deductive logic in which, given a set 
of premises, consequences can be worked out with 
certainty. 

Most scientists, however, will face the 
reverse of the above situation and need to answer 
much harder questions. That is, they will be 
concerned with post-data reasoning of the following 
type. Given that in a sample of ten bluefin, nine 
were female, how plausible is each of the following 
propositions? 

A: the sex ratio of the bluefin tuna popu-
lation is 1:1 

B: the sex ratio of the bluefin tuna popu-
lation is 3:1 

C: the sex ratio is 1:1 but there is a spatial 
segregation between sexes. 

Common sense might suggest that evidence 
contained in the data make B more plausible than A. 
However, if knowledge from other known  
bluefin populations and similar species all suggest a 
sex ratio of 1:1, and since the sample is small,  
we might still prefer A over B. But should we  
argue similarly if, instead of nine females in a 
sample of ten, we had 90 females in a sample of 
100? Although sample size can play an important 
role in defining relative plausibilities of A and B, 
these data do not contain relevant information to 
distinguish B from C, and a still larger sample size 
will not help. 

The type of plausible reasoning exposed in 
the example is within the general framework of 
inductive logic and needs to address a difficult 
question: how much our current plausibility about 
some proposition should change in light of new 
information? 

If we were able to define a measurement of 
plausibility, then we would possess a powerful tool 
to formalize the logic of inductive reasoning in 
Science. This challenge was overcome successfully 
by two researchers. First, Pólya (1954 apud: Jaynes 
2003) determined that there are just three desirable 
qualitative characteristics that should be present in 
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any formal representation of plausibility: (1) 
representation of plausibility by real numbers  
(i.e., quantification); (2) qualitative correspondence 
with common sense; and (3) consistence in the sense 
that no relevant and known information is excluded 
from the process (i.e. process is non-ideological) and 
that two analysis using equivalent propositions and 
the same set of information must lead to the same 
plausibility value. 

Based on Pólya´s qualitative structure, Cox 
(1961, apud: Jaynes 2003) worked out the 
quantitative rules for this measurement. Somewhat 
to his surprise, he found that the only rules which 
met this requirements where those of probability 
theory. In practical terms this means that, for 
scientific inference under uncertainty, the calculus of 
probability is all we need to perform correct 
plausible reasoning. Working independently,  
Jeffreys (1961) came to the same conclusions. 

Many statisticians dislike this interpretation 
of probability by arguing that it makes everything 
subjective. They prefer to think that ‘the probability 
that a fair coin turns out heads is ½’ is expressing 
some intrinsic property of the coin, accessible to 
(approximate) measurement through 
experimentation like counting the number of heads 
in a large amount of repeated and identical throws of 
the coin.  

This frequentist interpretation of probability 
as the long-run relative frequency faces some 
problems. First, if the act of ‘repeated and identical 
throws’ is possible (at least in principle), and if 
Newton´s laws of physics are valid, then the 
outcome is predictable with certainty (i.e. 
deductible). Hence, it seems to be our incapacity of 
knowing or controlling all relevant variables that go 
into the trajectory of the coin which make the 
process uncertain. After all, it seems that probability 
is no longer a property of the coin but an expression 
of our partial ignorance about the phenomenon. 

A second problem with the frequentist 
interpretation is the self-imposed and, from a 
Bayesian viewpoint, unnecessary restriction in the 
use of probability. Questions like ‘what is the 
probability that current levels of lobster catches are 
sustainable?’ or ‘what is the risk of an oil spill on 
next year’s recruitment of some fish stocks?’ are 
nonsense from a frequentist standpoint. However, 
most relevant questions in fishery management will 
be of this type and scientists will not stop looking 
for answers just because their questions remain 
outside the strict limits of frequentist statistics. 
Could it be that, deep inside, most scientists reason 
in a Bayesian way, even if on the surface they might 
not agree or even be unaware of it? 

