UNIVERSIDADE FEDERAL DO RIO GRANDE PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM COMPUTACIONAL

Abordagem Nodal Aplicada à Problemas de Transporte de Nêutrons em Geometria Cartesiana Bidimensional

por

Carlos Eduardo Souza Ferreira

Dissertação de Mestrado

Prof. Dr. Leonardo Ramos Emmendorfer Orientador

Prof. Dr. João Francisco Prolo Filho Co-Orientador

Rio Grande, março de 2016.

CIP - CATALOGAÇÃO NA PUBLICAÇÃO

Ferreira, Carlos Eduardo Souza

Abordagem Nodal Aplicada à Problemas de Transporte de Nêutrons em Geometria Cartesiana Bidimensional / Carlos Eduardo Souza Ferreira. — Rio Grande: PPGMC da FURG, 2016.

103 p.: il.

Dissertação (mestrado) —Universidade Federal do Rio Grande, Programa de Pós-Graduação em Modelagem Computacional, Rio Grande, 2016.

Orientador: Emmendorfer, Leonardo Ramos; Co-Orientador: Prolo Filho, João Francisco

Dissertação: Modelagem Computacional, Interdisciplinaridade, Matemática Aplicada,

Abordagem Nodal Aplicada à Problemas de Transporte de Nêutrons em Geometria Cartesiana Bidimensional

por

Carlos Eduardo Souza Ferreira

Dissertação submetida ao Programa de Pós-Graduação em Modelagem Computacional da Universidade Federal do Rio Grande

> Orientador: Prof. Dr. Leonardo Ramos Emmendorfer Co-Orientador: Prof. Dr. João Francisco Prolo Filho Banca examinadora:

> > Prof. Dr. Anderson Tres Dpto. Matemática / Unisinos Profa. Dra. Bárbara Denicol do Amaral Rodriguez PPGMC-FURG Prof. Dr. Antonio Gledson de Oliveira Goulart PPGMC-FURG

> > > Dissertação apresentada em março de 2016.

Prof. Dr. Jeferson Avila Souza Coordenador

A matemática é o alfabeto

com o qual DEUS

escreveu o universo.

(Pitágoras)

AGRADECIMENTO

De forma especial, primeiramente gostaria de agradecer ao João Prolo, Leonardo Emmendorfer e a Bárbara Rodriguez por toda atenção e inestimável auxílio durante todo o curso. Em especial, agradeço pela ajuda no pior momento de minha vida pessoal, onde apesar de todas as adversidades sempre tive total apoio e compreensão. E sim, neste momento não uso seus títulos, pois os tenho como amigos e não apenas como doutores, professores ou mesmo orientadores, agradeço aos amigos.

Deixo um segundo agradecimento ao Dr. João Prolo, por ceder a imagem utilizada para Figura 2.4a, deste trabalho.

Também devo meus agradecimento ao coordenador do programa, Dr. Jeferson Avila Souza, que me deu todo suporte e auxílio para conclusão deste trabalho.

E claro, também agradeço com grande amor no coração a Nilfa, meu modelo de vida, de pessoa, minha grande mãe.

E por último, mas não menos importante, a CAPES pela bolsa do Programa Demanda Social que me permitiu total dedicação ao projeto.

Sumário

LISTA DE FIGURAS	viii
LISTA DE TABELAS	x
LISTA DE SIGLAS E SÍMBOLOS	xiii
RESUMO	xvii
ABSTRACT	xviii
1 INTRODUÇÃO	1
2 MODELO PARA TRANSPORTE DE NÊUTRONS E SUA REPR NA FORMA INTEGRO-DIFERENCIAL	ESENTAÇÃO 6
2.1 Modelo simplificado	13
2.2 Discretização da variável angular e quadratura S_N	16
2.3 Equação do transporte em ordenadas discretas	17
2.4 Formulação nodal	18
2.5 Múltiplas regiões	21
3 SOLUÇÃO HOMOGÊNEA PARA OS PROBLEMAS NODAIS	24
3.1 Problema nodal integrado em y	24
3.2 Problema nodal integrado em x	26
4 SOLUÇÕES PARTICULARES E GERAIS	28
4.1 Soluções particulares	28
4.2 Soluções Gerais	29
5 CONDIÇÕES DE CONTORNO, INTERFACES, ACOPLAMENT E DETERMINAÇÃO DE COEFICIENTES	O 30
5.1 Caracterização dos contornos e equações auxiliares	30

5.2	Acoplamento e sistema para o cálculo dos coeficientes	31
6 R	RESULTADOS	34
6.1	Descrição geral	34
6.2	Quantidades de interesse e outras análises	35
6.3	Resultado comparativo	36
6.4	Resultados de benchmark	38
6.4.1	Meio homogêneo isotrópico	38
6.4.2	Meio heterogêneo isotrópico	50
6.5	Flexibilidade de hardware	57
7 C	CONCLUSÕES E CONTINUIDADE	58
7.1	Propostas de continuidade	60
7.2	Resultados esperados	61
REF	FERÊNCIAS BIBLIOGRÁFICAS	62
8 A	ANEXO	67

Lista de Figuras

Figura 2.1	Representação no espaço tridimensional da posição e desloca- mento de uma partícula	10
Figura 2.2	Representação do meio de interação da partícula	14
Figura 2.3	Problema em geometria cartesiana, em uma célula $[a_1, a_2] \times [b_1, b_2]$.	15
Figura 2.4	Exemplo das direções de espalhamento discretizadas ao se usar $N = 8$, nos sistema tridimensional "a)" e bidimensional "b)"	17
Figura 2.5	Geometria do problema observado.	22
Figura 2.6	Representação das interfaces entre regiões	23
Figura 5.1	Ordem anti-horária utilizada para as direções	32
Figura 6.1	Representação do problema descrito por Loyalka e Tsai	36
Figura 6.2	Representação do problema 1	38
Figura 6.3	Representação do problema 2	39
Figura 6.4	Gráfico comparativo da ordem de quadratura dos perfis de fluxo escalar $\phi_y(x)$ do problema 1, para $\sigma_s = 0.65.$	40
Figura 6.5	Gráfico comparativo da ordem de quadratura dos perfis de fluxo escalar $\phi_x(y)$ do problema 1, para $\sigma_s = 0.65.$	41
Figura 6.6	Gráfico comparativo do espalhamento dos perfis de fluxo escalar $\phi_y(x)$ do problema 1, para $N = 16. \ldots \ldots \ldots \ldots$	42
Figura 6.7	Gráfico comparativo do espalhamento dos perfis de fluxo escalar $\phi_x(y)$ do problema 1, para $N = 16. \ldots \ldots \ldots \ldots$	43
Figura 6.8	Gráfico do perfil de fluxo escalar bidimensional $\phi(x, y)$ do problema 1, para $N = 16$ e $\sigma_s = 0.65$.	44
Figura 6.9	Gráfico comparativo da ordem de quadratura dos perfis de fluxo escalar $\phi_y(x)$ do problema 2, para $\sigma_s = 0.65.$	45
Figura 6.10	Gráfico comparativo da ordem de quadratura dos perfis de fluxo escalar $\phi_x(y)$ do problema 2, para $\sigma_s = 0.65.$	46
Figura 6.11	Gráfico comparativo do espalhamento dos perfis de fluxo escalar $\phi_y(x)$ do problema 2, para $N = 16. \ldots \ldots \ldots \ldots$	47

Figura 6.12	Gráfico comparativo do espalhamento dos perfis de fluxo escalar $\phi_x(y)$ do problema 2, para $N = 16. \ldots \ldots \ldots \ldots \ldots$	48
Figura 6.13	Gráfico do perfil de fluxo escalar bidimensional $\phi(x, y)$ do problema 2, para $N = 16$ e $\sigma_s = 0.65$.	49
Figura 6.14	Representação do problema 3	50
Figura 6.15	Representação do problema 4	51
Figura 6.16	Representação do problema 5	52
Figura 6.17	Representação do problema 6	53
Figura 6.18	Representação dos fluxos escalares médios do problema 6. $\ .$.	53
Figura 6.19	Representação do problema 7	54
Figura 6.20	Representação dos fluxos escalares médios do problema 7	55
Figura 6.21	Representação do problema 8	55
Figura 8.1	Arranjo das direções e pesos para quadratura S_2	99
Figura 8.2	Arranjo das direções e pesos para quadratura S_4	99
Figura 8.3	Arranjo das direções e pesos para quadratura S_6	100
Figura 8.4	Arranjo das direções e pesos para quadratura S_8	100
Figura 8.5	Arranjo das direções e pesos para quadratura S_{12}	101
Figura 8.6	Arranjo das direções e pesos para quadratura S_{14}	101
Figura 8.7	Arranjo das direções e pesos para quadratura S_{16}	102
Figura 8.8	Arranjo das direções e pesos para quadratura S_{18}	102
Figura 8.9	Arranjo das direções e pesos para quadratura S_{20}	103

Lista de Tabelas

Tabela 6.1	Fluxo escalare médio de neûtrons bidimensional $\phi(x,y)$	37
Tabela 6.2	Problema 1: $\phi_y(x)$ para $\sigma_s=0.65$ e diferentes valores de $N.$	40
Tabela 6.3	Problema 1: $\phi_x(y)$ para $\sigma_s = 0.65$ e diferentes valores de N	40
Tabela 6.4	Problema 1: $\phi_y(x)$ para $N = 16$ e diferentes valores para σ_s	41
Tabela 6.5	Problema 1: $\phi_x(y)$ para $N = 16$ e diferentes valores para σ_s	42
Tabela 6.6	Problema 1: $\phi(x, y)$ para $N = 16$ e $\sigma_s = 0.65$	43
Tabela 6.7	Problema 2: $\phi_y(x)$ para $\sigma_s=0.65$ e diferentes valores de $N.$	44
Tabela 6.8	Problema 2: $\phi_x(y)$ para $\sigma_s=0.65$ e diferentes valores de $N.$	45
Tabela 6.9	Problema 2: $\phi_y(x)$ para $N=16$ e diferentes valores para $\sigma_s.$	46
Tabela 6.10	Problema 2: $\phi_x(y)$ para $N=16$ e diferentes valores para $\sigma_s.$	47
Tabela 6.11	Problema 2: $\phi(x,y)$ para $N = 16$ e $\sigma_s = 0.65$	48
Tabela 6.12	Tempo de cada simulação para os problemas 1 e 2	49
Tabela 6.13	Fluxos escalares médios de nêutrons integrados ϕ_{ryx} , para os problemas 1 e 2	49
Tabela 6.14	Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 3	50
Tabela 6.15	Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 4	51
Tabela 6.16	Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 5	52
Tabela 6.17	Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 6	53
Tabela 6.18	Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 7	54
Tabela 6.19	Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 8	56
Tabela 8.1	Quadratura simétrica de nível S_2 e S_4	67

Tabela 8.2	Quadratura simétrica de nível S_6	68
Tabela 8.3	Quadratura simétrica de nível S_8	69
Tabela 8.4	Quadratura simétrica de nível S_8	70
Tabela 8.5	Quadratura simétrica de nível S_{12}	70
Tabela 8.6	Quadratura simétrica de nível S_{12} - continuação	71
Tabela 8.7	Quadratura simétrica de nível S_{12} - continuação	72
Tabela 8.8	Quadratura simétrica de nível S_{12} - continuação	73
Tabela 8.9	Quadratura simétrica de nível S_{14}	74
Tabela 8.10	Quadratura simétrica de nível S_{14} - continuação	75
Tabela 8.11	Quadratura simétrica de nível S_{14} - continuação	76
Tabela 8.12	Quadratura simétrica de nível S_{14} - continuação	77
Tabela 8.13	Quadratura simétrica de nível S_{14} - continuação	78
Tabela 8.14	Quadratura simétrica de nível S_{16}	78
Tabela 8.15	Quadratura simétrica de nível S_{16} - continuação	79
Tabela 8.16	Quadratura simétrica de nível S_{16} - continuação	80
Tabela 8.17	Quadratura simétrica de nível S_{16} - continuação	81
Tabela 8.18	Quadratura simétrica de nível S_{16} - continuação	82
Tabela 8.19	Quadratura simétrica de nível S_{16} - continuação	83
Tabela 8.20	Quadratura simétrica de nível S_{18}	83
Tabela 8.21	Quadratura simétrica de nível S_{18} - continuação	84
Tabela 8.22	Quadratura simétrica de nível S_{18} - continuação	85
Tabela 8.23	Quadratura simétrica de nível S_{18} - continuação	86
Tabela 8.24	Quadratura simétrica de nível S_{18} - continuação	87
Tabela 8.25	Quadratura simétrica de nível S_{18} - continuação	88
Tabela 8.26	Quadratura simétrica de nível S_{18} - continuação	89

Tabela 8.27	Quadratura simétrica de nível S_{18} - continuação.	•	•	 •	•	•	90
Tabela 8.28	Quadratura simétrica de nível S_{20}			 •			90
Tabela 8.29	Quadratura simétrica de nível S_{20} - continuação.						91
Tabela 8.30	Quadratura simétrica de nível S_{20} - continuação.						92
Tabela 8.31	Quadratura simétrica de nível S_{20} - continuação.						93
Tabela 8.32	Quadratura simétrica de nível S_{20} - continuação.						94
Tabela 8.33	Quadratura simétrica de nível S_{20} - continuação.						95
Tabela 8.34	Quadratura simétrica de nível S_{20} - continuação.						96
Tabela 8.35	Quadratura simétrica de nível S_{20} - continuação.						97
Tabela 8.36	Quadratura simétrica de nível S_{20} - continuação.						98

LISTA DE SIGLAS E SÍMBOLOS

Lista de Siglas

ADO	Método Analático de Ordenadas Discretas
EDP	Equação Diferencial Parcial
LBE	Equação Linear de Boltzmann
RGD	Dinâmica de Gases Rarefeitos

Lista de Símbolos

a_1, a_2, b_1, b_2	extremidades do domínio
A_j, B_j	coeficientes da solução homogênea
A_y, D_y, A_x, D_x	matrizes do problema de autovalor
C_j, D_j, E_j, F_j	coeficientes da solução particular
CE, CD, CI, CS	condições de contorno a esquerda, direita, inferior e su- perior
E	energia
$f_x(\mathbf{r}, \mathbf{\Omega}' \to \mathbf{\Omega}, E' \to E)$	Z) probabilidade de transferência da reação tipo x
H, K	quantidades máximas de divisões em cada eixo coorde- nado.
M	número de pontos da quadratura
n	nêutrons

ordem da quadratura S_N
densidade provável de nêutrons
próton
fonte $(n/cm^3 \cdot s)$
fonte após integração em \boldsymbol{y}
fonte após integração em \boldsymbol{x}
fonte (n/cm ³ · s) das equações nodais
vetor espacial (cm)
índice r , região do domínio
domínio retangular
fonte interna do domínio
quadratura simétrica de nível
tempo
coordenadas espaciais (cm)
velocidade
volume
autovalores dos problemas homogêneos
angulo polar
coordenadas direcionais
constantes de separação

σ	seção de choque macroscópica (cm^{-1})
σ_a	seção de choque macroscópica de absorção $({\rm cm}^{-1})$
σ_{f}	seção de choque macroscópica de fissão (cm $^{-1})$
σ_n	seção de choque macroscópica de espalhamento elástico $({\rm cm^{-1}})$
$\sigma_{n'}$	seção de choque macroscópica de espalhamento inelástico $({\rm cm}^{-1})$
σ_{op}	seção de choque macroscópica de forma genérica, a outras processos de interação dos nêutrons (cm^{-1})
σ_s	seção de choque macroscópica de espalhamento $({\rm cm}^{-1})$
σ_t	seção de choque macroscópica de total (cm $^{-1})$
σ_γ	seção de choque macroscópica de captura (cm $^{-1})$
$\Phi_y(u, {oldsymbol \Omega}), \Phi_x(\gamma, {oldsymbol \Omega})$	autofunções do problema homogêneo
arphi	angulo azimutal
$\Psi(\mathbf{r}, \mathbf{\Omega}), \Psi(x, y, \mathbf{\Omega})$	fluxo angular (W/cm ² · Sr)
$\Psi_y(x, \boldsymbol{\Omega_i})$	fluxo angular médio na variável x
$\Psi_x(y, {oldsymbol \Omega}_{oldsymbol i})$	fluxo angular médio na variável y
$\Psi^h_y(x,{\bf \Omega})$	solução do problema homogêneo em \boldsymbol{x}
$\Psi^h_x(y,{\bf \Omega})$	solução do problema homogêne o em \boldsymbol{y}
$\Psi_y^p(x, \mathbf{\Omega})$	solução do problema particular em \boldsymbol{x}
$\Psi^p_x(y,{oldsymbol \Omega})$	solução do problema particular em y

$\Psi(x,y,\boldsymbol{\Omega_i})$	aproximação das condições de contorno não-incidentes
$\Psi_x(y, \boldsymbol{\Omega_i}), \tilde{\Psi}_y(x, \boldsymbol{\Omega_i})$	versões integradas em $x \in y$
ω_k	pesos da quadratura
$oldsymbol{\Omega}_k$	vetor direção associado ao peso w_k
Ω	vetor directonal
$\Omega*$	direções incidentes

RESUMO

Neste trabalho uma formulação nodal é proposta para o tratamento de uma classe de problemas de transporte de nêutrons em geometria cartesiana bidimensional. Pelo processo de integração transversal, equações unidimensionais são obtidas, reescrevendo o modelo em termos de quantidades médias. A resolução das equações integradas é feita usando uma versão do Método de Ordenadas Discretas Analítico (ADO), onde são obtidas soluções explícitas, analíticas em termos das variáveis espaciais, através de um código de fácil implementação. Pode-se destacar também como vantagens desta formulação a versatilidade na escolha do esquema de quadratura e o baixo custo computacional, uma vez que métodos iterativos não são necessários, tampouco métodos de interpolação. Para lidar com os termos do contorno que surgem no processo, utiliza-se aqui uma aproximação por termos constantes, de forma que as equações nodais nas variáveis x e y são tratadas por um sistema acoplado. Os resultados obtidos por esta formulação são apresentados, bem como alguns perfis de fluxo escalar, fluxo escalar médio, comparação entre diferentes ordens de quadratura e outras considerações.

ABSTRACT

In this work a nodal formulation is proposed for the treatment of a class of neutron transport problems in two-dimensional Cartesian geometry. By the transverse integration process, one-dimensional equations are obtained, rewriting the model in terms of average quantities. The resolution of the integrated equations is performed using a version of Analitical Discrete Ordinates Method (ADO), where explicit solutions are obtained, analytical in terms of the spatial variables, through an easy implementation code. Also we detach as advantages of this formulation the versatility in the choice of the quadrature scheme and the low computational cost, since iterative methods are not needed, either interpolation methods. To deal with the boundary terms that arise in the process, is used here a constant approximation so that the nodal equations on x and y variables are treated by a coupled system. The results obtained by this formulation is shown as well some scalar flux profiles, averaged scalar-flux, comparison among different quadrature order and other considerations.