Probability calculus allows us to quantify 
the impact of new information on our plausibility 
reasoning. That is, it tells how to go from the 
probability of A, denoted P(A), to the updated 
probability of A after some relevant new data  
have been observed, denoted P(A|data). This updated 
probability is referred to as the ‘conditional 
probability of A given the data’ and can be very 
different from the prior probabilities P(A). However, 
probability calculus does not tell what this prior 
probability ought to be (e.g. what number is 
associated to P(A)?). After all, calculations have to 
start somewhere. There are simple situations  
like tossing a fair coin, for which this quantification 
is simple. In general, however, the process is  
more intricate and various approaches have been 
proposed. Lindley (1985) devises the “standard urn” 
as a possible mental measurement device while 
Morgan & Henrion (1990) describe protocols which 
were developed for prior probability elicitation. 
Empirical studies further suggest that experience  
and training can qualify people in this activity 
(Brown et al. 1994). Uninformative priors in its 
various forms (Jeffreys, 1961; Berger, 1985; Jaynes, 
2003) are always a good start in expressing 
‘ignorance’. Although priors are an ongoing 
important research topic, the extra-trouble of having 
to deal with them is a small price to pay in 
comparison with the power and generality gained 
from probability as measurement of plausibility. 
However this topic can get too technical too fast and 
will not be further explored here. 

We close this section quoting an elegant 
summary by Sir Harold Jeffreys on how the 
Bayesian paradigm operates.  
 
When we make a scientific generalization we do  
not assert the generalization and its consequences 
with certainty; we assert that they have a  
high degree of probability on the knowledge 
available to us at the time, but that this probability 
may be modified by additional knowledge – Jeffreys 
(apud: Jaynes, 2003) 
 
3 – Priors, Likelihoods, Posteriors and Utilities 

We denote all unknown elements of interest 
in a problem by H (e.g. the parameters of some 
population dynamic model). All that is known by X 
(e.g. observational or experimental data). In a 
Bayesian statistical analysis we aim at P(H|X), the 
conditional probability of the elements of interest 
based on all we know. Bayes theorem provides the 
calculations. 

)()|()|( HPHXLkXHP ⋅⋅=  
L(X|H) is the likelihood for data X, P(H) the prior 
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probability of H in accordance with all relevant 
information about H that we bring to the analysis but 
is complementary to X, and 

1)( −= XPk  a 
normalizing constant to retain )|( XHP  within 
bounds [0,1]. 

The relative importance of statistical data 
and prior knowledge are well characterized in this 
expression. As soon as relevant data accumulate, the 
likelihood will dominate the calculations and 
estimates will usually approach those obtained in 
orthodox statistics. However, in limiting situations 
where orthodox statistics tend to collapse, Bayesian 
inference continues to give reasonable results. With 
limited data, the importance of priors grows. 

If we have a finite set of possible values iH  
(i = 1, 2, ...,q)  with posterior probabilities given as 

)|( XHP i , and we wish to choose among s 

alternative actions jd  for j = 1, ..., s, then we also 

should take into account the “utilities” ( iju ). These 
utilities quantify the decision makers preferences 
among possible consequences that result from 
combinations of iH  and jd . A Bayesian decision 
analysis claims that a rational choice takes as best 
action one that maximizes the expected utility ju . 

∑
=

⋅=
q

i
iijj XHPuu

1
)|(  

While the calculation of )|( XHP  
corresponds to the stage of the analysis in which 
uncertainties and risks are formally stated in light of 
available information, the search for an optimal 
action (i.e. calculation of expected utilities u ) is a 
central goal of management. 

Within the model structure that is usually 
used in fishery models or in conservation biology, 
we translate the elements of Bayesian analysis in 
very general terms by defining a non-linear and non-
Gaussian state-space model. We start by assuming 
that population biomass evolves in time by some 
stochastic process 

),( 1 ttt vbFb −= , 
in which bt is the biomass in time t with process 
noise vt and some function F describing the temporal 
biomass dynamic (e.g. Schaefer production model) 

The data yt at time t (e.g. catch per unit 
effort) are related to bt by the statistical model 

),( ttt ebGy = , 
in which G is some function characterizing that 
relation and et is a random variable modeling 
observation error. 