1 INTRODUÇÃO

A Equação de Transporte, também conhecida como versão linear da Equação de Boltzmann (LBE), descreve de forma matemática e quantitativa, a distribuição espacial, direcional, energética e temporal das partículas em meios materiais, e tem despertado grande interesse dos pesquisadores devido a sua aplicabilidade em diversas áreas, como por exemplo, na área nuclear para o estudo de blindagem [35] e reatores [17], em microestruturas [3, 24, 29], em estimativas de propriedades térmicas de materiais [39], ou mesmo em estudos de fenômenos envolvendo transpiração térmica [23].

Para a resolução da Equação de Transporte, podemos encontrar abordagens com perfil probabilístico, representadas pelo clássico método de Monte Carlo [36], e com enfoque determinístico, onde podem ser encontradas formulações totalmente numéricas como o caso do método de Elementos Finitos [38] ou ainda método ditos semi-analíticos, onde os termos relacionados às variáveis espaciais são tratados de forma analítica, como o método Analítico de Ordenadas Discretas (ADO) [6] e o LTS_N [34].

Citamos também, o método de Ordenadas Discretas, introduzido na década de 50 por Wick [40] em estudos de fenômenos de transporte de nêutrons e posteriormente utilizado em problemas de transferência radiativa por Chandrasekhar [13], este tem se destacado devido a sua versatilidade na resolução tanto de problemas unidimensionais, multidimensionais e nodais em teoria de transporte [24, 26, 27].

Entre as abordagens inspiradas no método de Ordenadas Discretas, encontramos atualmente os chamados Métodos Nodais [8, 9, 10], que comumente são aplicados à problemas multidimensionais [18, 25, 26]. Sua formulação implica na decomposição do domínio em células, nas quais grandezas médias são definidas através

do processo de integração. Os métodos nodais podem ser divididos em dois grupos: os polinomiais [1, 37] e os espectronodais [9, 14, 15]. No caso dos polinomiais, são usadas expansões polinomiais de baixa ordem para representar tanto o fluxo angular ao longo das faces da grade espacial quanto os termos de fonte [1, 37]. Já nos espectronodais, como no trabalho desenvolvido por Barros e Larsen [10], os termos de fonte são tratados de forma analítica e são introduzidas aproximações apenas para os termos de fuga transversal. Contudo, a principal limitação dos métodos nodais tradicionais é o fato de trabalhar com grandezas médias aproximadas em células, dificultando a avaliação de fluxos escalares de nêutrons em pontos específicos, muitas vezes obrigando o uso de esquemas de interpolação ou, em casos mais extremos, no próprio refinamento da malha computacional. A dependência de esquemas iterativos é outro ponto importante, pois está diretamente ligado ao alto custo computacional do método. Para o tratamento analítico das equações em ordenadas discretas, existem algumas dificuldades numéricas que são inevitáveis, como por exemplo, o fato de ser necessário o cálculo de constantes de separação vinculadas às raízes de polinômios característicos.

Para contornar estes problemas, novas formulações têm sido propostas e, entre elas, encontra-se uma versão analítica do método de Ordenadas Discretas (método ADO [6]). O método ADO, proposto por Barichello e Siewert [6], tem apresentado algumas características que o tornam bastante atrativo do ponto de vista computacional como, por exemplo, a possibilidade de usar esquemas de quadratura mais arbitrários, a determinação das constantes de separação por meio de problemas de autovalores e por fornecer soluções analíticas em termos das variáveis espaciais. O método ADO também tem se mostrado uma ferramenta muito útil na resolução de problemas em RGD, principalmente pela possibilidade de se construir soluções unificadas para diferentes modelos cinéticos [24, 27, 28].

Devido à performance do método ADO na resolução de diferentes classes de problemas unidimensionais, seja pela obtenção de soluções precisas e analíticas em termos das variáveis espaciais, ou por utilizar códigos de fácil implementação e de baixo custo computacional, aliado à possibilidade de associação com os métodos nodais e à utilização de diferentes quadraturas multidimensionais, a sua extensão para a resolução de problemas multidimensionais [1, 2, 4, 8] tem sido investigada.

Desta forma, propmos com este trabalho mostrar a viabilidade de utilização de uma versão do método ADO aliado aos métodos nodais para o tratamento de problemas de transporte de nêutrons em geometria cartesiana bidimensional. No processo, as equações de transporte escritas em ordenadas discretas são convertidas em equações nodais através do processo de integração transversal nas variáveis x e y, fazendo com que os fluxos angulares sejam representados em termos de quantidades médias. Apesar de reduzir a complexidade do modelo, este mesmo processo de integração também provoca o surgimento de termos referentes aos fluxos angulares nos contornos que são desconhecidos em determinadas direções. A representação adequada destes termos de fuga transversal, que normalmente é feita através de equações auxiliares, também passa a ter um papel importante no desenvolvimento do método, por afetar diretamente na precisão dos resultados.

Aqui, a resolução das equações nodais resultantes do processo de integração transversal será feita utilizando uma versão do método ADO, na qual não será feita a sepração usual das direções de acordo com os quadrantes, acarretando em uma formulação mais simples e mais eficiente em termos de tempo de processamento. As soluções particulares utilizadas correspondem a um caso particular das propostas por Barros e Larsen [10], e os termos de fuga transversal são aproximados por constantes. Por fim, através de um sistema que acopla os dois problemas nodais, faz-se a determinação dos coeficientes necessários para a completa representação das soluções, possibilitando a avaliação de determinadas quantidades de interesse, como por exemplo o fluxo escalar.

Apesar de estar sendo usada a Quadratura Simétrica de Nível, o fato do método não depender da separação das direções em quadrantes possibilita a utilização de esquemas de quadraturas mais gerais sem acarretar mudanças no método. Além disso, ainda foi possível obter para as equações nodais, soluções analíticas em termos das variáveis espaciais, a um custo computacional extremamente baixo, através de uma técnica de simples implementação.

Sendo assim, no capítulo 2, abordaremos aspectos físicos inerentes a distribuição de partículas no espaço de fase e, baseado no princípio de balanço (ganhos-perdas) será deduzida a equação de transporte de partículas na sua forma integro-diferencial. A partir dela, através de algumas considerações, teremos o modelo a ser utilizado. Em seguida, utilizaremos o método de ordenadas discretas para transformar a equação integro-diferencial em um sistema de EDP's, no qual, após a integração em termos das variáveis espaciais, o método ADO é aplicado. No capítulo 3, desenvolveremos uma solução homogênea das equações nodais de ambas as equações unidimensionais. No capítulo 4 apresentaremos as soluções particulares dos problemas integrados, e no capítulo 5, veremos a caracterização dos contornos por meio das equações auxiliares e o acoplamento dos problemas para a determinação das constantes ligadas à solução geral do problema de transporte. Os problemas teste propostos e seus respectivos resultados serão apresentados no capítulo 6 junto com algumas avaliações de benchmark. Por fim, as considerações finais e planejamento de continuidade serão dados no capítulo 7. Um apêndice também foi incluido a este trabalho, onde as quadraturas utilizadas para a discretização da variável angular foram retiradas de Cacuci [12].

Podemos considerar como principais contribuições deste trabalho a proposta de uma versão mais simples do Método ADO na resolução de diversos problemas transporte de nêutrons bidimenionais, a geração de uma série de resultados benchmark para problemas ainda não tratados na literatura, o estudo de viabilidade de utilização deste tipo de metodologia por meio de softwares de distribuição livre e em equipamentos portáteis (tablets e smartphones), e a utilização de uma forma para solução particular que ainda não havia sido trabalhada em conjunto com o método ADO.

Também é apresentado neste trabalho, um apêndice onde foi incluído o esquema de quadratura utilizado para discretização da variável angular.

2 MODELO PARA TRANSPORTE DE NÊUTRONS E SUA REPRESENTAÇÃO NA FORMA INTEGRO-DIFERENCIAL

A equação de transporte integro-diferencial será deduzida a partir de uma relação de balanço de partículas que acontece em um dado espaço onde ocorrem as interações entre partículas. Tal espaço será denominado *espaço de fase* do problema.

Inicialmente partiremos de uma simplificação do modelo considerando a mecânica de interação dos nêutrons. Olhando pela interação física das partículas de nêutrons ao serem emitidas contra um meio material, podemos perceber que essas partículas interagem com o núcleo do meio material causando espalhamento e absorção. Ao analisarmos o caso do espalhamento devemos notar que pode haver conservação de energia ou não, assim sendo, denominaremos como *espalhamento elástico* ou *inelástico*. Já no caso da absorção devemos considerar que a absorção dessa partícula pelo núcleo do material pode gerar a emissão de raios gama, ou ainda no caso do material possuir uma composição fissionável que irá gerar a liberação de energia e de outros nêutrons, que podem interagir com o meio e provocar uma reação em cadeia. Nestes casos chamaremos de *seção de choque de captura radioativa* e de *seção de choque macroscópica de fissão*.

Para utilizarmos estes aspectos físicos na dedução da equação, iremos antes definir o conceito de *seção de choque macroscópica*, que será a probabilidade de uma partícula por unidade de comprimento da trajetória, interagir com as partículas do núcleo do meio material. Definimos também o *livre caminho médio*, como sendo o inverso da seção de choque macroscópica, ou seja a distância percorrida por uma partícula emitida antes de colidir com outras partículas existentes no meio material. Usaremos como notação para seção de choque macroscópica a letra grega (σ). A partir destas informações podemos deduzir a equação. Assim usaremos σ_a para denotar a seção de choque macroscópica de absorção e σ_s para seção de choque macroscópica de espalhamento. Nos dois casos citados a seção de choque macroscópica $\sigma(E)$ depende da energia emitida. A utilizarmos um meio heterogêneo, as seções de choque macroscópicas também dependerão da posição, que denotaremos pelo vetor **r**, de componentes (x, y, z).

Assim, teremos $\sigma_a(\mathbf{r}, E)$ e $\sigma_s(\mathbf{r}, E)$ como as funções referentes a seção de choque macroscópica de absorção e espalhamento para nêutrons, respectivamente, com dependência do vetor posição e da energia. Definiremos ainda, a função $\sigma_{op}(\mathbf{r}, E)$ que neste caso representa de forma genérica outros processos de interação dos nêutrons com o núcleo, onde em alguns casos, iremos ignorar por exercerem uma influência muito menor, em relação ao processo de espalhamento e absorção. Neste caso específico poderá representar a situação em que um nêutron inicial causa a emissão de dois nêutrons ou então quando um nêutron provoca a emissão de um próton.

Conforme discutido acima podemos descrever a seção de choque macroscópica pela função:

$$\sigma_t(\mathbf{r}, E) = \sigma_a(\mathbf{r}, E) + \sigma_s(\mathbf{r}, E) + \sigma_{op}(\mathbf{r}, E), \qquad (2.1)$$

onde temos a seção de choque total $\sigma_t(\mathbf{r}, E)$ composta pela soma da seção de choque macroscópica de absorção $\sigma_a(\mathbf{r}, E)$ mais a seção de choque macroscópica de espalhamento $\sigma_s(\mathbf{r}, E)$ somado a outros processos descritos por σ_{op} . Por sua vez a seção de choque de absorção pode ser descrita como:

$$\sigma_a(\mathbf{r}, E) = \sigma_\gamma(\mathbf{r}, E) + \mathbf{v}\sigma_f(\mathbf{r}, E), \qquad (2.2)$$

sendo σ_{γ} é a seção de choque de captura e σ_f a de fissão. E por último temos a

definição da seção de choque por espalhamento dada por

$$\sigma_s(\mathbf{r}, E) = \sigma_n(\mathbf{r}, E) + \sigma_{n'}(\mathbf{r}, E), \qquad (2.3)$$

onde, respectivamente, temos σ_n e $\sigma_{n'}$ sendo as seções de choque para os espalhamentos elástico e inelástico.

Reescrevendo a equação temos,

$$\sigma_t(\mathbf{r}, E) = \sigma_\gamma(\mathbf{r}, E) + v\sigma_f(\mathbf{r}, E) + \sigma_n(\mathbf{r}, E) + \sigma_{n'}(\mathbf{r}, E) + \sigma_{op}(\mathbf{r}, E).$$
(2.4)

Devemos levar em consideração a distribuição da energia e a direção dos nêutrons emitidos em uma reação genérica, descrita por (n, X), onde n indica a entrada de um nêutron e X a partícula gerada. A entrada de um nêutron pode ainda gerar outros nêutrons como no caso (n, 2n), onde para cada nêutron de entrada teremos a geração de outros dois nêutrons, ou (n, p) onde cada nêutron emitido acaba gerando um próton.

Denominamos de distribuição de choque diferencial a expressão,

$$\sigma_x(\mathbf{r}, \mathbf{\Omega}' \to \mathbf{\Omega}, E' \to E) = \sigma_x(\mathbf{r}, E') f_x(\mathbf{r}, \mathbf{\Omega}' \to \mathbf{\Omega}, E' \to E), \quad (2.5)$$

onde a seção de choque macroscópica referente a reação (n, x) à energia E', é a probabilidade de reação de uma partícula com direção Ω' passa para Ω e energia E; para E, no momento em que sofre reação com um núcleoe no processo é emitido uma particula x que pode ser um nêutron ou um próton, no intervalo de energia dE em

torno de E é expressa por $f_x(\mathbf{r}, \mathbf{\Omega}' \to \mathbf{\Omega}, E' \to E)$ e denominamos de probabilidade de transferência. Esta por sua vez deve ser normalizada com a finalidade de que sua integral sobre todas as suas direções e energias finais seja igual ao total de nêutrons emitidos nesta reação, ou seja, a soma de todas as probabilidades de distribuição de todas os níveis de energia e todas as direções seja igual a um - considerando a reação (n, x).

Algumas vezes pode ser conveniente especificar em termos do vetor unitário, Ω , em um sistema de coordenadas polares, ou seja, dado o ângulo polar θ e o angulo azimutal φ . Assim teremos: $\Omega_x = sen(\theta)cos(\varphi)$, $\Omega_y = sen(\theta)sen(\varphi)$, $\Omega_z = cos(\theta)$.

Desta forma chegamos a equação:

$$\int_{E} \int_{\Omega} f_x(\mathbf{r}, \mathbf{\Omega}' \to \mathbf{\Omega}, E' \to E) d\mathbf{\Omega} dE = 1, \qquad (2.6)$$

onde a integral em E expressa a soma de todos os níveis de energia e a integral em Ω expressa o somatório de todas as direções. Ainda devemos considerar que teremos a equação com x = n para o caso do espalhamento elástico (caso onde ocorre conservação de energia) e x = n' para o espalhamento inelástico (onde não ocorre a conservação de energia).

Podemos agora definir a *probabilidade total de transferência*, levando em consideração todas as possíveis reações a partir da equação (2.6) para soma de todas as reações (indicada pelo somatório encontrado no lado direito da equação), temos:

$$\sigma(\mathbf{r}, \mathbf{\Omega}' \to \mathbf{\Omega}, E' \to E) = \sum_{x} \sigma_x(\mathbf{r}, E) f_x(\mathbf{r}, \mathbf{\Omega}' \to \mathbf{\Omega}, E' \to E), \quad (2.7)$$

Agora iremos definir $N(\mathbf{r}, \mathbf{\Omega}, \mathbf{E}, t) dV d\mathbf{\Omega} dE$ como a função que descreve o número provável de nêutrons existentes em um dado instante t, onde dV representa o volume infinitesimal com centro em \mathbf{r} que se deslocam em direções $d\mathbf{\Omega}$, Figura 2.1, em torno da direção $\mathbf{\Omega}$ e que possuem energia dE em torno de E, onde θ é o ângulo polar e φ o ângulo azimutal.

Figura 2.1: Representação no espaço tridimensional da posição e deslocamento de uma partícula.

Para considerar o que acontece com este pacote de nêutrons, vamos supor que ele segue por um intervalo de tempo Δt assumindo que as seções transversais são funções contínuas da posição no entorno da posição **r**, o nêutron com energia *E* que sofre colisão pode ser considerado como perda do pacote, pois muda de grupo energético, enquanto que aquele que não colide permanece.

A distância percorrida por um nêutron no tempo $\Delta t \in v\Delta t$; consequentemente, a probabilidade de que um nêutron colida neste período $\delta \sigma(\mathbf{r}, E)v\Delta t$. A probabilidade que um nêutron não colida dentro do período Δt , portanto, é dado por $(1 - \sigma(\mathbf{r}, E)v\Delta t)$. Dessa forma número de nêutrons que se manteve no espaço de fase será

$$N(\mathbf{r}, \mathbf{\Omega}, E, t)[1 - \sigma(\mathbf{r}, E)v\Delta t]dVd\mathbf{\Omega}dE$$
(2.8)

Estes nêutrons vão chegar na posição $\mathbf{r} + \mathbf{\Omega} v \Delta t$ no tempo $t + \Delta t$. Além dos nêutrons perdidos no pacote pelas colisões, alguns nêutrons podem ser ganhos como resultado de colisões dos nêutrons de outros pacotes ou por uma fonte. Assim a taxa de produção de partículas é dada por [11]:

$$\left[\int_{E'} \int_{\mathbf{\Omega}'} \sigma(\mathbf{r}, E') f(\mathbf{r}, \mathbf{\Omega}' \to \mathbf{\Omega}, E' \to E) v' N(\mathbf{r}, \mathbf{\Omega}', E', t) d\mathbf{\Omega}' dE' + Q(\mathbf{r}, \mathbf{\Omega}, E, t)\right] dV d\mathbf{\Omega} dE,$$
(2.9)

onde o primeiro termo representa os nêutrons que após a reação, acabam mudando para outras direções e outros níveis de energia em dV e dE, ainda é considerado neste termo o surgimento de nêutrons gerados na reação. O segundo termo representa os nêutrons que possam ser gerados por outras fontes internas, localizadas no meio material.

A perda de nêutrons é dado segundo Glasstone [11], por

$$[\sigma(\mathbf{r}, E)v'N(\mathbf{r}, \mathbf{\Omega}, E, t) + v\mathbf{\Omega} \cdot \nabla N(\mathbf{r}, \mathbf{\Omega}, E, t)]dVd\mathbf{\Omega} dE, \qquad (2.10)$$

onde, ao considerarmos todas as interações que ocorrem no intervalo dV teremos, indicado pelo primeiro termo todos os nêutrons que deixam os intervalos energéticos e direcionais. Já no segundo, podemos observar a existência do operador gradiente indicando a dependência geométrica do problema, este termo corresponde a perda líquida dos nêutrons no volume considerado.

Por último iremos considerar a taxa de variação provável, da quantidade de nêutrons existentes em dV, que será dada pela expressão:

$$\left[\frac{\partial}{\partial t}N(\mathbf{r},\mathbf{\Omega},E,t)\right]dVd\mathbf{\Omega}dE.$$
(2.11)

Partindo destas considerações, podemos retomar a ideia mencionada no início, onde a equação do transporte é deduzida a partir de um balanço dos nêutrons no espaço de fase, onde iremos considerar o balanço como sendo:

(Tx. de variação do n° de nêutrons)=

(Tx. de produção de nêutrons)-(Tx. de perda de nêutrons).

Assim teremos como resultado:

$$\frac{1}{v}\frac{\partial}{\partial t}vN(\mathbf{r},\mathbf{\Omega},E,t) + \mathbf{\Omega}.\nabla vN(\mathbf{r},\mathbf{\Omega},E,t) + \sigma(\mathbf{r},E)vN(\mathbf{r},\mathbf{\Omega},E,t)$$

$$= \int_{E'}\int_{\mathbf{\Omega}'}\sigma(\mathbf{r},E')f(\mathbf{r},\mathbf{\Omega}'\to\mathbf{\Omega},E'\to E)vN(\mathbf{r},\mathbf{\Omega}',E',t)d\mathbf{\Omega}'dE' + Q(\mathbf{r},\mathbf{\Omega},E,t).$$
(2.12)

Por fim chegamos a equação (2.12) do transporte de nêutrons linear em sua forma integro-diferencial, onde temos por objetivo determinar $vN(\mathbf{r}, \mathbf{\Omega}, E, t)$ que é chamado de *fluxo angular de nêutrons* e possui unidade de nêutrons por unidade de volume, por unidade de tempo, por unidade de ângulo sólido e por unidade de energia. Para isto, usaremos a notação $\Psi(\mathbf{r}, \mathbf{\Omega}, E, t)$ para indicar o fluxo angular de nêutrons. Como forma de simplificar a representação da equação, passamos a expressá-la em termos do fluxo angular, na forma:

$$\frac{1}{v}\frac{\partial}{\partial t}\Psi(\mathbf{r},\mathbf{\Omega},E,t) + \mathbf{\Omega}.\nabla\Psi(\mathbf{r},\mathbf{\Omega},E,t) + \sigma(\mathbf{r},E)\Psi(\mathbf{r},\mathbf{\Omega},E,t) \\
= \int_{E'}\int_{\mathbf{\Omega}'}\sigma(\mathbf{r},E')f(\mathbf{r},\mathbf{\Omega}'\to\mathbf{\Omega},E'\to E)\Psi(\mathbf{r},\mathbf{\Omega}',E',t)d\mathbf{\Omega}'dE' + Q(\mathbf{r},\mathbf{\Omega},E,t).$$
(2.13)

2.1 Modelo simplificado

Ainda, podemos ter algumas simplificações da equação (2.13), ao se considerar a classe de problemas propostos neste trabalho. Assim, considerando que trabalharemos com problemas bidimensionais em domínios retangulares R, teremos varíável espacial, decomposta em duas coordenadas r = (x, y) e trataremos de problemas em regime estacionário o que implicará na perda da variável temporal e energética.

Em relação a variável direcional trataremos dos casos com espalhamento isotrópicos, onde teremos a mesma probabilidade de espalhamento para qualquer direção. Podemos ainda observar que trataremos de problemas com fonte de emissão constante, bem como trataremos de situações onde a região terá valores constantes para as seções de choque macroscópica total σ_t e seção de choque macroscópica de espalhamento σ_s . Assim, a equação (2.13) será escrita na forma geral podendo representar problemas multidimensionais, como

$$\mathbf{\Omega}.\nabla\Psi(\mathbf{r},\mathbf{\Omega}) + \sigma_t\Psi(\mathbf{r},\mathbf{\Omega}) = \sigma_s \int_{\mathbf{\Omega}'} \Psi(\mathbf{r},\mathbf{\Omega}') d\mathbf{\Omega}' + Q.$$
(2.14)

Dessa forma chegamos a equação do transporte que descreve um problema multidimensional em geometria cartesiana, com um único grupo energético e espalhamento isotrópico, como descrito em Duderstadt [17]

$$\mu \frac{\partial}{\partial x} \Psi(x, y, \mathbf{\Omega}) + \eta \frac{\partial}{\partial y} \Psi(x, y, \mathbf{\Omega}) + \sigma_t \Psi(x, y, \mathbf{\Omega}) = \sigma_s \int_{\mathbf{\Omega}'} \Psi(x, y, \mathbf{\Omega}') d\mathbf{\Omega}' + Q.$$
(2.15)

Agora tendo em mente todas as principais características que definem e descrevem a equação linearizada de Boltzman, podemos identificar na Figura (2.2), alguns destes elementos na representação do espaço de interação das partículas.

Figura 2.2: Representação do meio de interação da partícula.

Partiremos desta equação e trabalharemos em problemas baseados no domínio R, delimitado pelo retângulo $[a_1, a_2] \times [b_1, b_2]$, com fluxos angulares $\Psi(x, y, \Omega)$, nas direções incidentes conhecidos e representados pelas condições de contorno CE, CD, CI e CS representados na Figura 2.3.

teremos condições de contorno sendo os fluxos angulares incidentes, tais

que

Figura 2.3: Problema em geometria cartesiana, em uma célula $[a_1, a_2] \times [b_1, b_2]$.

$$\Psi(x, b_1, \mathbf{\Omega}^*) = CI, \qquad (2.16)$$

$$\Psi(x, b_2, \mathbf{\Omega}^*) = CS, \tag{2.17}$$

$$\Psi(a_1, y, \mathbf{\Omega}^*) = CE, \qquad (2.18)$$

$$\Psi(a_2, y, \mathbf{\Omega}^*) = CD, \qquad (2.19)$$

sendo $\boldsymbol{\Omega}^*$ a representação das respectivas direções incidentes.

As quantidades de interesse avaliadas neste trabalho correspondem ao fluxo escalar de nêutrons em cada uma das ordenadas, e o fluxo escalar de nêutrons bidimensional. Serão feitas comparações e avaliação do fenômeno com diferentes valores de espalhamento e pontos de quadratura.

2.2 Discretização da variável angular e quadratura S_N

O desenvolvimento da formulação de uma solução para a classe de problemas propostos neste trabalho, se utilizará de uma versão do método de ordenadas discretas analítico (método ADO).

Assim, por meio de uma quadratura bidimensional aplicada a variável angular da equação de transporte, utilizaremos um conjunto de direções discretas definida por uma quadratura numérica (onde aproximamos o termo integral da equação por um somatório) relacionando as direções discretas $\Omega_k = (\mu_k, \eta_k)$ aos pesos ω_k , de forma que

$$\int_{\mathbf{\Omega}'} \Psi(\mathbf{r}, \mathbf{\Omega}') d\mathbf{\Omega}' \approx \sum_{k=1}^{M} w_k \Psi(\mathbf{r}, \mathbf{\Omega}_k), \qquad (2.20)$$

onde M é o total de direções utilizadas na discretização.

Aqui optou-se pela a Quadratura Simétrica de Nível (também chamada de Quadratura S_N) [21, 25], embora a escolha da quadratura possa ser arbitrária. Sobre a quadratura S_N , podemos citar como características, a invariância das direções sob qualquer rotação de $\frac{\pi}{2}$ em torno dos eixos μ , η , ξ [21] e, segundo Kock e Becker [20], a precisão desta quadratura dependerá do número de direções utilizadas, dos pesos escolhidos e da relação entre eles.

As ordenadas discretas da Quadratura S_N totalizam M = N(N+2)direções para o sistema tridimensional e $M = \frac{N(N+2)}{2}$ para o caso bidimensional. Na Figura (2.4) podemos ver como as ordenadas da quadratura S_N são dispostas em níveis.

Figura 2.4: Exemplo das direções de espalhamento discretizadas ao se usar N = 8, nos sistema tridimensional "a)" e bidimensional "b)".

2.3 Equação do transporte em ordenadas discretas

A técnica de aproximação do termo integral de espalhamento por uma quadratura numérica é chamada de método de ordenadas discretas. Este método foi introduzido por Wick [40] e posteriormente utilizado por Chandrasekhar [13] na resolução de problemas de transporte de nêutrons."

Neste trabalho, utilizaremos o método de ordenadas discretas devido a sua versatilidade e precisão para solucionar problemas de transporte unidimensionais e multidimensionais. Assim, aplicando a aproximação descrita em (2.20) na equação (2.15), obteremos a versão em ordenadas discretas da equação de transporte bidimensional.

$$\mu_{i}\frac{\partial}{\partial x}\Psi(x,y,\boldsymbol{\Omega}_{i}) + \eta_{i}\frac{\partial}{\partial y}\Psi(x,y,\boldsymbol{\Omega}_{i}) + \sigma_{t}\Psi(x,y,\boldsymbol{\Omega}_{i}) = \frac{\sigma_{s}}{4}\sum_{k=1}^{M}w_{k}\Psi(x,y,\boldsymbol{\Omega}_{k}) + Q, \qquad (2.21)$$

onde $\Omega_i = (\mu_i, \eta_i)$ representa o conjunto de direções discretas, com $\mu_i, \eta_i \in [-1, 1]$ associados aos pesos ω_i para i = 1, 2, ..., M e $M = \frac{N(N+2)}{2}$.

Aqui, nós usamos a quadratura S_n tabelada em Cacuci [12], cujos pesos não estão normalizados. Isto significa que

$$\sum_{k=1}^{M} w_k = 1. \tag{2.22}$$

2.4 Formulação nodal

Os métodos nodais, destacam-se no tratamento de problemas multidimensionais [1, 8, 9, 10, 14, 15, 16, 37] para problemas S_N . Esta classe de métodos, utiliza-se de aproximações para os termos fonte e de fuga transversal [8] ao integrar transversalmente , com o objetivo de solucionar analiticamente as equações S_N . Os métodos nodais se dividem em dois grupos: os polinomiais [1, 37] e os espectronodais [8, 9, 10, 14, 15, 16].

Os métodos nodais polinomiais aproximam tanto o termo fonte de espalhamento quanto o de fuga transversal por polinômios de baixa ordem, sendo que a ordem do polinômio identifica o método nodal. Já na década de noventa, surgem os métodos espectronodais em contraste aos métodos polinomiais. Os métodos espectronodais aproximam o termo fonte de espalhamento com um tratamento analítico, ficando apenas o termo de fuga transversal aproximado por polinômios de baixa ordem, trazendo assim um ganho no desempenho computacional.

Obtida a equação em ordenadas discretas (2.21), seguiremos os passos dos métodos espectronodais [8, 10], integrando transversalmente a equação (2.21) nas variáveis espaciais, a fim de converter o problema bidimensional em dois problemas unidimensionais em termos de médias.
Dessa forma, multiplicamos a equação (2.21) por $\frac{1}{(b_2-b_1)}$ a integramos em $y \in [b_1, b_2]$, resultando em um sistema de equações diferenciais ordinárias envolvendo os fluxos angulares médios $\Psi_y(x, \mathbf{\Omega}_i)$, com dependência espacial apenas na variável x

$$\mu_{i}\frac{d}{dx}\Psi_{y}(x,\boldsymbol{\Omega}_{i}) + \frac{\eta_{i}}{(b_{2}-b_{1})}\left[\Psi(x,b_{2},\boldsymbol{\Omega}_{i}) - \Psi(x,b_{1},\boldsymbol{\Omega}_{i})\right] + \sigma_{t}\Psi_{y}(x,\boldsymbol{\Omega}_{i}) = \frac{\sigma_{s}}{4}\sum_{k=1}^{M}w_{k}\Psi_{y}(x,\boldsymbol{\Omega}_{k}) + Q_{y}(x,\boldsymbol{\Omega}_{i}), \quad (2.23)$$

parai=1,2,...,M, onde

$$\Psi_y(x, \mathbf{\Omega}_i) = \frac{1}{(b_2 - b_1)} \int_{b_1}^{b_2} \Psi(\mathbf{r}, \mathbf{\Omega}_i) dy, \qquad (2.24)$$

$$Q_y(x, \mathbf{\Omega}_i) = \frac{1}{(b_2 - b_1)} \int_{b_1}^{b_2} Q(\mathbf{r}, \mathbf{\Omega}_i) dy.$$
(2.25)

Manipulando a equação (2.21) de forma análoga, multiplicamos por $\frac{1}{(a_2-a_1)}$ e a integramos em $x \in [a_1, a_2]$, resultando em um sistema de equações diferenciais ordinárias envolvendo os fluxos angulares médios $\Psi_x(y, \Omega_i)$, com dependência espacial apenas na variável y

$$\eta_{i} \frac{d}{dy} \Psi_{x}(y, \boldsymbol{\Omega}_{i}) + \frac{\mu_{i}}{(a_{2} - a_{1})} \left[\Psi(a_{2}, y, \boldsymbol{\Omega}_{i}) - \Psi(a_{1}, y, \boldsymbol{\Omega}_{i}) \right] + \sigma_{t} \Psi_{x}(y, \boldsymbol{\Omega}_{i}) = \frac{\sigma_{s}}{4} \sum_{k=1}^{M} w_{k} \Psi_{x}(y, \boldsymbol{\Omega}_{k}) + Q_{x}(y, \boldsymbol{\Omega}_{i}), \quad (2.26)$$

parai=1,2,...,M, onde

$$\Psi_x(y, \mathbf{\Omega}_i) = \frac{1}{(a_2 - a_1)} \int_{a_1}^{a_2} \Psi(\mathbf{r}, \mathbf{\Omega}_i) dx, \qquad (2.27)$$

$$Q_x(y, \mathbf{\Omega}_i) = \frac{1}{(a_2 - a_1)} \int_{a_1}^{a_2} Q(\mathbf{r}, \mathbf{\Omega}_i) dx.$$
(2.28)

Notamos que, devido a integração da equação (2.21), surgem os fluxos angulares relacionados às fronteiras, equações (2.23) e (2.26), os quais são incorporados a fonte externa de nossos problemas nodais.

Assim manipulamos as equações (2.23) e (2.26) e reescrevemos os termos fonte como

$$\tilde{Q}_y(x, \mathbf{\Omega}_i) = Q_y(x, \mathbf{\Omega}_i) - \frac{\eta_i}{(b_2 - b_1)} \left[\Psi(x, b_2, \mathbf{\Omega}_i) - \Psi(x, b_1, \mathbf{\Omega}_i) \right],$$
(2.29)

$$\tilde{Q}_x(y,\mathbf{\Omega}_i) = Q_x(y,\mathbf{\Omega}_i) - \frac{\mu_i}{(a_2 - a_1)} \left[\Psi(a_2, y, \mathbf{\Omega}_i) - \Psi(a_1, y, \mathbf{\Omega}_i) \right].$$
(2.30)

Dessa forma, os problemas nodais resultantes são

$$\mu_i \frac{d}{dx} \Psi_y(x, \mathbf{\Omega}_i) + \sigma_t \Psi_y(x, \mathbf{\Omega}_i) = \frac{\sigma_s}{4} \sum_{k=1}^M w_k \Psi_y(x, \mathbf{\Omega}_k) + \tilde{Q}_y(x, \mathbf{\Omega}_i), \qquad (2.31)$$

$$\eta_i \frac{d}{dy} \Psi_x(y, \mathbf{\Omega}_i) + \sigma_t \Psi_x(y, \mathbf{\Omega}_i) = \frac{\sigma_s}{4} \sum_{k=1}^M w_k \Psi_x(y, \mathbf{\Omega}_k) + \tilde{Q}_x(y, \mathbf{\Omega}_i), \qquad (2.32)$$

para i = 1, 2, ..., M.

,

Vale lembrar que estes termos da fronteira são conhecidos apenas nas direções incidentes, fazendo com que tenhamos mais incógnitas do que equações em

nosso sistema, o que gerará a necessidade da utilização de equações auxiliares, como veremos mais adiante na seção 5.1.

É também importante salientar, que diferente de outros trabalhos baseados no método Analítico de Ordenadas Discretas (ADO) [25, 26], a formulação aqui proposta não faz o ordenamento específico das direções para os problemas em cada uma das variaveis espaciais. O resultado disso são expressões mais simples, de fácil implementação, e ainda mantém o baixo custo computacional.

2.5 Múltiplas regiões

Afim de se trabalhar com problemas mais complexos, estendemos a ideia inicial, simplesmente subdividindo o domínio em múltiplas regiões retangulares r, definidas como $x \in [a_m, a_{m+1}]$ e $y \in [b_n, b_{n+1}]$, onde m e n correspondem aos índices das subdivisões e H e K são as quantidades de divisões em cada eixo, conforme a representação vista na Figura 2.5. Assim cada região pode assumir características físicas próprias e distintas de região para região. Dessa forma, teremos um sistema de equações para cada região, que será apresentado na seção 5.2.

Ao aplicarmos a proposta apresentada para equação do transporte formulada em ordenadas discretas, as equações (2.29) a (2.32) passam a ser denotadas por

$$\tilde{Q}_{yr}(x,\boldsymbol{\Omega}_i) = Q_{yr}(x,\boldsymbol{\Omega}_i) - \frac{\eta_i}{(b_{n+1}-b_n)} \left[\Psi_r(x,b_{n+1},\boldsymbol{\Omega}_i) - \Psi_r(x,b_n,\boldsymbol{\Omega}_i)\right], \quad (2.33)$$

$$\tilde{Q}_{xr}(y,\boldsymbol{\Omega}_i) = Q_{xr}(y,\boldsymbol{\Omega}_i) - \frac{\mu_i}{(a_{m+1}-a_m)} \left[\Psi_r(a_{m+1},y,\boldsymbol{\Omega}_i) - \Psi_r(a_m,y,\boldsymbol{\Omega}_i) \right], \quad (2.34)$$

Figura 2.5: Geometria do problema observado.

$$\mu_i \frac{d}{dx} \Psi_{yr}(x, \mathbf{\Omega}_i) + \sigma_{tr} \Psi_{yr}(x, \mathbf{\Omega}_i) = \frac{\sigma_{sr}}{4} \sum_{k=1}^M w_k \Psi_{yr}(x, \mathbf{\Omega}_k) + \tilde{Q}_{yr}(x, \mathbf{\Omega}_i), \qquad (2.35)$$

$$\eta_i \frac{d}{dy} \Psi_{xr}(y, \mathbf{\Omega}_i) + \sigma_{tr} \Psi_{xr}(y, \mathbf{\Omega}_i) = \frac{\sigma_{sr}}{4} \sum_{k=1}^M w_k \Psi_{xr}(y, \mathbf{\Omega}_k) + \tilde{Q}_{xr}(y, \mathbf{\Omega}_i), \qquad (2.36)$$

para i = 1, 2, ..., M, onde o índice r passa a denotar a célula $[a_m, a_{m+1}] \times [b_n, b_{n+1}]$.

Neste ponto, passaremos a olhar para as condições de contorno onde, de acordo com a Figura 2.5, temos os fluxos angulares incidentes

$$\Psi_{r^*}(x, b_0, \mathbf{\Omega}^*) = CI, \tag{2.37}$$

$$\Psi_{r^*}(x, b_K, \mathbf{\Omega}^*) = CS, \qquad (2.38)$$

$$\Psi_{r^*}(a_0, y, \mathbf{\Omega}^*) = CE, \qquad (2.39)$$

$$\Psi_{r^*}(a_H, y, \mathbf{\Omega}^*) = CD, \qquad (2.40)$$

sendo Ω^* a representação das respectivas direções incidentes e o índice r^* se refere as regiões que compõem o perímetro do domínio.