There are unknown parameters contained in 
F, G and in the probability distributions of vt and et. 
The vector with all those parameters is H, while X 
denotes the vector of observations yt. 

The many ways in which (orthodox or 
Bayesian) estimates of H have been used in the  
past can be classified according to the way in which 
process noise and observation errors are dealt with 
(de Valpine, 2002). The simplest Bayesian 
approaches ignore process noise and retain  
only observation errors (Kinas 1993, 1996, Hilborn 
et al. 1994). The use of only process noise or 
observation error and the resulting differences are 
examined with an example by Hilborn & Mangel 
(1997). The evolution in computational techniques 
to perform appropriate numerical integration to 
obtain P(H|X) when H is high-dimensional, made it 
possible to retain both sources of stochasticity 
(McAllister & Ianelli 1997). 

In formulating the above state-space model 
bt or yt can be multidimensional. For instance, bt can 
denote a vector of biomasses for different length 
(age) classes or for distinct geographical areas. 
Vectors for yt can be defined in a similar way. 
Mutatis mutandis, the components of the vectors  
bt and yt can also denote different species in a multi-
species dynamic model. 

A common confusion about model 
parameters is the claim that they are random 
variables in Bayesian statistical inference and 
constants under the frequentist interpretation.  
For instance, the well known and very enlightening 
paper by Ellison (1996) errs on this minor detail.  
In fact, this misunderstanding derives from  
retaining a frequentist interpretation of posterior 
probability distributions. As we have seen above, 
with probability defined as quantification of 
inductive logic, a Bayesian posterior distribution 
describes relative plausibilities of different 
propositions about the fixed, parameter in light of 
available knowledge.  

We finalize this section with an example that 
gives some appreciation on the richness of 
information that a Bayesian analysis can entail. In 
many situations posteriors have a single maximum 
so that some best estimate and associated probability 
intervals are appropriate summaries and the 
advantage over orthodox inference is not clear. 
However, depending of the nature of the data, we 
can eventually obtain posterior distributions which 
are multimodal so that the shape of the distribution 
cannot be summarized by just a couple of numbers. 
The bi-modal posterior displayed in Figure 1 was 
obtained by Kinas (1993) from a series of 22 years 
of catch and CPUE data for Pacific cod (Gadus 
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macrocephalus), using a delay-difference model. 
The two modes show an unresolved uncertainty 
between a highly productive but less abundant  
(r-strategist) or less productive and more abundant 
(K-strategist) stock. This controversy was, in fact, a 
point of debate at the time of the analysis. The 
posterior distribution displays this duality, showing 
that available data were unable to resolve this 
uncertainty. 

The impact of an informative versus a  
non-informative prior distribution on the final 
estimates can be further evaluated with the marginal 
distributions given in Figure 2. The dotted  
lines display the same marginal distributions  
that are given in Figure 1 (b and c), respectively  
and correspond to the informative prior. If  
prior is non-informative, the plausibility of a less 
productive large-biomass stock (K-strategist) 
reduces although the general bi-modal pattern 
remains (Fig. 2a). The estimate of equilibrium 
unfished Biomass becomes less precise determining 
the range [0, 1] for ln(B1) as very probable. 

4 – Complexity and Subjectivity 
There are two concerns mentioned 

repeatedly when reference is made to the Bayesian 
approach in fisheries: the complexity and 
computational demand that is involved in the use of 
realistic and high-dimensional probability models, 
and the unwanted subjectivity of priors 
‘contaminating’ scientific analyses. We comment on 
each of these concerns. 
 

Complexity 
Many students and scientists are  

easily attracted to Bayesian analysis at first  
sight, due to the simplicity and clarity of its 
arguments. Frustrations tend to show up as soon as a 
practical problem calls for solution. This is a 
common trend among researchers in all fields were 
training in orthodox statistics still dominates, since 
there has been a tendency to proceed rapidly into 
advanced statistical methods without spending 
‘enough time’ with the basic tools of probability 
calculus.  