A partir desta nova formulação, poderemos sentir a falta algumas (ou todas) condições de contorno referentes as regiões r que não se encontram no perímetro do domínio. Nestes casos, usaremos o que denominamos de condições de continuidade, Figura 2.6, e serão tratadas pelas seguintes expressões,

$$CD_{r_{m+1}} = CE_{r_m},\tag{2.41}$$

$$CS_{r_{n+1}} = CI_{r_n}, (2.42)$$

Figura 2.6: Representação das interfaces entre regiões.

3 SOLUÇÃO HOMOGÊNEA PARA OS PROBLEMAS NODAIS

Neste trabalho, aplicaremos uma variação do método Analítico de Ordenadas Discretas (ADO), proposto por Barichello e Siewert [6].Este método foi inicialmente proposto para o tratamento de problemas unidimensionais e, mais recentemente, tem sido utilizado para fenômenos multidimensionais em associação aos métodos nodais. O método ADO tem ganho destaque na literatura principalmente por tratar as variáveis espaciais de forma analítica, fornecendo expressões explicitas para as soluções [5, 6, 7, 19, 30, 31, 32], o que o torna muito eficiente em termos de custo computacional.

3.1 Problema nodal integrado em y

Para resolver a parte homogênea da equação (2.35), seguimos a formulação ADO, descrita em [8, 10], onde propomos que a solução seja da forma

$$\Psi_{yr}(x, \mathbf{\Omega}_{\mathbf{i}}) = \Phi_{yr}(\nu_r, \mathbf{\Omega}_{\mathbf{i}}) e^{\frac{-x}{\nu_r}}, \qquad (3.1)$$

para i = 1, 2, ..., M, onde as constantes de separação ν_r estão associadas às autofunções $\Phi_{yr}(\nu_r, \mathbf{\Omega_i})$ e r representa a célula $[a_m, a_{m+1}] \times [b_n, b_{n+1}]$.

Substituimos a equação (3.1) na versão homogênea da equação (2.35), resultando no sistema algébrico, definido por

$$\frac{1}{\nu_r}\Phi_{yr}(\nu_r, \mathbf{\Omega}_{\mathbf{i}}) = \frac{\sigma_{t_r}}{\mu_i}\Phi_{yr}(\nu_r, \mathbf{\Omega}_{\mathbf{i}}) - \frac{\sigma_{sr}}{4\mu_i}\sum_{k=1}^M \omega_k \Phi_{yr}(\nu_r, \mathbf{\Omega}_{\mathbf{k}}), \qquad (3.2)$$

para i = 1, 2, ..., M, que pode ser expresso pela forma matricial como

$$\lambda_{yr} \boldsymbol{\Phi}_{yr} = [\boldsymbol{D}_{yr} - \boldsymbol{A}_{yr}] \boldsymbol{\Phi}_{yr}, \qquad (3.3)$$

 com

$$\lambda_{yr} = \frac{1}{\nu_r},\tag{3.4}$$

onde as matrizes da equação (3.3), são definidas por

$$\boldsymbol{D}_{yr} = diag\left\{ \left(\frac{\sigma_{tr}}{\mu_1}\right), \left(\frac{\sigma_{tr}}{\mu_2}\right), ..., \left(\frac{\sigma_{tr}}{\mu_M}\right) \right\}$$
(3.5)

е

$$\boldsymbol{A}_{yr}(i,k) = \frac{\sigma_{sr}\boldsymbol{\omega}_{\mathbf{k}}}{4\mu_i},\tag{3.6}$$

para i = 1, 2, ..., M e k = 1, 2, ..., M.

Resolvendo o problema de autovalores, obtemos os pares $\{\lambda_{y_r,j}, \Phi_{y_r,j}\}$, para j = 1, 2, ..., M. Através da equação (3.4), determinamos as constantes de separação necessárias (ν_{rj}). Contudo, durante o processo, verificamos que estas ocorrem aos pares, $\{\pm \nu_{rj}\}$, permitindo-nos que a forma explícita da solução homogênea da equação (2.35) seja escrita na forma

$$\Psi_{yr}^{h}(x,\mathbf{\Omega}_{\mathbf{i}}) = \sum_{j=1}^{\frac{M}{2}} A_{rj} \Phi_{yr}\left(\nu_{r,j},\mathbf{\Omega}_{\mathbf{i}}\right) e^{-\frac{(a_{m}+x)}{\nu_{r,j}}} + A_{rj+\frac{M}{2}} \Phi_{y}\left(\nu_{r,j+\frac{M}{2}},\mathbf{\Omega}_{\mathbf{i}}\right) e^{-\frac{(a_{m+1}-x)}{\nu_{r,j}}}, (3.7)$$

para i = 1, 2, ..., M, onde A_{rj} são constantes a serem determinadas.

3.2 Problema nodal integrado em x

De forma equivalente, para resolver a parte homogênea da equação (2.36), seguimos a formulação proposta e seguindo os mesmos passos descritos para o problema em y, no qual obtemos outro sistema matricial similar ao representado pela equação (3.3).

Assim, vamos propôr novamente uma solução na forma

$$\Psi_{xr}(y, \mathbf{\Omega}_{\mathbf{i}}) = \Phi_{xr}(\gamma_r, \mathbf{\Omega}_{\mathbf{i}}) e^{\frac{-y}{\gamma_r}}, \qquad (3.8)$$

para i = 1, 2, ..., M, onde as constantes de separação γ_r estão associadas às autofunções $\Phi_{xr}(\gamma_r, \Omega_i)$.

Substituindo a equação (3.8) na versão homogênea da equação (2.36), obtém-se um sistema algébrico, na forma

$$\frac{1}{\gamma_r} \Phi_{xr}(\gamma_r, \mathbf{\Omega}_{\mathbf{i}}) = \frac{\sigma_{tr}}{\eta_i} \Phi_{xr}(\gamma_r, \mathbf{\Omega}_{\mathbf{i}}) - \frac{\sigma_{sr}}{4\eta_i} \sum_{k=1}^M \omega_k \Phi_{xr}(\gamma_r, \mathbf{\Omega}_{\mathbf{k}}), \qquad (3.9)$$

para i=1,2,...,M , que pode ser expresso na forma matricial como

$$\lambda_{xr} \boldsymbol{\Phi}_{xr} = [\boldsymbol{D}_{xr} - \boldsymbol{A}_{xr}] \boldsymbol{\Phi}_{xr}, \qquad (3.10)$$

com

$$\lambda_{xr} = \frac{1}{\gamma_r},\tag{3.11}$$

onde as matrizes da equação (3.10), são definidas por

$$\boldsymbol{D}_{xr} = diag\left\{ \left(\frac{\sigma_{tr}}{\eta_1}\right), \left(\frac{\sigma_{tr}}{\eta_2}\right), ..., \left(\frac{\sigma_{tr}}{\eta_M}\right) \right\}$$
(3.12)

$$\boldsymbol{A}_{xr}(i,k) = \frac{\sigma_{sr}\boldsymbol{\omega}_{\mathbf{k}}}{4\eta_i},\tag{3.13}$$

para i = 1, 2, ..., M e k = 1, 2, ..., M.

Obtidos os pares $\{\lambda_{xr,j}, \mathbf{\Phi}_{xr,j}\}$, para j = 1, 2, ..., M, utilizamos a equação (3.11) para determinarmos as constantes de separação $\gamma_{r,j}$, que também ocorrem aos pares, $\{\pm \gamma_{r,j}\}$.

Assim a forma explícita da solução homogêne
a da equação (2.36) é expressa por

$$\Psi_{xr}^{h}(y, \mathbf{\Omega}_{\mathbf{i}}) = \sum_{j=1}^{\frac{M}{2}} B_{rj} \Phi_{xr}\left(\gamma_{r,j}, \mathbf{\Omega}_{\mathbf{i}}\right) e^{-\frac{(b_{n}+y)}{\gamma_{r,j}}} + B_{rj+\frac{M}{2}} \Phi_{xr}\left(\gamma_{r,j+\frac{M}{2}}, \mathbf{\Omega}_{\mathbf{i}}\right) e^{-\frac{(b_{n+1}-y)}{\gamma_{r,j}}} (3.14)$$

para i = 1, 2, ..., M.

Devemos observar que tanto os coeficientes A_{rj} quanto os B_{rj} , ainda devem ser determinados como veremos na seção 5.2.

4 SOLUÇÕES PARTICULARES E GERAIS

4.1 Soluções particulares

As soluções particulares, equações (4.3) e (4.4), utilizadas aqui serão versões inspiradas nos trabalhos de Barros e Larsen [10] e Ferreira *et. al.* [18]. Como a fonte deste problema é apresentada na forma

$$Q_{yr}(x, \mathbf{\Omega}_i) = Q_{yr}(x) + \frac{\eta_i}{b_{n+1} - b_n} \left[E_{ri} - F_{ri} \right], \qquad (4.1)$$

$$Q_{xr}(y, \mathbf{\Omega}_i) = Q_{xr}(y) + \frac{\mu_i}{a_{m+1} - a_m} \left[C_{ri} - D_{ri} \right], \qquad (4.2)$$

para os problemas integrados em $y \in x$ respectivamente, desde que $Q_{xr}(y) \in Q_{yr}(x)$ sejam constantes na região da célula r, então iremos utilizar como soluções particulares

$$\Psi_{yr}^{p}(x, \mathbf{\Omega}_{i}) = \frac{\sigma_{sr}}{4\sigma_{tr}(\sigma_{tr} - \sigma_{sr})(b_{n+1} - b_{n})} \sum_{j=1}^{M} \eta_{j} w_{j} \left[E_{j} - F_{j}\right] + \frac{\eta_{i}}{\sigma_{tr}(b_{n+1} - b_{n})} \left[E_{i} - F_{i}\right] + \frac{Q_{yr}}{\sigma_{tr} - \sigma_{sr}}, \quad (4.3)$$

$$\Psi_{xr}^{p}(y,\mathbf{\Omega}_{i}) = \frac{\sigma_{sr}}{4\sigma_{tr}(\sigma_{tr} - \sigma_{sr})(a_{m+1} - a_{m})} \sum_{j=1}^{M} \mu_{j} w_{j} \left[C_{j} - D_{j}\right] + \frac{\mu_{i}}{\sigma_{tr}(a_{m+1} - a_{m})} \left[C_{i} - D_{i}\right] + \frac{Q_{xr}}{\sigma_{tr} - \sigma_{sr}}, \quad (4.4)$$

onde, C_{ri} , D_{ri} , E_{ri} e F_{ri} são constantes a serem determinadas, além dos coeficientes A_{rj} e B_{rj} das soluções homogêneas.

4.2 Soluções Gerais

Dadas as soluções homogêneas pelas equações (3.7) e (3.14) e as expressões das soluções particulares, equações (4.3) e (4.4), as soluções gerais dos problemas integrados transversalmente em $x \in y$, serão

$$\Psi_{yr}(x, \mathbf{\Omega}_{\mathbf{i}}) = \Psi_{yr}^{h}(x, \mathbf{\Omega}_{\mathbf{i}}) + \Psi_{yr}^{p}(x, \mathbf{\Omega}_{\mathbf{i}}), \qquad (4.5)$$

$$\Psi_{xr}(y, \mathbf{\Omega}_{\mathbf{i}}) = \Psi^{h}_{xr}(y, \mathbf{\Omega}_{\mathbf{i}}) + \Psi^{p}_{xr}(y, \mathbf{\Omega}_{\mathbf{i}}), \qquad (4.6)$$

para i = 1, 2, ..., M, onde as constantes $A \in B$ da soluções homogêneas, bem como as constantes $C, D, E \in F$ para soluções particulares, serão determinadas.

5 CONDIÇÕES DE CONTORNO, INTERFACES, ACOPLAMENTO E DETERMINAÇÃO DE COEFICIENTES

5.1 Caracterização dos contornos e equações auxiliares

Para determinar as soluções particulares dos problemas nodais unidimensionais, buscou-se neste trabalho utilizar de expressões mais simples para representar os fluxos dos contornos, onde nesta formulação, a caracterização será feita utilizando as seguintes expressões

$$\Psi_r(a_m, y, \mathbf{\Omega}_i) = C_{ri},\tag{5.1}$$

$$\Psi_r(a_{m+1}, y, \mathbf{\Omega}_i) = D_{ri},\tag{5.2}$$

$$\Psi_r(x, b_n, \mathbf{\Omega}_i) = E_{ri},\tag{5.3}$$

$$\Psi_r(x, b_{n+1}, \mathbf{\Omega}_i) = F_{ri},\tag{5.4}$$

para i = 1, 2, ..., M.

Agora como parte do processo, aplicamos a mesma integração transversa vista na seção 2.3 nas equações (5.1) a (5.4), resultando

$$\Psi_{ur}(a_m, \mathbf{\Omega}_{\mathbf{i}}) = C_{ri},\tag{5.5}$$

$$\Psi_{yr}(a_{m+1}, \mathbf{\Omega}_{\mathbf{i}}) = D_{ri},\tag{5.6}$$

$$\Psi_{xr}(b_n, \mathbf{\Omega}_{\mathbf{i}}) = E_{ri},\tag{5.7}$$

$$\Psi_{xr}(b_{n+1}, \mathbf{\Omega}_{\mathbf{i}}) = F_{ri},\tag{5.8}$$

para i = 1, 2, ..., M.

Devemos lembrar ainda que tais contornos são conhecidos apenas para as direções incidentes.

Assim, se organizarmos as direções no sentido anti-horário e iniciarmos pelo primeiro quadrante, Figura 5.1, teremos para estas direções incidentes as relações,

$$\Psi_{yr}(a_m, \mathbf{\Omega}_{\mathbf{i}}) = CE_{ri},\tag{5.9}$$

para $i = 1, ..., \frac{M}{4} e i = \frac{3M}{4} + 1, ..., M;$

$$\Psi_{yr}(a_{m+1}, \mathbf{\Omega}_{\mathbf{i}}) = CD_{ri},\tag{5.10}$$

para $i = \frac{M}{4} + 1, ..., \frac{3M}{4};$

$$\Psi_{xr}(b_m, \mathbf{\Omega}_{\mathbf{i}}) = CI_{ri},\tag{5.11}$$

para $1, .., \frac{M}{2};$

$$\Psi_{xr}(b_{m+1}, \mathbf{\Omega}_{\mathbf{i}}) = CS_{ri},\tag{5.12}$$

para $\frac{M}{2} + 1, ..., M$.

5.2 Acoplamento e sistema para o cálculo dos coeficientes

Podemos verificar que ainda possuímos 6M constantes a serem determinadas para cada célula do domínio, sendo 2M referentes as soluções homogêneas, equações (3.7) e (3.14) e as outras 4M constantes das soluções particulares, equações

Figura 5.1: Ordem anti-horária utilizada para as direções.

(4.3) e (4.4). A determinação destes coeficientes será feita através da resolução de um sistema linear, onde iremos fazer o acoplamento dos problemas nodais, relacionando entre si as soluções gerais dos problemas integrados, as condições de contorno conhecidas nas direções de incidência, as propostas para representação dos contornos e as regiões com suas interfaces de continuidade. Para termos um sistema bem posto, das 6M equações necessárias para cada célula r, as 2M primeiras equações surgem da relação que existe entre as equações (4.5) e (4.6) com as equações (5.9) a (5.12). As demais 4M equações provém da relação existente entre as equações (4.5) e (4.6) com as (5.5), (5.6), (5.7) e (5.8).

Assim, teremos das relação das soluções gerais, equações (4.5) e (4.6), com as equações auxiliares (5.1) a (5.4), segue

$$\Psi_{yr}(a_m, \mathbf{\Omega}_{\mathbf{i}}) = C_{ri} \tag{5.13}$$

$$\Psi_{yr}(a_{m+1}, \mathbf{\Omega}_{\mathbf{i}}) = D_{ri} \tag{5.14}$$

$$\Psi_{xr}(b_n, \mathbf{\Omega}_{\mathbf{i}}) = E_{ri} \tag{5.15}$$

$$\Psi_{xr}(b_{n+1}, \mathbf{\Omega}_{\mathbf{i}}) = F_{ri}.$$
(5.16)

Das interfaces de continuidade entre as regiões, equações (2.41) e (2.42),

teremos

$$D_{n,m,i} = C_{n,m+1,i}, (5.17)$$

$$F_{n,m,i} = E_{n+1,m,i}. (5.18)$$

E por fim, com as condições de contorno, equações (2.37) a (2.40), seguem

$$C_{n,1,i} = CE, \quad i = 1, \dots, M/4 \text{ e } i = 3M/4 + 1, \dots, M,$$
 (5.19)

$$D_{n,Nx,i} = CD, \quad i = M/4 + 1, \dots, M/2 \text{ e } i = M/2 + 1, \dots, 3M/4,$$
 (5.20)

$$E_{1,m,i} = CI, \quad i = 1, \dots, M/4 \in i = M/4 + 1, \dots, M/2,$$
 (5.21)

$$F_{Ny,m,i} = CS, \quad i = M/2 + 1, \dots, 3M/4 \in i = 3M/4 + 1, \dots, M.$$
 (5.22)

O sistema total terá dimensão de 6MHK.

Resolvido o sistema linear formado pelas equações (5.13) a (5.22), as soluções dos problemas nodais unidimensionais estão completamente estabelecidas e certas quantidades de interesse podem ser avaliadas. Neste ponto é importante salientar que a utilização de um sistema único de direções para os dois problemas nodais torna o método mais simples de ser implementado, pois não cria maiores dificuldades no momento de acoplar os problemas unidimensionais.

6 RESULTADOS

Com base na fórmula ao apresentada nos capítulos anteriores, iremos apresentar a resolução de oito problemas de transporte de nêutrons em geometria cartesiana bidimensional com espalhamento isotrópico, como segue a proposta inicial apresentadano capitulo 2, nas Figuras 2.3 (para o problema homogêneo) e Figuras 2.5 e 2.6 (para o problema heterogêneo).

6.1 Descrição geral

Utilizamos a quadratura S_N para a construção da solução em ordenadas discretas como descrito anteriormente no capítulo 2. Esta escolha se deve a existência de um amplo estudo a respeito desta quadratura e a sua grande utilização em problemas de transporte multidimensionais. Estas quadraturas Sn podem ser encontradas nos livros de Lewis e Miller [21], Cacuci [Cacuci10], e também estão disponíveis no anexo deste trabalho.

Definido o esquema de quadratura, a implementação de todos os procedimentos para resolução da classe de problemas estudada neste trabalho foi feita no software de distribuição gratuita Octave, em um equipamento com processador Intel(R) Core(TM) i7-4500U CPU @ 1.80GHz e Clock: 2401 MHz com memória de 8GB DDR3L SDRAM, placa de vídeo dedicada com 2GB de memória e sistema 64-Bits. Lembrando ainda que ao olharmos para as soluções gerais das equações nodais, temos que as mesmas são analíticas nas variáveis espaciais.

6.2 Quantidades de interesse e outras análises

As quantidades de interesse avaliadas neste trabalho, para os dois primeiros problemas, correspondem ao fluxo escalar de nêutrons que para as equações nodais unidimensionais são dados pelas relações

$$\phi_y(x) = \frac{1}{4} \sum_{k=1}^{M} w_k \Psi_y(x, \mathbf{\Omega}_k),$$
(6.1)

$$\phi_x(y) = \frac{1}{4} \sum_{k=1}^{M} w_k \Psi_x(y, \mathbf{\Omega}_k),$$
(6.2)

.e para o fluxo bidimensional propriamente dito, vamos propôr a expressão

$$\phi(x,y) = \frac{1}{2} \left(\phi_y(x) + \phi_x(y) \right), \tag{6.3}$$

onde propomos o cálculo da média aritmética simples dos fluxos escalares $\phi_y(x)$ e $\phi_x(y)$, para cada ponto do domínio analisado.

Além disso, avaliaremos o comportamento dos valores obtidos para os fluxos escalares, com varias ordens da quadratura S_N , bem como o comportamento para diferentes valores da seção de choque macroscópica de espalhamento aplicadas a cada problema.

Entretanto, ao olharmos para as demais simulações, as quantidades de interesse a serem observadas serão os fluxos escalares médios de neûtrons, onde para as equações nodais unidimensionais são dadas pelas relações

$$\phi_{ryx} = \frac{1}{a_{m+1} - a_m} \int_{a_m}^{a_{m+1}} \phi_{ry}(x) dx, \qquad (6.4)$$

$$\phi_{rxy} = \frac{1}{b_{n+1} - b_n} \int_{b_n}^{b_{n+1}} \phi_{rx}(y) dy.$$
(6.5)

Lembrando ainda que temos soluções analíticas do ponto de vista das variáveis espaciais, onde para efeitos gerais, todas as simulações apresentadas a seguir, usarão 11 pontos espaciais em cada célula para cada eixo.

6.3 Resultado comparativo

Seguindo o problema teste, Figura 6.1, para o caso descrito por Loyalka e Tsai [22], temos um domínio R, tal que $x \in [0,1]$ e $y \in [0,1]$. com uma fonte unitária localizada na região $[0, 0.52] \times [0, 0.52]$. Ainda temos uma seção de choque total $\sigma_t = 1.0$ cm⁻¹ e uma seção de choque de espalhamento $\sigma_s = 0.5$ cm⁻¹. Serão gerados os valores referêntes ao fluxo escalar de nêutrons bidimensional $\phi(x, y)$ de acordo com a equação 6.3. Ainda aproveitaremos para comparar com os resultados obtido por Tres [33], onde é utilizado um método ADO.

Figura 6.1: Representação do problema descrito por Loyalka e Tsai.

x = y	Loyalka e Tsai (1975)	Tres <i>et. al.</i> (2013)	Neste trabalho			
	N = 5, 7, 9, 11, 15	N = 2, 4, 6, 8, 12, 16	N = 2, 4, 6, 8, 12, 16			
	0.231990	0.188	0.169432			
	0.231990 0.188 0.231219 0.215 0.230473 0.221 0.229927 0.223 0.229296 0.225 0.226 0.0657 0.065733 0.067 0.065734 0.067 0.065734 0.067	0.215	0.192417			
05	0.230473	230473 0.221 229927 0.223 229296 0.225 0.226 0.226 075402 0.069 066100 0.068 065768 0.067 065733 0.067	0.196927			
0.5	0.229927	0.223	0.199171			
	0.229296	0.225	0.200482			
		Ires et. al. (2013) Neste tra $N = 2, 4, 6, 8, 12, 16$ $N = 2, 4, 6, 9$ 0.188 0.1694 0.215 0.1924 0.221 0.1969 0.223 0.1997 0.225 0.2004 0.226 0.2009 0.069 0.0583 0.068 0.0529 0.067 0.0490 0.066 0.0443 0.066 0.0443 0.013 0.0442 0.017 0.0333 0.019 0.0299 0.020 0.0273 0.021 0.0266	0.200929			
0.7	0.075402	0.069	0.058301			
	0.066100	0.068	0.052900			
	0.065768	0.067	0.049004			
0.7	0.065733	0.067	0.046612			
	0.064714	0.066	0.044322			
		0.066	0.043308			
	0.022529	0.013	0.044226			
	0.022294	0.017	0.033334			
0.08	0.022165	0.019	0.029210			
0.90	0.022108	0.020	0.027397			
	0.022084	0.021	0.026286			
		0.021	0.026054			

Tabela 6.1: Fluxo escalare médio de neûtrons bidimensional $\phi(x, y)$.

Os resultados obtidos neste trabalho, apresentados na Tabela 6.1, mantémse em geral de 1 a 2 dígitos de acordo como N aumenta e o ponto avaliado, e o tempo de computação para gerar os resultados foi de 0.015 a 2.65 segundos.

6.4 Resultados de benchmark

6.4.1 Meio homogêneo isotrópico

Apresentamos dois problemas simples, onde considera-se o domínio como uma única célula homogênea isotrópica.

Problema 1: Consideramos como domínio uma região retangular de dimensões [0, 1]×[0, 1], com três faces isoladas (condições de vácuo) e uma face recebendo uma carga de nêutrons de 1.0n/cm·s, Figura 6.2. Teremos ainda, seção de choque macroscópica total, σ_t, fixada em 1.0cm⁻¹, e avaliada com seção de choque macroscópica de espalhamento, σ_s, variável. Serão consideradas, também a relação do número de direções utilizadas no esquema de quadratura S_N, para avaliação do fenômeno.

Figura 6.2: Representação do problema 1.

- Problema 2: Com domínio em uma região retangular de dimensões $[0, 1] \times [0, 1]$, ou seja, um quadrado de paredes com comprimento lateral de 1.0cm, com duas faces isoladas e duas face adjacentes recebendo uma carga de nêutrons de 1.0n/cm·s com $\sigma_t = 1.0$ cm⁻¹, Figura 6.3.

Figura 6.3: Representação do problema 2.

Destaca-se, ainda, que para os problemas 1 e 2, foram utilizados os mesmos valores para a seção de choque de macroscópica total, seção de choque de espalhamento e ordens de quadratura afim de se verificar a influência da ordem da quadratura na convergência dos resultados, além do comportamento da solução para diferentes valores de seção de choque macroscópica de espalhamento.

A partir dos resultados apresentados pelos problemas 1 e 2, é possível observar nas Tabelas 6.1, 6.2, 6.6 e 6.7 a convergência dos valores de fluxo conforme o parâmetro N aumenta, para os dois problemas, garantindo entre dois e três dígitos significativos de concordância. Isto se deve ao fato de que aumentando a ordem da quadratura, maior é o número de direções em que a partícula pode migrar dentro da região e maior é o número de termos utilizados na quadratura, garantindo uma melhor representação do termo integral.Graficamente, as Figuras 6.3, 6.4, 6.8 e 6.9 ilustram a convergência dos resultados para os fluxos integrados, uma vez que conforme o valor de N aumenta, maior é a tendência das curvas ficarem mais próximas do perfil de maior ordem.

Tabela 6.2: Problema 1: $\phi_y(x)$ para $\sigma_s = 0.65$ e diferentes valores de N.

$N \setminus x$	0.0	0.1	0.3	0.5	0.7	0.9	1.0
2	0.566745	0.469460	0.305738	0.177570	0.079555	0.007561	-0.019665
4	0.574803	0.463305	0.289085	0.164199	0.075742	0.015707	-0.005147
6	0.576665	0.458759	0.282671	0.161489	0.077343	0.020807	0.001507
8	0.577557	0.455104	0.278865	0.160673	0.078948	0.023820	0.005132
12	0.578152	0.450492	0.275702	0.161023	0.081065	0.026396	0.008035
16	0.578354	0.447616	0.274575	0.161716	0.082198	0.027343	0.009099

Figura 6.4: Gráfico comparativo da ordem de quadratura dos perfis
 de fluxo escalar $\phi_y(x)$ do problema 1, para $\sigma_s = 0.65$.

$N \backslash y$	0.0	0.1	0.3	0.5	0.7	0.9	1.0
2	0.163025	0.188242	0.221259	0.232112	0.221259	0.188242	0.163025
4	0.146749	0.178233	0.217825	0.230439	0.217825	0.178233	0.146749
6	0.142131	0.176181	0.217321	0.230029	0.217321	0.176181	0.142131
8	0.139796	0.175506	0.216986	0.229424	0.216986	0.175506	0.139796
12	0.138090	0.175642	0.216626	0.228403	0.216626	0.175642	0.138090
16	0.137475	0.176105	0.216351	0.227624	0.216351	0.176105	0.137475

Figura 6.5: Gráfico comparativo da ordem de quadratura dos perfis
 de fluxo escalar $\phi_x(y)$ do problema 1, para $\sigma_s = 0.65$.

Referentes ao problema 1 (Tabelas 6.3, 6.4 e Figuras 6.5, 6.6) e ao problema 2 (Tabelas 6.8, 6.9 e Figuras 6.10, 6.11) podemos observar os fluxos escalares unidimensionais conforme a seção de choque de espalhamento aumenta aumenta. Nestes resultados é possível verificar que para meios mais espalhadores (para valores mais altos de σ_s), os perfis de fluxo escalar tendem a assumir valores mais altos.

Tabela 6.4: Problema 1: $\phi_y(x)$ para N = 16 e diferentes valores para σ_s .

$\sigma_s \backslash x$	0.0	0.1	0.3	0.5	0.7	0.9	1.0
0.1	0.509819	0.366323	0.203921	0.114139	0.056460	0.016939	0.002080
0.3	0.531547	0.391891	0.225456	0.128232	0.063855	0.019744	0.003908
0.5	0.556678	0.421710	0.251385	0.145685	0.073284	0.023545	0.006472
0.7	0.586227	0.457064	0.283176	0.167760	0.085619	0.028848	0.010154
0.9	0.621689	0.499849	0.323040	0.196413	0.102256	0.036488	0.015593

Tabela 6.5: Problema 1: $\phi_x(y)$ para N=16e diferentes valores para $\sigma_s.$

$\sigma_s \backslash y$	0.0	0.1	0.3	0.5	0.7	0.9	1.0
0.1	0.107006	0.137084	0.165299	0.172542	0.165299	0.137084	0.107006
0.3	0.11627	0.148945	0.180748	0.189172	0.180748	0.148945	0.11627
0.5	0.127443	0.163255	0.199472	0.209374	0.199472	0.163255	0.127443
0.7	0.141208	0.180888	0.222648	0.234439	0.222648	0.180888	0.141208
0.9	0.158619	0.203199	0.252104	0.266373	0.252104	0.203199	0.158619

Figura 6.6: Gráfico comparativo do espalhamento dos perfis
 de fluxo escalar $\phi_y(x)$ do problema 1, para N = 16.

Figura 6.7: Gráfico comparativo do espalhamento dos perfis de fluxo escalar $\phi_x(y)$ do problema 1, para N = 16.

Com relação às Tabela 6.5 e 6.10, com as Figuras 6.7 e 6.12, buscamos mostrar como seria o comportamento do fluxo escalar bidimensional propriamente dito, obtidos por meio da equação (6.3) proposta aqui, e a sua relação com os perfis de fluxo escalar unidimensionais gerados utilizando as equações (6.1) e (6.2).

Tabela 6.6: Problema 1: $\phi(x,y)$ para N=16e $\sigma_s=0.65.$

$y \backslash x$	0.0	0.1	0.3	0.5	0.7	0.9	1.0
0.0	0.357914	0.377230	0.397353	0.402989	0.397353	0.377230	0.357914
0.1	0.292545	0.311861	0.331984	0.337620	0.331984	0.311861	0.292545
0.2	0.243988	0.263303	0.283426	0.289062	0.283426	0.263303	0.243988
0.3	0.206025	0.225340	0.245463	0.251099	0.245463	0.225340	0.206025
0.4	0.175213	0.194529	0.214652	0.220288	0.214652	0.194529	0.175213
0.5	0.149595	0.168911	0.189034	0.194670	0.189034	0.168911	0.149595
0.6	0.128027	0.147342	0.167465	0.173102	0.167465	0.147342	0.128027
0.7	0.109836	0.129152	0.149275	0.154911	0.149275	0.129152	0.109836
0.8	0.094663	0.113978	0.134101	0.139737	0.134101	0.113978	0.094663
0.9	0.082409	0.101724	0.121847	0.127484	0.121847	0.101724	0.082409
1.0	0.073287	0.092602	0.112725	0.118362	0.112725	0.092602	0.073287

Figura 6.8: Gráfico do perfil de fluxo escalar bidimensional $\phi(x,y)$ do problema 1, para N=16 e $\sigma_s=0.65.$

Tabela 6.7: Problema 2: $\phi_y(x)$ para $\sigma_s = 0.65$ e diferentes valores de N.

-							
$N \backslash x$	0.0	0.1	0.3	0.5	0.7	0.9	1.0
2	0.729769	0.657702	0.526996	0.409682	0.300813	0.195803	0.143360
4	0.721551	0.641538	0.506911	0.394638	0.293567	0.193941	0.141602
6	0.718796	0.634939	0.499992	0.391518	0.294664	0.196987	0.143638
8	0.717353	0.630610	0.495850	0.390097	0.295934	0.199326	0.144928
12	0.716242	0.626134	0.492328	0.389425	0.297691	0.202037	0.146126
16	0.715829	0.623721	0.490926	0.389340	0.298550	0.203449	0.146574

Figura 6.9: Gráfico comparativo da ordem de quadratura dos perfis
 de fluxo escalar $\phi_y(x)$ do problema 2, para $\sigma_s = 0.65$.

Tabela 6.8: Problema 2: $\phi_x(y)$ para $\sigma_s = 0.65$ e diferentes valores de N.

$N \backslash y$	0.0	0.1	0.3	0.5	0.7	0.9	1.0
2	0.729769	0.657702	0.526996	0.409682	0.300813	0.195803	0.143360
4	0.721551	0.641538	0.506911	0.394638	0.293567	0.193941	0.141602
6	0.718796	0.634939	0.499992	0.391518	0.294664	0.196987	0.143638
8	0.717353	0.630610	0.495850	0.390097	0.295934	0.199326	0.144928
12	0.716242	0.626134	0.492328	0.389425	0.297691	0.202037	0.146126
16	0.715829	0.623721	0.490926	0.389340	0.298550	0.203449	0.146574

Figura 6.10: Gráfico comparativo da ordem de quadratura dos perfis
 de fluxo escalar $\phi_x(y)$ do problema 2, para $\sigma_s = 0.65$.

Ao compararmos as Tabelas 6.6 e 6.7 podemos observar os mesmo valores para ambos os fluxos escalares $\phi_y(x) \in \phi_x(y)$. Isso se deve a simetria do problema, onde temos em cada eixo uma condição de contorno com valor de entrada e a outra de vácuo como visto na Figura 6.2. Também constatamos essa simetria ao analisarmos as Tabelas 6.8 e 6.9, onde novamente aparecem os mesmos valores para os fluxos escalares.

Tabela 6.9: Problema 2: $\phi_y(x)$ para N = 16 e diferentes valores para σ_s .

$\sigma_s \backslash x$	0.0	0.1	0.3	0.5	0.7	0.9	1.0
0.1	0.616826	0.503407	0.369219	0.286681	0.221759	0.154024	0.109086
0.3	0.647817	0.540836	0.406204	0.317404	0.244603	0.168689	0.120178
0.5	0.684122	0.584965	0.450858	0.355059	0.272757	0.186801	0.133915
0.7	0.727435	0.637952	0.505824	0.402199	0.308266	0.209736	0.151361
0.9	0.780309	0.703048	0.575143	0.462786	0.35436	0.239687	0.174212

Tabela 6.10: Problema 2: $\phi_x(y)$ para N = 16 e diferentes valores para σ_s .

$\sigma_s \backslash y$	0.0	0.1	0.3	0.5	0.7	0.9	1.0
0.1	0.616826	0.503407	0.369219	0.286681	0.221759	0.154024	0.109086
0.3	0.647817	0.540836	0.406204	0.317404	0.244603	0.168689	0.120178
0.5	0.684122	0.584965	0.450858	0.355059	0.272757	0.186801	0.133915
0.7	0.727435	0.637952	0.505824	0.402199	0.308266	0.209736	0.151361
0.9	0.780309	0.703048	0.575143	0.462786	0.354360	0.239687	0.174212

Figura 6.11: Gráfico comparativo do espalhamento dos perfis de fluxo escalar $\phi_y(x)$ do problema 2, para N = 16.

Figura 6.12: Gráfico comparativo do espalhamento dos perfis
 de fluxo escalar $\phi_x(y)$ do problema 2, para N = 16.

$y \backslash x$	0.0	0.1	0.3	0.5	0.7	0.9	1.0
0.0	0.715829	0.669775	0.603378	0.552585	0.507189	0.459639	0.431201
0.1	0.669775	0.623721	0.557324	0.506531	0.461136	0.413585	0.385148
0.2	0.633605	0.587551	0.521153	0.470360	0.424965	0.377414	0.348977
0.3	0.603378	0.557324	0.490926	0.440133	0.394738	0.347187	0.318750
0.4	0.576835	0.530781	0.464384	0.413591	0.368196	0.320645	0.292208
0.5	0.552585	0.506531	0.440133	0.389340	0.343945	0.296394	0.267957
0.6	0.529649	0.483595	0.417197	0.366405	0.321009	0.273459	0.245021
0.7	0.507189	0.461136	0.394738	0.343945	0.298550	0.250999	0.222562
0.8	0.484280	0.438226	0.371828	0.321035	0.275640	0.228090	0.199652
0.9	0.459639	0.413585	0.347187	0.296394	0.250999	0.203449	0.175011
1.0	0.431201	0.385148	0.318750	0.267957	0.222562	0.175011	0.146574

Tabela 6.11: Problema 2: $\phi(x,y)$ para N = 16 e $\sigma_s = 0.65$.

Figura 6.13: Gráfico do perfil de fluxo escalar bidimensional $\phi(x,y)$ do problema 2, para N=16 e $\sigma_s=0.65.$

Tabela 6.12: Tempo de cada simulação para os problemas 1 e 2.

Problema $\setminus N$	2	4	6	8	12	16
1	0.007	0.559	0.609	0.783	0.906	36.878
2	0.009	0.059	0.131	0.335	0.652	43.505

Tabela 6.13: Fluxos escalares médios de nêutrons integrados ϕ_{ryx} , para os problemas 1 e 2.

$\boxed{ Problema \setminus N }$	2	4	6	8	12	16
1	0.209282	0.203320	0.202101	0.201494	0.201098	0.200950
2	0.418565	0.406641	0.404203	0.402988	0.402197	0.401901

6.4.2 Meio heterogêneo isotrópico

Nestas simulações, aplicamos a formulação para múltiplas regiões apresentada na seção 2.5 e consideramos o domínio como um meio heterogênio isotrópico dividido em células.