 
Figure 1: Estimated posterior marginal density for Pacific cod (Gadus macrocephalus). B1 is the unfished equilibrium biomass and b 
the production parameter from a Ricker stock-recruitment relation and can be interpreted as the ratio B1/Smax where Smax is the 
spawning stock biomass which produces maximum number of recruits. Contours in (a) represent 0.05, .10, .25, .50, .75, .90 and .95 
of largest observed density. 
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We claim that, with just more attention to 
probability calculus in the training stages, this 
distortion can easily be corrected. 

Another source of frustration is the technical 
complexity required in some cases to obtain 
posteriors. These difficulties can grow rapidly with 
increased dimensionality of the parameter vector H 
and non-linearity in functions F and G. To sidestep 
these hurdles, the use of demanding stochastic 
simulations may be necessary (Gelman et al. 1995). 
Good news is that user-friendly and free software 
like WinBUGS (Spiegelhalter et al. 2000) are 
already available and expanding. 

 
 

Figure 2: Marginal posterior density for (a) ln b and (b) ln B1 in 
the Pacific cod (Gadus macrocephalus) example. Full and 
dotted lines correspond to ‘non-informative’ and ‘informative’ 
priors, respectively. 
 

The principle behind stochastic simulation  
is that posterior probabilities can be represented by a 
large sample of random values simulated according 
to its distributional properties. In fisheries, the most 
used procedure has been Markov chain Monte Carlo 
(MCMC) (McAllister & Ianelli 1997, Schnute et al. 
2000, Kinas 2002) because of computational 
efficiency and the growing popularity of software 
WinBUGS. Other procedures like Sampling 
Importance Resampling (SIR) (Kinas 1996)  
and Adaptive Importance Sampling (AIS) (Kinas 
1993, Andrade & Kinas, in press) seem to be more 
appropriate where multimodality in the posterior is 
expected, but still need to acquire  
more computational efficiency and user-friendly 
display. 
 The popular Ecopath with Ecosim (EwE) 
modeling software includes the Ecoranger  
module which implements a SIR scheme to derive 
Bayesian posteriors for ecosystem trophic mass 
balance analysis. But, according to Christensen & 
Walters (2004), these capabilities have been used in 

only a few examples and still await full exploration. 
Subjectivity of Priors 
The laudable attempt for objectivity in 

scientific investigation, often downplays priors as an 
unwanted but unavoidable weakness of Bayesian 
analysis; a source of embarrassment for any serious 
investigator. 

To address this important aspect of  
any Bayesian analysis, it is appropriate to start 
asking what we want to achieve when choosing  
our prior probability distributions. We agree  
with the answer given by Jaynes (2003) who 
considers any (Bayesian) inference problem as been 
ill-formulated until three essential aspects about 
priors have been settled: 
a) Prior probabilities represent available 

information (and not some cloudy believe or 
guess) and have to be determined by logical 
analysis of this information and not by pure 
introspection. 

b) Since the conclusions of the study necessarily 
will depend on available and relevant 
information as well as the experimental or 
observational data, it follows that this 
information should be described with the 
same level of detail as are the data. 

c) Our goal is to make our inference completely 
‘objective’ in the sense that two people in 
possession of the same information would 
come up with the same priors. 

 
We quite naturally take zero as the starting 

point for any summation of a column of real 
numbers. Similarly, non-informative priors are often 
a natural start in any practical Bayesian analysis 
(Berger 1985). Jaynes (2003) makes a strong 
argument in favor of ‘maximum entropy priors’ as 
an objective criterion to define informative priors 
which maximize ignorance beyond any known 
constrains; is seems a very promising direction for 
further research. 