> - Problema 3: Com domínio retangular de dimensões $[0, 10] \times [0, 10]$, ou seja, um quadrado de paredes com comprimento lateral de 10.0cm, as faces com condições de vácuo, $\sigma_t = 1.0 \text{cm}^{-1}$ para todo o domínio, σ_s $=0.65 \text{cm}^{-1}$ para as células 2,3 e 4. A região 1 possui uma fonte interna com carga de nêutrons de 1.0n/cm·s e $\sigma_s = 0.8 \text{cm}^{-1}$, Figura 6.14.

Figura 6.14: Representação do problema 3.

Tabela 6.14: Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 3.

Região $\setminus N$	2	4	6	8	12	16
1	0.255861	0.301451	0.312942	0.319548	0.324560	0.326609
2, 3	0.105111	0.116817	0.118699	0.119481	0.119933	0.120098
4	0.078591	0.071628	0.066785	0.064046	0.061636	0.060682
Tempo em segundos	0.009	0.447	0.672	12.307	273.558	1130.728

- Problema 4: Esta simulação utiliza domínio retangular de dimensões $[0, 12] \times [0, 12]$, subdividida em nove células, as faces com condições de vácuo, $\sigma_t = 1.0 \text{cm}^{-1}$ para todo o domínio, $\sigma_s = 0.65 \text{cm}^{-1}$ para as células sem fonte interna. A célula 5 possui uma fonte interna com carga de nêutrons de $1.0 \text{n/cm} \cdot \text{s} \in \sigma_s = 0.8 \text{cm}^{-1}$, Figura 6.15.

Figura 6.15: Representação do problema 4.

Tabela 6.15: Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 4.

Região $\setminus N$	2	4	6	8	12	16
1, 3, 7, 9	0.070392	0.058688	0.057718	0.057342	0.057085	0.056987
2, 4, 6, 8	0.296496	0.291396	0.291291	0.291184	0.291111	0.291080
5	2.394469	2.477130	2.484716	2.488065	2.490276	2.491130
Tempo em segundos	0.532	0.666	0.677	189.696	3109.775	2245.142

- Problema 5: Temos 16 células formando um domínio de dimensão $[0, 10] \times [0, 10]$, faces com condições de vácuo, $\sigma_t = 1.0 \text{cm}^{-1}$, para todas a células que formam o contorno do domínio $(r_1, ..., r_5, r_8, r_9, r_{12}, ..., r_{16})$, $\sigma_s = 0.60 \text{cm}^{-1}$. As células 6 e 12 possuem uma fonte interna com carga de nêutrons de $1.0 \text{n/cm} \cdot \text{s}$ e $\sigma_s = 0.75 \text{cm}^{-1}$. As células 7 e 10 não possuem fonte interna e mas o parâmetro $\sigma_s = 0.67 \text{cm}^{-1}$, Figura 6.16.

Figura 6.16: Representação do problema 5.

Região $\setminus N$	2	4	6	8	12
1, 16	0.101742	0.079181	0.077319	0.076697	0.076273
2, 15	0.290953	0.284158	0.283955	0.283813	0.283736
3, 14	0.094223	0.086784	0.085943	0.085667	0.085502
4, 13	0.022813	0.020912	0.020429	0.020181	0.020009
5, 12	0.290953	0.284158	0.283955	0.283813	0.283736
6, 11	1.640812	1.702005	1.707738	1.710441	1.712164
7,10	0.615218	0.606520	0.606832	0.606864	0.606933
8, 9	0.094223	0.086784	0.085943	0.085667	0.085502
Tempo em segundos	0.026	0.665	1.022	846.774	10.023

Tabela 6.16: Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 5.

- Problema 6: Formado por um domínio de dimensão $[0, 10] \times [0, 10]$, faces com condições de vácuo, $\sigma_t = 1.0 \text{cm}^{-1}$, para todas a células sem fonte interna, conforme a Figura 6.17, $\sigma_s = 0.60 \text{cm}^{-1}$, as células com fonte interna possuem carga de nêutrons de $1.0 \text{n/cm} \cdot \text{s} \in \sigma_s = 0.75 \text{cm}^{-1}$.

Figura 6.17: Representação do problema 6.

Tabela 6.17: Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 6.

Região $\setminus N$	2	4	6	8	12
1, 5, 21, 25	0.106326	0.087863	0.085058	0.084134	0.083617
2, 4, 6, 10, 16, 20, 22, 24	0.288662	0.285910	0.285934	0.285944	0.286019
3,11,15,23	0.218081	0.177898	0.172242	0.170410	0.169376
7, 9, 17, 19	1.230075	1.349879	1.363698	1.369093	1.372266
8, 12, 14, 18	0.577046	0.572555	0.572885	0.572817	0.572845
13	0.452619	0.361613	0.350677	0.347148	0.345060
Tempo em segundos	0.611	0.864	1.849		42.254

Figura 6.18: Representação dos fluxos escalares médios do problema 6.

- Problema 7: Neste caso é apresentado um problema análogo ao problema 6, apresentando apenas uma configuração diferente para a localização e a quantidade de fontes dentro do domínio, mas mantendo os parâmetros σ_s para cada célula, Figura 6.19.

Figura 6.19: Representação do problema 7.

Tabela 6.18: Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 7.

Região $\setminus N$	2	4	6	8	12
1, 5, 21, 25	0.044843	0.036292	0.035663	0.035355	0.035110
2, 4, 6, 10, 16, 20, 22, 24	0.132074	0.118967	0.117871	0.117460	0.117186
3,11,15,23	0.276082	0.276071	0.276316	0.276255	0.276224
7, 9, 17, 19	0.690201	0.662958	0.660554	0.659604	0.659110
8, 12, 14, 18	1.517318	1.543005	1.545371	1.546657	1.547521
13	2.000497	2.036556	2.041548	2.043617	2.045074
Tempo em segundos	0.581	0.905	1.734	3692.796	40.298

Figura 6.20: Representação dos fluxos escalares médios do problema 7.

 Problema 8: Novamente utilizamos o problema anterior como base para um novo exercício computacional, onde temos a mesmas configurações e características para o domínio, sendo apenas acrescentada uma fonte em duas faces do contorno além das fontes internas do domínio como mostrado na Figura 6.21.

Figura 6.21: Representação do problema 8.

Região $\setminus N$	2	4	6	8	12
1	0.455846	0.417315	0.412320	0.410082	0.408490
2, 6	0.392734	0.360469	0.356606	0.354915	0.353707
3, 11	0.526756	0.504245	0.501093	0.499570	0.498521
4, 16	0.383475	0.345411	0.340823	0.338929	0.337620
5, 21	0.250358	0.226858	0.224047	0.222774	0.221858
7	0.745350	0.723962	0.722391	0.721547	0.721011
8, 12	1.549485	1.577198	1.579908	1.581227	1.582051
9,17	0.718055	0.694115	0.692148	0.691260	0.690748
10, 22	0.141468	0.134458	0.134106	0.133908	0.133740
13	2.006153	2.045624	2.050454	2.052475	2.053924
14, 18	1.518767	1.547562	1.549851	1.551120	1.551991
15, 23	0.277810	0.278753	0.279047	0.279024	0.279021
19	0.690760	0.664268	0.661904	0.660973	0.660485
20, 24	0.132209	0.119400	0.118323	0.117922	0.117653
25	0.044871	0.036402	0.035774	0.035468	0.035226
Tempo em segundos	0.608	0.937	1.933	2988.72	49.942

Tabela 6.19: Fluxos escalares médios de neûtrons integrados ϕ_{ryx} do problema 8.

De uma forma mais geral, nos problemas 3 à 8, temos o domínio dividido em múltiplas regiões, e obtemos os fluxos escalares médios de neûtrons, sendo apresentados para cada região do domínio nas Tabelas 6.14 a 6.19. Como esperado, encontramos um comportamento físico difusivo, equivalente ao observado em problemas de transferência de calor, como podemos observar nas Tabelas 6.17 e 6.18, e nas Figuras 6.17 e 6.19.

Também medimos o tempo aproximado, em segundos, como um parâmetro de avaliação do desempenho computacional. Para os problemas mais simples, onde a região é homogênea e sem subdivisões, obtemos os resultados desejados em 43 segundos para uma ordem de quadratura igual a 16 (com 144 direções discretas), enquanto que os mesmos problemas simulados para quadratura de ordem 2 (4 direções discretas) o tempo computacional foi de 0.007 segundos. Entretanto, ao levarmos as simulações para um níveis mais complexos, onde utilizamos meios heterogeneos, conseguimos diversificar as possibilidades para as configurações de domínio e, apesar disso, ainda conseguimos um tempo computacional razoável e relativamente baixo.

Entretanto ao levarmos as simulações para um nível mais interessante, onde utilizamos um meio heterogêneo, conseguimos diversificar as possibilidades para as configurações de domínios superiormente complexos e apesar disso, ainda conseguimos um tempo computacional razoável e relativamente baixo. Para os problemas 3 à 8 obtemos tempos entre 0.009 segundos e 1131 segundos como visto nas Tabelas 6.14 a 6.19, utilizando os parâmetros propostos para cada problema.

6.5 Flexibilidade de hardware

Considerando a implementação deste algoritmo em uma linguagem de software livre e aproveitando a flexibilidade e generalidade deste algoritimo e do código gerado, foram feitos testes preliminares em um tablet com processadores ARM Cortex-A57 2.1 GHz quad-core e ARM Cortex-A53 1.5 GHz quad-core, com memória de 3GB e GPU ARM Mali-T628MP6 integrado, e uma versão mais simples do Octave para equipamentos portáteis. Não foi feita qualquer otimização ou alteração no código utilizado para os testes com este equipamento mobile. E apesar das configurações mais modestas (se comparadas ao equipamento utilizado para gerar os resultados aqui apresentados) foi possível recriar as simulações dos problemas 1 à 4 com apenas uma defasagem no tempo computacional. Este equipamento gerou os resultados em um tempo aproximadamente 7 vezes maior. Para os demais problemas, não foi possível de ser aplicado nesta configuração devido a limitação de memória do equipamento.

Com estes testes em equipamentos mais simples, podemos mensurar a flexibilidade da metodologia desenvolvida neste trabalho e da performance do algoritmo desenvolvido, afim de analisar o desempenho em hardwares não tão robustos.

7 CONCLUSÕES E CONTINUIDADE

Iniciamos este trabalho, revisando o modelo do transporte de partículas em sua forma integro-diferencial, passando a fazer considerações para um modelo onde utilizássemos uma versão aplicando o método de ordenadas-discretas para tratarmos a variável direcional do modelo, seguindo pela escolha de uma quadratura a ser aplicada, no caso a quadratura de nível simétrica S_N .

Após a definição do modelo e seu tratamento inicial em ordenadas discretas, aplicamos os passos dos métodos nodais onde separamos nosso problema bidimensional em dois unidimensionais. Em seguida utilizamos a formulação do método ADO em cada problema nodal unidimensional, montando os problemas de autovalores, construindo as autofunções e definindo as soluções homogêneas para cada variável espacial.

Após isso, fazemos a escolha das expressões a serem utilizadas para a soluções particulares e para a representação dos fluxos angulares nos contornos. A determinação de todas as constantes envolvidas é feita através de um sistema de dimensão 6MHK, construído a partir das soluções homogêneas, das soluções particulares, das equações auxiliares utilizadas nas interfaces e das condições de contorno nas direções de incidência. Resolvido este sistema, as soluções ficam completamente estabelecidas e determinadas quantidades de interesse podem ser estimadas: fluxos escalares e fluxos escalares médios.

Com estes resultados iniciais, considerando que a formulação proposta ainda pode ser aprimorada, conseguimos mostrar com este trabalho que esta variação do método ADO, combinada aos métodos nodais, é uma boa alternativa para a resolução de problemas de transporte bidimensionais. A construção de soluções analíticas em termos das variáveis espaciais contribui drasticamente no sentido de minimizar o custo computacional, uma vez que elimina a necessidade de esquemas iterativos, evitando inclusive a utilização de métodos de interpolação. Ainda temos a simplicidade de termos um método onde propomos a organização das direções, feita de forma simples, sem qualquer ordenamento especial e ainda colocamos uma proposta de avaliação dos fluxos escalares para o problema bidimensional feito através de uma média dos fluxos escalares, como visto na expressão (6.3).

Temos ainda a possibilidade de utilização do método para simulações mais simples (devido a limitação de hardware) em equipamentos portáteis como celulares e tablets, abrindo novas possibilidades para o estudo da área.

O fato da formulação não estar restrita apenas a um tipo de quadratura também é um ponto positivo, uma vez que a própria quadratura possui uma limitação quanto a quantidade de direções.

Também pode-se salientar que os resultados tem comportamento físico compatíveis com o modelo proposto e que obtivemos uma concordância significativa dos perfis conforme o parâmetro N aumenta (até 3 dígitos dependendo do problema e dos parâmetros utilizados).

Contribuições significativas também foram feitas em termos de desenvolvimento de técnicas matemáticas e computacionais, visando a eficiência na resolução de problemas de transporte em meios multidimensionais e a geração de resultados benchmark. Destacamos um avanço no estudo e tratamento de domínios heterogêneos, para a simulação da transição das partículas em meios com características distintas, com potencial aplicação em engenharia e física médica. Vale lembrar que este trabalho apresenta uma proposta de variação do método ADO que, por não fazer um ordenamento especial das direções discretas, facilita o acoplamento dos sitemas unidimensionais. Outro ponto importante é o uso de uma expressão alternativa, mais simples, para a solução particular, cuja utilização ainda não havia sido feita junto ao método ADO. Além das configurações utilizadas e descritas neste trabalho, vale ressaltar que o código não foi escrito ou otimizado para utilizar computação paralela, ficando esta alternativa para a continuidade deste trabalho. Também vale destacar a utilização de um equipamento com placa gráfica dedicada, onde deixamos não somente o processador, mas também a memória dedicada ao sistema, o liberando de quaisquer funções gráficas, que eventualmente poderiam sobrecarregar o processamento ou o uso da memória disponível.

Quanto ao tratamento de problemas heterogêneos, existe um inevitável aumento do custo computacional, uma vez que o problema é tratado como um conjunto de problemas menores acoplados. Mas independente da complexidade, conseguimos observar boas características do método proposto aqui, como a programação simples, simulação rápida, expressões auxiliares em termos das variáveis espaciais, independência da quadratura e não utilização de esquemas iterativos.

7.1 Propostas de continuidade

Propõe-se como continuidade deste trabalho o aprimoramento do método aqui desenvolvido e entre as melhorias a serem implementadas, encontra-se a possibilidade de se trabalhar com a complexidade do problema estendendo para meios anisotrópicos, ou ainda, aplicar outros tipos contornos com outras características e formas.

A exploração de outras formas de solução particular e de outras aproximações para os ramos dos contornos, também não estão descartadas, mas sempre procurando manter a eficiência e a performance na geração dos resultados, através da utilização de softwares de distribuição gratuita, como o caso do Octave.

Ainda fica aberta a possibilidade de futuros estudo de otimização e de implementações mais eficientes para o método aqui apresentado.

7.2 Resultados esperados

No que diz respeito à novas formulações para o tratamento do termo fonte ou na utilização de outras aproximações dos contornos, espera-se que se implementado, mantenha a eficiência do custo computacional, abrindo opções para utilização de fontes ou contornos mais gerais. Quanto a utilização de outras quadraturas, desejamos observar se teremos uma convergência mais rápida para os resultados e a influência no desempenho do método desenvolvido.

Referências Bibliográficas

- AZMY, Y. Y. The weighted diamond-difference form of nodal transport methods. Nuclear Science and Engineering vol. 98 (1988), pp. 29–40.
- [2] AZMY, Y. Y. Comparison of three approximations to the linear-linear nodal transport method in weighted diamond-difference form. In Proceedings of the International Topical Meeting on Advances in Mathematics, Computation and Reactor Physics (1991).
- BARICHELLO, L. B., CABRERA, L. C., GOLBERT, D. R.: KAMPHORST,
 C., PROLO FILHO, J. F., REICHERT, J. T., E SCHEROR, C. S. Micro and nanoflows: an analysis based an the boltzmann equation. In *1a Mostra de Nanociência e Nanotecnologia da UFRGS* (Porto Alegre, 2006).
- [4] BARICHELLO, L. B., CABRERA, L. C., E PROLO FILHO, J. F. An analytical discrete ordinates solution for two-dimensional problems based on nodal schemes. In *International Nuclear Atlantic Conference* (Rio de Janeiro, 2009).
- [5] BARICHELLO, L. B., CABRERA, L. C., E PROLO FILHO, J. F. An analytical approach for a nodal scheme of two-dimensional neutron transport problems. *Annals of Nuclear Energy vol. 38* (2011), pp. 1310–1317.
- [6] BARICHELLO, L. B., E SIEWERT, C. E. A discrete-ordinates solution for a non-grey model with complete frequency redistribuition. JQSRT vol. 62 (1999), pp. 645–675.
- [7] BARICHELLO, L. B., E SIEWERT, C. E. A new version of the discreteordinates method. In: Proceedings of the 2nd International Conference on Computational Heat and Mass Transfer vol. 1 (2001), pp. 340–347.

- [8] BARROS, R. C., DA SILVA, F. C., E ALVES FILHO, H. Recent advances in spectral nodal methods for x, y-geometry discrete ordinates deep penetration and eigenvalue problems. *Progress in Nuclear Energy vol. 35* (1999), pp. 293–331.
- [9] BARROS, R. C., DA SILVA, F. C., ALVES FILHO, H., HERNANDEZ,
 C. G., ORELLANA, E. T. V., E COUTO, N. DOMINGUEZ, D. S. The application of spectral nodal methods to discrete ordinates and diffusion problems in cartesian geometry for neutron multiplying systems. *Progress in Nuclear Energy vol.* 42 (2003), pp. 385–426.
- [10] BARROS, R. C., E LARSEN, E. W. A spectral nodal method for x,ygeometry discrete ordinates problems. Nuclear Science and Engineering vol. 11 (1992), pp. 34–35.
- BELL, G. I., E GLASTONE, S. Nuclear Reactor Theory. Van Nostrand Reinhold Compaby, New York, 1970.
- [12] CACUCI, D. G. Handbook of Nuclear Engineering Nuclear Engineering Fundamentals. Springer, 2010.
- [13] CHANDRASEKHAR, S. Radiative Transfer. Oxford University, London, 1950.
- [14] DOMINGUEZ, D. S. Método espectro-nodal linear para problemas de transporte de nêutrons na formulação de ordenadas discretas em geometria bidimensional cartesiana. Tese de doutorado do Programa de Pós-Graduação em modelagem Computacional, UERJ, Rio de Janeiro (2006).
- [15] DOMINGUEZ, D. S., HERNANDEZ, C. R. G., E BARROS, R. C. Spectral nodal method for numerically solving two-energy group x, y geometry neutron diffusion eigenvalue. *International Journal of Nuclear Energy Science* and Technology vol. 5 (2010), pp. 66–79.

- [16] DOMINGUEZ, D. S., IGLESIAS, S. M., E BARROS, R. C. Reconstrução analítica intra-nodal do fluxo escalar de nêutrons com o método espectronodal constante. In *International Nuclear Atlantic Conference* (2005).
- [17] DUDERSTADT, I. I. Transport Theory. John Wiley, New York, 1979.
- [18] FERREIRA, C. E. S., EMMENDORFER, L., E PROLO FILHO, J. F. Formulação nodal aplicada a um problema de transporte bidimensional em geometria cartesiana. *Scientia Plena vol. 11* (2015), 081315–1–10.
- [19] GARCIA, R. D. M., E SIEWERT, C. E. Channel flow of a binary mixture of rigid spheres described by the linearized boltzmann equation and driven by temperature, pressure and density gradients. *SIAM Journal on Applied Mathematics vol.* 67 (2007), pp. 1041–1063.
- [20] KNOCK, R., E BECKER, R. Evaluation of quadrature schemes for the discrete ordinates method. JQSRT vol. 84 (4) (2004), pp. 423–435.
- [21] LEWIS, E. E., E MILLER, W. F. Computational methods of neutron transport. John Wiley and Sons (1984).
- [22] LOYALKA, S., E TSAI, R. A numerical method for solving the integral equation of neutron transport: Ii. Nuclear Science and Engineering vol. 58 (1975), pp. 193–202.
- [23] OHWADA, T., E SONE, Y. Analysis of thermal stress slip flow and negative thermophoresis using the boltzmann equation for hard-sohere molecules. *European Journal of Mechanics B/Fluids vol. 11* (1992), pp. 389–414.
- [24] PROLO FILHO, J. F. A equação de boltzmann e a modelagem de fluidos em micro e macroescalas. Dissertação de mestrado do Programa de Pós Graduação em Matemática Aplicada, UFRGS, Porto Alegre, 2007.

- [25] PROLO FILHO, J. F. Abordagens espectronodais para modelos multidimensionais em transporte de partículas. Tese de doutorado do Programa de Pós-Graduação em Matemática Aplicada, UFRGS, Porto Alegre, 2011.
- [26] PROLO FILHO, J. F., E BARICHELLO, L. B. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem. pp. 2350–2360.
- [27] SCHERER, C. S., PROLO FILHO, J. F., E BACHICHELLO, L. B. An analytical approach to the splution of kinetic equation in rarefed gas dynamics. I. Flow problems. Z. Angew. Math. Phys vol. 60 (2009), pp. 70–115.
- [28] SCHERER, C. S., PROLO FILHO, J. F., E BACHICHELLO, L. B. An analytical approach to the splution of kinetic equation in rarefed gas dynamics. II. Heat transfer problems. Z. Angew. Math. Phys vol. 60 (2009), pp. 651–687.
- [29] SHARIPOV, F. Non-isothermal gas flow through retangular microchannels.
 Journal Micromechanics microengineering vol. 9 (1999), pp. 394–401.
- [30] SIEWERT, C. E. Poiseuille, thermal creep and couette flow: results based on the ces model of the linearized boltzmann equation. *European Journal* of Mechanics B/Fluids vol. 21 (2002), pp. 579–597.
- [31] SIEWERT, C. E. The linearized boltzmann equation: a consise and accurate solution of the temperature-jump problem. Journal of Quantitative Spectrocopy and Radiative Transfer vol. 77 (2003), pp. 417–432.
- [32] SIEWERT, C. E. The mccormack model for gas mixture: the temperature jump problem. Z. Angew. Math. Phys. vol. 56 (2005), pp. 273–292.
- [33] TRES, A., BECKER, C., CUNHA, R. D., E BARICHELLO, L. B. A deterministic approach for neutron transport in two-dimensional domains.

22nd International Congress of Mechanical Engineering (COBEM 2013) November 3-7, 2013, Ribeirão Preto, SP, Brazil.

- [34] VILHENA, M. T. M. M., E BARICHELLO, L. B. A new analytical approach to solve the neutron transport equation. *Kernetechnick vol. 56* (1998), pp. 334–336.
- [35] WAGNER, J. C., MOSHER, S. W., EVANS, T. M., PEPLOW, D. E., E TURNER, J. A. Hybrid and parallel domain-decomposition methods development to enable monte carlo for reactor analyses. *Progress in Nuclear Science and Technology vol. 2* (2011), pp. 815–820.
- [36] WAGNER J, C., E HAGHIGHAT, A. Automated variance reducion of monte carlo shielding calculations using the discrete ordinates adjoint function. *Nuclear Science Engineering vol. 128* (1998), pp. 186–208.
- [37] WALTERS, W. F. The relation between finite element methods and nodal methods in transport theory. *Progress in Nuclear Energy vol. 53* (1986), pp. 21–26.
- [38] WANG, Y., E RAGUSA, J. C. A high-order discontinuous galerkin method for the s_n transport equations on 2d unstructured triangular meshes. In Annals of Nuclear Energy (2009), vol. vol. 36(7), pp. pp. 931–939.
- [39] WELLELE, O. J. M. Identificação de propriedade termofísicas de materiais semitransparentes a altas temperaturas. Teses de doutorado do Programa de Pós-Graduação em Engenharia, UFRJ, Rio de Janeiro, 2007.
- [40] WICK, G. C. Uber ebene diffusions problem. Z. Phys vol. 120 (1943), pp. 702–705.

Quadratura angular simétrica de nível

Neste anexo, colocou-se a disposição as tabelas referentes às quadraturas simétricas de nível S_N , baseado em Lewis e Miller [21], bidimensional, bem como esquemas, onde podemos localizar os pontos e pesos dados pelas Figuras 8.1 à 8.7.

Esquema	i	μ	η	ω
S_2	001	0.577350	0.577350	1.000000
	002	-0.577350	0.577350	1.000000
	003	-0.577350	-0.577350	1.000000
	004	0.577350	-0.577350	1.000000
S_4	001	0.868890	0.350021	0.333333
	002	0.350021	0.350021	0.333333
	003	0.350021	0.868890	0.333333
	004	-0.868890	0.350021	0.333333
	005	-0.350021	0.350021	0.333333
	006	-0.350021	0.868890	0.333333
	007	-0.868890	-0.350021	0.333333
	008	-0.350021	-0.350021	0.333333
	009	-0.350021	-0.868890	0.333333
	010	0.868890	-0.350021	0.333333
	011	0.350021	-0.350021	0.333333
	012	0.350021	-0.868890	0.333333

Tabela 8.1: Quadratura simétrica de nível $S_2 \in S_4.$

Esquema	i	μ	η	ω
S_6	001	0.926181	0.266636	0.176126
	002	0.681508	0.266636	0.157207
	003	0.266636	0.266636	0.176126
	004	0.681508	0.681508	0.157207
	005	0.266636	0.681508	0.157207
	006	0.266636	0.926181	0.176126
	007	-0.926181	0.266636	0.176126
	008	-0.681508	0.266636	0.157207
	009	-0.266636	0.266636	0.176126
	010	-0.681508	0.681508	0.157207
	011	-0.266636	0.681508	0.157207
	012	-0.266636	0.926181	0.176126
	013	-0.926181	-0.266636	0.176126
	014	-0.681508	-0.266636	0.157207
	015	-0.266636	-0.266636	0.176126
	016	-0.681508	-0.681508	0.157207
	017	-0.266636	-0.681508	0.157207
	018	-0.266636	-0.926181	0.176126
	019	0.926181	-0.266636	0.176126
	020	0.681508	-0.266636	0.157207
	021	0.266636	-0.266636	0.176126
	022	0.681508	-0.681508	0.157207
	023	0.266636	-0.681508	0.157207
	024	0.266636	-0.926181	0.176126

Tabela 8.2: Quadratura simétrica de nível $S_{\rm 6}$

Esquema	i	μ	η	ω
S_8	001	0.951190	0.218218	0.120988
	002	0.786796	0.218218	0.090741
	003	0.577350	0.218218	0.090741
	004	0.218218	0.218218	0.120988
	005	0.786796	0.577350	0.090741
	006	0.577350	0.577350	0.092593
	007	0.218218	0.577350	0.090741
	008	0.577350	0.786796	0.090741
	009	0.218218	0.786796	0.090741
	010	0.218218	0.951190	0.120988
	011	-0.951190	0.218218	0.120988
	012	-0.786796	0.218218	0.090741
	013	-0.577350	0.218218	0.090741
	014	-0.218218	0.218218	0.120988
	015	-0.786796	0.577350	0.090741
	016	-0.577350	0.577350	0.092593
	017	-0.218218	0.577350	0.090741
	018	-0.577350	0.786796	0.090741
	019	-0.218218	0.786796	0.090741
	020	-0.218218	0.951190	0.120988
	021	-0.951190	-0.218218	0.120988
	022	-0.786796	-0.218218	0.090741
	023	-0.577350	-0.218218	0.090741
	024	-0.218218	-0.218218	0.120988
	025	-0.786796	-0.577350	0.090741
	026	-0.577350	-0.577350	0.092593

Tabela 8.3: Quadratura simétrica de nível S_8 .

Esquema	i	μ	η	ω
<i>S</i> ₈	027	-0.218218	-0.577350	0.090741
	028	-0.577350	-0.786796	0.090741
	029	-0.218218	-0.786796	0.090741
	030	-0.218218	-0.951190	0.120988
	031	0.951190	-0.218218	0.120988
	032	0.786796	-0.218218	0.090741
	033	0.577350	-0.218218	0.090741
	034	0.218218	-0.218218	0.120988
	035	0.786796	-0.577350	0.090741
	036	0.577350	-0.577350	0.092593
	037	0.218218	-0.577350	0.090741
	038	0.577350	-0.786796	0.090741
	039	0.218218	-0.786796	0.090741
	040	0.218218	-0.951190	0.120988

Tabela 8.4: Quadratura simétrica de nível S_8 .

Tabela 8.5: Quadratura simétrica de nível S_{12} .

Esquema	i	μ	η	ω
S_{12}	001	0.971638	0.167213	0.070763
	002	0.872271	0.167213	0.055881
	003	0.760021	0.167213	0.037338
	004	0.628019	0.167213	0.037338
	005	0.459548	0.167213	0.055881
	006	0.167213	0.167213	0.070763
	007	0.872271	0.459548	0.055881
	008	0.760021	0.459548	0.050282

Esquema	i	μ	η	ω
S_{12}	009	0.628019	0.459548	0.025851
	010	0.459548	0.459548	0.050282
	011	0.167213	0.459548	0.055881
	012	0.760021	0.628019	0.037338
	013	0.628019	0.628019	0.025851
	014	0.459548	0.628019	0.025851
	015	0.167213	0.628019	0.037338
	016	0.628019	0.760021	0.037338
	017	0.459548	0.760021	0.050282
	018	0.167213	0.760021	0.037338
	019	0.459548	0.872271	0.055881
	020	0.167213	0.872271	0.055881
	021	0.167213	0.971638	0.070763
	022	-0.971638	0.167213	0.070763
	023	-0.872271	0.167213	0.055881
	024	-0.760021	0.167213	0.037338
	025	-0.628019	0.167213	0.037338
	026	-0.459548	0.167213	0.055881
	027	-0.167213	0.167213	0.070763
	028	-0.872271	0.459548	0.055881
	029	-0.760021	0.459548	0.050282
	030	-0.628019	0.459548	0.025851
	031	-0.459548	0.459548	0.050282
	032	-0.167213	0.459548	0.055881
	033	-0.760021	0.628019	0.037338
	034	-0.628019	0.628019	0.025851
	035	-0.459548	0.628019	0.025851

Esquema	i	μ	η	ω
S_{12}	036	-0.167213	0.628019	0.037338
	037	-0.628019	0.760021	0.037338
	038	-0.459548	0.760021	0.050282
	039	-0.167213	0.760021	0.037338
	040	-0.459548	0.872271	0.055881
	041	-0.167213	0.872271	0.055881
	042	-0.167213	0.971638	0.070763
	043	-0.971638	-0.167213	0.070763
	044	-0.872271	-0.167213	0.055881
	045	-0.760021	-0.167213	0.037338
	046	-0.628019	-0.167213	0.037338
	047	-0.459548	-0.167213	0.055881
	048	-0.167213	-0.167213	0.070763
	049	-0.872271	-0.459548	0.055881
	050	-0.760021	-0.459548	0.050282
	051	-0.628019	-0.459548	0.025851
	052	-0.459548	-0.459548	0.050282
	053	-0.167213	-0.459548	0.055881
	054	-0.760021	-0.628019	0.037338
	055	-0.628019	-0.628019	0.025851
	056	-0.459548	-0.628019	0.025851
	057	-0.167213	-0.628019	0.037338
	058	-0.628019	-0.760021	0.037338
	059	-0.459548	-0.760021	0.050282
	060	-0.167213	-0.760021	0.037338
	061	-0.459548	-0.872271	0.055881
	062	-0.167213	-0.872271	0.055881

Esquema	i	μ	η	ω
S_{12}	063	-0.167213	-0.971638	0.070763
	064	0.971638	-0.167213	0.070763
	065	0.872271	-0.167213	0.055881
	066	0.760021	-0.167213	0.037338
	067	0.628019	-0.167213	0.037338
	068	0.459548	-0.167213	0.055881
	069	0.167213	-0.167213	0.070763
	070	0.872271	-0.459548	0.055881
	071	0.760021	-0.459548	0.050282
	072	0.628019	-0.459548	0.025851
	073	0.459548	-0.459548	0.050282
	074	0.167213	-0.459548	0.055881
	075	0.760021	-0.628019	0.037338
	076	0.628019	-0.628019	0.025851
	077	0.459548	-0.628019	0.025851
	078	0.167213	-0.628019	0.037338
	079	0.628019	-0.760021	0.037338
	080	0.459548	-0.760021	0.050282
	081	0.167213	-0.760021	0.037338
	082	0.459548	-0.872271	0.055881
	083	0.167213	-0.872271	0.055881
	084	0.167213	-0.971638	0.070763

Tabela 8.8: Quadratura simétrica de nível S_{12} - continuação.

	•			
Esquema	i	μ	η	ω
S_{14}	001	0,976624	0,151995	0,058003
	002	0,893689	$0,\!151995$	0,048894
	003	0,802225	$0,\!151995$	0,022810
	004	0,698891	$0,\!151995$	0,039396
	005	$0,\!577350$	$0,\!151995$	0,022810
	006	0,422159	$0,\!151995$	0,048894
	007	$0,\!151995$	$0,\!151995$	0,058003
	008	0,893689	0,422159	0,048894
	009	0,802225	0,422159	0,038092
	010	0,698891	0,422159	0,025838
	011	$0,\!577350$	0,422159	0,025838
	012	0,422159	0,422159	0,038092
	013	$0,\!151995$	0,422159	0,048894
	014	0,802225	0,577350	0,022810
	015	0,698891	$0,\!577350$	0,025838
	016	0,577350	0,577350	0,008276
	017	0,422159	$0,\!577350$	0,025838
	018	$0,\!151995$	$0,\!577350$	0,022810
	019	0,698891	0,698891	0,039396
	020	0,577350	0,698891	0,025838
	021	0,422159	0,698891	0,025838
	022	$0,\!151995$	0,698891	0,039396
	023	0,577350	0,802225	0,022810
	024	0,422159	0,802225	0,038092
	025	$0,\!151995$	0,802225	0,022810
	026	0,422159	0,893689	0,048894
	027	$0,\!151995$	0,893689	0,048894

Tabela 8.9: Quadratura simétrica de nível S_{14} .

Esquema	i	μ	η	ω
S_{14}	028	0,151995	0,976624	0,058003
	029	-0,976624	$0,\!151995$	0,058003
	030	-0,893689	$0,\!151995$	0,048894
	031	-0,802225	$0,\!151995$	0,022810
	032	-0,698891	0,151995	0,039396
	033	-0,577350	$0,\!151995$	0,022810
	034	-0,422159	$0,\!151995$	0,048894
	035	-0,151995	$0,\!151995$	0,058003
	036	-0,893689	0,422159	0,048894
	037	-0,802225	0,422159	0,038092
	038	-0,698891	0,422159	0,025838
	039	-0,577350	0,422159	0,025838
	040	-0,422159	0,422159	0,038092
	041	-0,151995	0,422159	0,048894
	042	-0,802225	0,577350	0,022810
	043	-0,698891	0,577350	0,025838
	044	-0,577350	0,577350	0,008276
	045	-0,422159	0,577350	0,025838
	046	-0,151995	$0,\!577350$	0,022810
	047	-0,698891	0,698891	0,039396
	048	-0,577350	0,698891	0,025838
	049	-0,422159	0,698891	0,025838
	050	-0,151995	0,698891	0,039396
	051	-0,577350	0,802225	0,022810
	052	-0,422159	0,802225	0,038092
	053	-0,151995	0,802225	0,022810
	054	-0,422159	0,893689	0,048894

Esquema	i	μ	η	ω
S_{14}	055	-0,151995	0,893689	0,048894
	056	-0,151995	0,976624	0,058003
	057	-0,976624	-0,151995	0,058003
	058	-0,893689	-0,151995	0,048894
	059	-0,802225	-0,151995	0,022810
	060	-0,698891	-0,151995	0,039396
	061	-0,577350	-0,151995	0,022810
	062	-0,422159	-0,151995	0,048894
	063	-0,151995	-0,151995	0,058003
	064	-0,893689	-0,422159	0,048894
	065	-0,802225	-0,422159	0,038092
	066	-0,698891	-0,422159	0,025838
	067	-0,577350	-0,422159	0,025838
	068	-0,422159	-0,422159	0,038092
	069	-0,151995	-0,422159	0,048894
	070	-0,802225	-0,577350	0,022810
	071	-0,698891	-0,577350	0,025838
	072	-0,577350	-0,577350	0,008276
	073	-0,422159	-0,577350	0,025838
	074	-0,151995	-0,577350	0,022810
	075	-0,698891	-0,698891	0,039396
	076	-0,577350	-0,698891	0,025838
	077	-0,422159	-0,698891	0,025838
	078	-0,151995	-0,698891	0,039396
	079	-0,577350	-0,802225	0,022810
	080	-0,422159	-0,802225	0,038092
	081	-0,151995	-0,802225	0,022810

Esquema	i	μ	η	ω
S_{14}	082	-0,422159	-0,893689	0,048894
	083	-0,151995	-0,893689	0,048894
	084	-0,151995	-0,976624	0,058003
	085	0,976624	-0,151995	0,058003
	086	0,893689	-0,151995	0,048894
	087	0,802225	-0,151995	0,022810
	088	0,698891	-0,151995	0,039396
	089	$0,\!577350$	-0,151995	0,022810
	090	0,422159	-0,151995	0,048894
	091	$0,\!151995$	-0,151995	0,058003
	092	$0,\!893689$	-0,422159	0,048894
	093	0,802225	-0,422159	0,038092
	094	0,698891	-0,422159	0,025838
	095	0,577350	-0,422159	0,025838
	096	0,422159	-0,422159	0,038092
	097	$0,\!151995$	-0,422159	0,048894
	098	0,802225	-0,577350	0,022810
	099	0,698891	-0,577350	0,025838
	100	$0,\!577350$	-0,577350	0,008276
	101	0,422159	-0,577350	0,025838
	102	$0,\!151995$	-0,577350	0,022810
	103	$0,\!698891$	-0,698891	0,039396
	104	$0,\!577350$	-0,698891	0,025838
	105	0,422159	-0,698891	0,025838
	106	$0,\!151995$	-0,698891	0,039396
	107	$0,\!577350$	-0,802225	0,022810
	108	0.422159	-0,802225	0,038092

Esquema	i	μ	η	ω
S_{14}	109	$0,\!151995$	-0,802225	0,022810
	110	0,422159	-0,893689	0,048894
	111	$0,\!151995$	-0,893689	0,048894
	112	0,151995	-0,976624	0,058003

Tabela 8.13: Quadratura simétrica de nível S_{14} - continuação.