Hence, the ‘subjectivity’ of all probabilities, 
as advocated by Bayesians, relate to the fact  
that probabilities are always a consequence of 
available information and not some arbitrary 
quantification. Finally, it is important to  
highlight that scientific judgment is necessary when 
deciding about priors as much as it is necessary to 
decide about data models (i.e. likelihoods). 
Therefore, there is no reason to restrict this onus to 
priors only. When analyzed in this larger context we 
might see priors more as strength and not as 
weakness, after all. 
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5 – Under-explored Potential in Fishery Models 
In the context of fisheries modeling there are 

particularly two under-explored possibilities which 
we like to highlight: (i) incorporation of model 
uncertainty and (ii) an extended use of Bayesian 
decision analysis to support managers in the difficult 
task of multi-criteria decision making in presence of 
uncertainty. 

It is a platitude among modelers of complex 
biological systems to recognize that there is no ‘true 
model’ which we try to identify. All models are 
idealized simplifications of reality although some 
will be more useful than others. As soon as we give 
up our search for the true model, we find ourselves 
asking a more relevant question: ‘Does the candidate 
model´s deficiencies have a noticeable effect on the 
substantive inference?’ (Gelman et al. 1995) 

Since limited data usually will agree with 
various structurally different models, we need a 
strategy to rank them in some fashion. Burnham & 
Anderson (2002) use criteria from information 
theory like Akaike information criteria (AIC) and 
Bayesian information criteria (BIC). These criteria 
rank models by establishing some compromise 
among goodness-of-fit and model complexity. Once 
a finite number of distinct models mk (k = 1, ..., M ) 
has been defined, analysis proceeds after choosing 
the best among candidate models or by using all 
models in multi-model inference with weights 
according to the chosen classification criteria. 

In Bayesian inference, model weighting is 
done by way of posterior probabilities )|( XmP k  
for k = 1, ...,M. Burnham & Anderson (2002) show 
that the use of AIC or BIC as weighting criteria is 
equivalent to the choice of  particular priors over all 
M models. In particular, BIC assumes a uniform 
prior among all M models while AIC assumes a less 
intuitive prior distribution. Hence, from a Bayesian 
perspective, the choice between AIC and BIC is 
equivalent to choosing among these priors. 

An alternative criterion proposed 
exclusively to classify Bayesian models is the 
deviance information criteria (DIC) (Spiegelhalter et 
al. 2002). This criterion seems to have advantages 
over AIC and BIC when dealing with Bayesian 
hierarchical models and is furthermore easy to 
calculate as by-product in MCMC. 

A Bayesian model is hierarchical whenever 
there is a known structure in the parameters so that 
priors can be decomposed in two or more stages. As 
an example, take yi as the catch per unit effort in 
some region i with true (unknown) abundance Hi, 
modeled with likelihood L(yi|Hi) and prior P(Hi) in 
order to obtain the posterior estimate of abundance 

P(Hi|yi). If there is some known structure among 
abundance in different regions, then it can (and 
should) be used to improve de prior on Hi by 
incorporating it as a probability model P(Hi|η) 
together with a second stage “hyper-prior” P(η). The 
hierarchical structure is nothing but a convenient 
way of representing prior information whenever 
there is qualitative information available to do so or 
when data themselves present a hierarchical 
structure. 

If there are good arguments in favor of the 
Bayesian approach in fisheries assessment, we 
believe that its advantages shine even brighter when 
we focus on the comparison of alternative actions 
and the process of decision making under 
uncertainty. Once all options are structured within 
the formalized framework of Bayesian decision 
theory (Berger 1985, Lindley 1985), three 
advantages can be identified. 

The first advantage is the effective and 
complete incorporation of scientific uncertainty into 
the decision process, made operational through the 
posterior. This intent is no longer a rhetorical and 
ill-defined objective as often seen in practice. The 
relevance of uncertainty in the political game among 
stakeholders should not be underestimated when it 
comes to resource management. An insightful 
example is the documented history of the changing 
role played by uncertainty within the International 
Whaling Commission (Heazle 2004). 

A second advantage derived from this 
formalization is the effective distinction between 
scientific facts (present in the posterior) and the 
perceived values of potential consequences 
(measured with utilities or losses). This clear 
distinction between scientific responsibilities and 
preferences elected by society can, at least in 
principle, facilitate dialog and negotiation among 
stakeholders. 

The third advantage is the pedagogical 
exercise pointing out that: 
(i) it only makes sense to talk about ‘good’ or ‘bad’ 
management actions when we have two or more 
alternatives to compare. 
(ii) since the selection of some ‘best’ alternative 
depends on both, posterior and utilities, changes in 
at least one of these components can change choices 
without being inconsistent with the general decision 
process. Furthermore, Bayesian decision theory tells 
quantitatively how strong these changes ought to be. 
(iii) the transparency of the decision process 
embedded in a Bayesian decision analysis not only 
facilitates communication among contenders and 
with the general public, but also serves the learning 
process since mistakes and successes can be tracked 
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back and hopefully understood. 
Although advantages of Bayesian decision 

analysis are easy to identify, the use of these tools to 
support decisions is still rare in Brazil (Vasconcellos 
2003, Andrade & Kinas, in press) and should be 
encouraged. 

There is some overlap of Bayesian decision 
analysis with recent developments of Operational 
Management Procedures (OMPs) (Kell et al. 2006) 
and Management Strategies Evaluations (MSEs) 
(Arandas & Motos, 2006). For instance, a 
‘performance statistic’ described as key elements  
in OMPs, correspond to a simplified version of  
the more general concept of utilitiy, uij. Utility  
is more general because it measures performance  
on a probability scale which allows incorporation  
of important behavioral characteristics like risk-
aversion. We think, however, that OMPs  
provide useful tools which can help to make 
Bayesian decision analysis more operational in 
fisheries management. Conversely, Bayesian 
decision analysis can provide a solid theoretical 
structure to guarantee consistency in the decision 
process. For instance, the universality and simplicity 
of expected utility as criterion to choose among 
alternative decisions, is an important theoretical 
results from Bayesian decision analysis and should 
not be ignored. 

Multiple conflicting objectives, commu-
nication among stakeholders and scientists, 
incorporation of ‘user knowledge’, all are elements 
of concern in MSEs, as much as they have been in 
Bayesian decision analysis for more than 20 years 
(Lindley, 1985).  It would be highly desirable if 
practical experiences gathered from management via 
MSEs and OMPs could help to make Bayesian 
decision analysis easier to implement. 
 
6- Conclusion 
 The present work is not a review paper and 
therefore not aimed at an exhaustive compilation of 
the literature available on the subject. Cited articles 
were selected to complement and illustrate the text. 

As concluding remarks to this synthesis 
about Bayesian approach in assessment and 
management of fisheries there are four points we 
wish to highlight. First, it is worthwhile to notice 
that the Bayesian interpretation of probability is 
much more general then the frequentist alternative. 
While the latter restricts probabilities to the limit of 
relative frequencies of events replicated under 
identical conditions, the Bayesian defines 
probabilities as a plausibility measure of 
propositions which includes the frequentist 
interpretation as a very special case. This distinction 

is important for an appropriate interpretation of a 
Bayesian data analysis. 

Once the interpretation of probability is 
taken into consideration, our second point is to 
express all uncertainties in the posterior probability 
distribution P(H|X) which is a synthesis of all 
information  (data and otherwise) currently 
available. Hence, the posterior is the central element 
for statistical inference based on which any question 
of interest about H should be addressed. 

Thirtly, we remind the reader that the 
relevance of prior probability distributions depend 
on the quantity and quality of hard data. Whenever a 
large amount of informative data is available, 
Bayesian and orthodox inference will give very 
close answers. Differences become more 
pronounced with insufficient data since the 
relevance of priors becomes more critical. With an 
appropriate understanding of the purpose of 
formalized priors, we claim that this is a strength 
and not weakness of the Bayesian approach. 

At last, the formal structure of a Bayesian 
decision analysis is adequate to address natural 
resource management because it facilitates 
communication among contenders and distinguishes 
scientific uncertainties (facts) from preferences 
(values). This distinction is important because both, 
facts and values, play important but distinct roles in 
any decision process. 
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