Tabela 8.14: Quadratura simétrica de nível $S_{16}.$

Esquema	i	μ	η	ω
S_{16}	001	0.980501	0.138957	0.048987
	002	0.909286	0.138957	0.041330
	003	0.831997	0.138957	0.021233
	004	0.746751	0.138957	0.025621
	005	0.650426	0.138957	0.025621
	006	0.537097	0.138957	0.021233
	007	0.392289	0.138957	0.041330
	008	0.138957	0.138957	0.048987
	009	0.909286	0.392289	0.041330
	010	0.831997	0.392289	0.036049
	011	0.746751	0.392289	0.014459
	012	0.650426	0.392289	0.034496
	013	0.537097	0.392289	0.014459
	014	0.392289	0.392289	0.036049
	015	0.138957	0.392289	0.041330
	016	0.831997	0.537097	0.021233
	017	0.746751	0.537097	0.014459

Esquema	i	μ	η	ω
S_{16}	018	0.650426	0.537097	0.008518
	019	0.537097	0.537097	0.008518
	020	0.392289	0.537097	0.014459
	021	0.138957	0.537097	0.021233
	022	0.746751	0.650426	0.025621
	023	0.650426	0.650426	0.034496
	024	0.537097	0.650426	0.008518
	025	0.392289	0.650426	0.034496
	026	0.138957	0.650426	0.025621
	027	0.650426	0.746751	0.025621
	028	0.537097	0.746751	0.014459
	029	0.392289	0.746751	0.014459
	030	0.138957	0.746751	0.025621
	031	0.537097	0.831997	0.021233
	032	0.392289	0.831997	0.036049
	033	0.138957	0.831997	0.021233
	034	0.392289	0.909286	0.041330
	035	0.138957	0.909286	0.041330
	036	0.138957	0.980501	0.048987
	037	-0.980501	0.138957	0.048987
	038	-0.909286	0.138957	0.041330
	039	-0.831997	0.138957	0.021233
	040	-0.746751	0.138957	0.025621
	041	-0.650426	0.138957	0.025621
	042	-0.537097	0.138957	0.021233
	043	-0.392289	0.138957	0.041330
	044	-0.138957	0.138957	0.048987

Esqueme	i	11	n	(,)
c	0.45	μ 0.000296	0 200000	
\mathcal{S}_{16}	040	-0.909280	0.392289	0.041330
	046	-0.831997	0.392289	0.036049
	047	-0.746751	0.392289	0.014459
	048	-0.650426	0.392289	0.034496
	049	-0.537097	0.392289	0.014459
	050	-0.392289	0.392289	0.036049
	051	-0.138957	0.392289	0.041330
	052	-0.831997	0.537097	0.021233
	053	-0.746751	0.537097	0.014459
	054	-0.650426	0.537097	0.008518
	055	-0.537097	0.537097	0.008518
	056	-0.392289	0.537097	0.014459
	057	-0.138957	0.537097	0.021233
	058	-0.746751	0.650426	0.025621
	059	-0.650426	0.650426	0.034496
	060	-0.537097	0.650426	0.008518
	061	-0.392289	0.650426	0.034496
	062	-0.138957	0.650426	0.025621
	063	-0.650426	0.746751	0.025621
	064	-0.537097	0.746751	0.014459
	065	-0.392289	0.746751	0.014459
	066	-0.138957	0.746751	0.025621
	067	-0.537097	0.831997	0.021233
	068	-0.392289	0 831997	0.036049
	060	-0 138057	0.831007	0.000040
	070	0.100301	0.001331	0.021200
	070	-0.392289	0.909280	0.041330
	071	-0.138957	0.909286	0.041330

Tabela 8.16: Quadratura simétrica de nível S_{16} - continuação.

Esquema	i	μ	η	ω
S_{16}	072	-0.138957	0.980501	0.048987
	073	-0.980501	-0.138957	0.048987
	074	-0.909286	-0.138957	0.041330
	075	-0.831997	-0.138957	0.021233
	076	-0.746751	-0.138957	0.025621
	077	-0.650426	-0.138957	0.025621
	078	-0.537097	-0.138957	0.021233
	079	-0.392289	-0.138957	0.041330
	080	-0.138957	-0.138957	0.048987
	081	-0.909286	-0.392289	0.041330
	082	-0.831997	-0.392289	0.036049
	083	-0.746751	-0.392289	0.014459
	084	-0.650426	-0.392289	0.034496
	085	-0.537097	-0.392289	0.014459
	086	-0.392289	-0.392289	0.036049
	087	-0.138957	-0.392289	0.041330
	088	-0.831997	-0.537097	0.021233
	089	-0.746751	-0.537097	0.014459
	090	-0.650426	-0.537097	0.008518
	091	-0.537097	-0.537097	0.008518
	092	-0.392289	-0.537097	0.014459
	093	-0.138957	-0.537097	0.021233
	094	-0.746751	-0.650426	0.025621
	095	-0.650426	-0.650426	0.034496
	096	-0.537097	-0.650426	0.008518
	097	-0.392289	-0.650426	0.034496
	098	-0.138957	-0.650426	0.025621

Esquema	i	μ	η	ω
S_{16}	099	-0.650426	-0.746751	0.025621
	100	-0.537097	-0.746751	0.014459
	101	-0.392289	-0.746751	0.014459
	102	-0.138957	-0.746751	0.025621
	103	-0.537097	-0.831997	0.021233
	104	-0.392289	-0.831997	0.036049
	105	-0.138957	-0.831997	0.021233
	106	-0.392289	-0.909286	0.041330
	107	-0.138957	-0.909286	0.041330
	108	-0.138957	-0.980501	0.048987
	109	0.980501	-0.138957	0.048987
	110	0.909286	-0.138957	0.041330
	111	0.831997	-0.138957	0.021233
	112	0.746751	-0.138957	0.025621
	113	0.650426	-0.138957	0.025621
	114	0.537097	-0.138957	0.021233
	115	0.392289	-0.138957	0.041330
	116	0.138957	-0.138957	0.048987
	117	0.909286	-0.392289	0.041330
	118	0.831997	-0.392289	0.036049
	119	0.746751	-0.392289	0.014459
	120	0.650426	-0.392289	0.034496
	121	0.537097	-0.392289	0.014459
	122	0.392289	-0.392289	0.036049
	123	0.138957	-0.392289	0.041330
	124	0.831997	-0.537097	0.021233
	125	0.746751	-0.537097	0.014459

Esquema	i	μ	η	ω
S_{16}	126	0.650426	-0.537097	0.008518
	127	0.537097	-0.537097	0.008518
	128	0.392289	-0.537097	0.014459
	129	0.138957	-0.537097	0.021233
	130	0.746751	-0.650426	0.025621
	131	0.650426	-0.650426	0.034496
	132	0.537097	-0.650426	0.008518
	133	0.392289	-0.650426	0.034496
	134	0.138957	-0.650426	0.025621
	135	0.650426	-0.746751	0.025621
	136	0.537097	-0.746751	0.014459
	137	0.392289	-0.746751	0.014459
	138	0.138957	-0.746751	0.025621
	139	0.537097	-0.831997	0.021233
	140	0.392289	-0.831997	0.036049
	141	0.138957	-0.831997	0.021233
	142	0.392289	-0.909286	0.041330
	143	0.138957	-0.909286	0.041330
	144	0.138957	-0.980501	0.048987

Tabela 8.19: Quadratura simétrica de nível S_{16} - continuação.

Tabela 8.20: Quadratura simétrica de nível S_{18} .

Esquema	i	μ	η	ω
S_{18}	001	0,982934	0,130080	0,042691
	002	0,920600	0,130080	0,037081
	003	0,853727	0,130080	0,013920

Esquema	i	μ	η	ω
S_{18}	004	0,781149	0,130080	0,029756
	005	0,701099	0,130080	0,010016
	006	0,610643	0,130080	0,029756
	007	0,504212	0,130080	0,013920
	008	0,368206	0,130080	0,037081
	009	0,130080	0,130080	0,042691
	010	0,920600	0,368206	0,037081
	011	0,853727	0,368206	0,030609
	012	0,781149	0,368206	0,016043
	013	0,701099	0,368206	0,019701
	014	0,610643	0,368206	0,019701
	015	0,504212	0,368206	0,016043
	016	0,368206	0,368206	0,030609
	017	0,130080	0,368206	0,037081
	018	0,853727	0,504212	0,013920
	019	0,781149	0,504212	0,016043
	020	0,701099	0,504212	0,001194
	021	0,610643	0,504212	0,015823
	022	0,504212	0,504212	0,001194
	023	0,368206	0,504212	0,016043
	024	0,130080	0,504212	0,013920
	025	0,781149	0,610643	0,029756
	026	0,701099	0,610643	0,019701
	027	0,610643	0,610643	0,015823
	028	0,504212	0,610643	0,015823
	029	0,368206	0,610643	0,019701
	030	0,130080	0,610643	0,029756

Tabela 8.21: Quadratura simétrica de nível S_{18} - continuação.

Esquema	i	μ	η	ω
S_{18}	031	0,701099	0,701099	0,010016
	032	0,610643	0,701099	0,019701
	033	0,504212	0,701099	0,001194
	034	0,368206	0,701099	0,019701
	035	0,130080	0,701099	0,010016
	036	$0,\!610643$	0,781149	0,029756
	037	0,504212	0,781149	0,016043
	038	0,368206	0,781149	0,016043
	039	0,130080	0,781149	0,029756
	040	0,504212	0,853727	0,013920
	041	0,368206	0,853727	0,030609
	042	0,130080	0,853727	0,013920
	043	0,368206	0,920600	0,037081
	044	0,130080	0,920600	0,037081
	045	0,130080	0,982934	0,042691
	046	-0,982934	0,130080	0,042691
	047	-0,920600	0,130080	0,037081
	048	-0,853727	0,130080	0,013920
	049	-0,781149	0,130080	0,029756
	050	-0,701099	0,130080	0,010016
	051	-0,610643	0,130080	0,029756
	052	-0,504212	0,130080	0,013920
	053	-0,368206	0,130080	0,037081
	054	-0,130080	0,130080	0,042691
	055	-0,920600	0,368206	0,037081
	056	-0,853727	0,368206	0,030609
	057	-0.781149	0,368206	0,016043

Esquema	i	μ	η	ω
S_{18}	058	-0,701099	0,368206	0,019701
	059	-0,610643	0,368206	0,019701
	060	-0,504212	0,368206	0,016043
	061	-0,368206	0,368206	0,030609
	062	-0,130080	0,368206	0,037081
	063	-0,853727	0,504212	0,013920
	064	-0,781149	0,504212	0,016043
	065	-0,701099	0,504212	0,001194
	066	-0,610643	0,504212	0,015823
	067	-0,504212	0,504212	0,001194
	068	-0,368206	0,504212	0,016043
	069	-0,130080	0,504212	0,013920
	070	-0,781149	0,610643	0,029756
	071	-0,701099	0,610643	0,019701
	072	-0,610643	0,610643	0,015823
	073	-0,504212	0,610643	0,015823
	074	-0,368206	0,610643	0,019701
	075	-0,130080	0,610643	0,029756
	076	-0,701099	0,701099	0,010016
	077	-0,610643	0,701099	0,019701
	078	-0,504212	0,701099	0,001194
	079	-0,368206	0,701099	0,019701
	080	-0,130080	0,701099	0,010016
	081	-0,610643	0,781149	0,029756
	082	-0,504212	0,781149	0,016043
	083	-0,368206	0,781149	0,016043
	084	-0,130080	0,781149	0.029756

Esquema	i	μ	η	ω
S_{18}	085	-0,504212	0,853727	0,013920
	086	-0,368206	0,853727	0,030609
	087	-0,130080	0,853727	0,013920
	088	-0,368206	0,920600	0,037081
	089	-0,130080	0,920600	0,037081
	090	-0,130080	0,982934	0,042691
	091	-0,982934	-0,130080	0,042691
	092	-0,920600	-0,130080	0,037081
	093	-0,853727	-0,130080	0,013920
	094	-0,781149	-0,130080	0,029756
	095	-0,701099	-0,130080	0,010016
	096	-0,610643	-0,130080	0,029756
	097	-0,504212	-0,130080	0,013920
	098	-0,368206	-0,130080	0,037081
	099	-0,130080	-0,130080	0,042691
	100	-0,920600	-0,368206	0,037081
	101	-0,853727	-0,368206	0,030609
	102	-0,781149	-0,368206	0,016043
	103	-0,701099	-0,368206	0,019701
	104	-0,610643	-0,368206	0,019701
	105	-0,504212	-0,368206	0,016043
	106	-0,368206	-0,368206	0,030609
	107	-0,130080	-0,368206	0,037081
	108	-0,853727	-0,504212	0,013920
	109	-0,781149	-0,504212	0,016043
	110	-0,701099	-0,504212	0,001194
	111	-0,610643	-0,504212	0.015823

Factores	:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Esquema	1	μ	η	ω
S_{18}	112	-0,504212	-0,504212	0,001194
	113	-0,368206	-0,504212	0,016043
	114	-0,130080	-0,504212	0,013920
	115	-0,781149	-0,610643	0,029756
	116	-0,701099	-0,610643	0,019701
	117	-0,610643	-0,610643	0,015823
	118	-0,504212	-0,610643	0,015823
	119	-0,368206	-0,610643	0,019701
	120	-0,130080	-0,610643	0,029756
	121	-0,701099	-0,701099	0,010016
	122	-0,610643	-0,701099	0,019701
	123	-0,504212	-0,701099	0,001194
	124	-0,368206	-0,701099	0,019701
	125	-0,130080	-0,701099	0,010016
	126	-0,610643	-0,781149	0,029756
	127	-0,504212	-0,781149	0,016043
	128	-0,368206	-0,781149	0,016043
	129	-0,130080	-0,781149	0,029756
	130	-0,504212	-0,853727	0,013920
	131	-0,368206	-0,853727	0,030609
	132	-0,130080	-0,853727	0,013920
	133	-0,368206	-0,920600	0,037081
	134	-0,130080	-0,920600	0,037081
	135	-0,130080	-0,982934	0,042691
	136	0,982934	-0,130080	0,042691
	137	0,920600	-0,130080	0,037081
	138	0.853727	-0.130080	0.013920

Esquema	i	μ	η	ω
S_{18}	139	0,781149	-0,130080	0,029756
	140	0,701099	-0,130080	0,010016
	141	0,610643	-0,130080	0,029756
	142	0,504212	-0,130080	0,013920
	143	0,368206	-0,130080	0,037081
	144	0,130080	-0,130080	0,042691
	145	0,920600	-0,368206	0,037081
	146	$0,\!853727$	-0,368206	0,030609
	147	0,781149	-0,368206	0,016043
	148	0,701099	-0,368206	0,019701
	149	0,610643	-0,368206	0,019701
	150	0,504212	-0,368206	0,016043
	151	0,368206	-0,368206	0,030609
	152	0,130080	-0,368206	0,037081
	153	$0,\!853727$	-0,504212	0,013920
	154	0,781149	-0,504212	0,016043
	155	0,701099	-0,504212	0,001194
	156	0,610643	-0,504212	0,015823
	157	0,504212	-0,504212	0,001194
	158	0,368206	-0,504212	0,016043
	159	0,130080	-0,504212	0,013920
	160	0,781149	-0,610643	0,029756
	161	0,701099	-0,610643	0,019701
	162	0,610643	-0,610643	0,015823
	163	0,504212	-0,610643	0,015823
	164	0,368206	-0,610643	0,019701
	165	0.130080	-0.610643	0.029756

Esquema	i	μ	η	ω
S ₁₈	166	0,701099	-0,701099	0,010016
	167	0,610643	-0,701099	0,019701
	168	0,504212	-0,701099	0,001194
	169	0,368206	-0,701099	0,019701
	170	0,130080	-0,701099	0,010016
	171	0,610643	-0,781149	0,029756
	172	0,504212	-0,781149	0,016043
	173	0,368206	-0,781149	0,016043
	174	0,130080	-0,781149	0,029756
	175	0,504212	-0,853727	0,013920
	176	0,368206	-0,853727	0,030609
	177	0,130080	-0,853727	0,013920
	178	0,368206	-0,920600	0,037081
	179	0,130080	-0,920600	0,037081
	180	0,130080	-0,982934	0,042691

Tabela 8.27: Quadratura simétrica de nível S_{18} - continuação.

Tabela 8.28: Quadratura simétrica de nível $S_{\rm 20}.$

Esquema	i	μ	η	ω
S_{20}	001	0,985340	0,120634	0,037037
	002	0,929857	0,120634	0,033267
	003	0,870847	0,120634	0,011215
	004	0,807536	0,120634	0,024488
	005	0,738819	0,120634	0,013604
	006	0,663019	0,120634	0,013604
	007	0,577350	0,120634	0,024488
Esquema	i	μ	η	ω
----------	-----	--------------	--------------	--------------
S_{20}	008	0,476522	0,120634	0,011215
	009	0,347581	0,120634	0,033267
	010	0,120634	0,120634	0,037037
	011	$0,\!929857$	0,347581	0,033267
	012	0,870847	0,347581	0,031800
	013	0,807536	0,347581	0,006821
	014	0,738819	0,347581	0,030749
	015	0,663019	0,347581	0,000004
	016	0,577350	0,347581	0,030749
	017	$0,\!476522$	0,347581	0,006821
	018	0,347581	0,347581	0,031800
	019	0,120634	0,347581	0,033267
	020	0,870847	$0,\!476522$	0,011215
	021	0,807536	$0,\!476522$	0,006821
	022	0,738819	$0,\!476522$	$0,\!005665$
	023	0,663019	$0,\!476522$	0,004570
	024	$0,\!577350$	$0,\!476522$	0,004570
	025	$0,\!476522$	$0,\!476522$	0,005665
	026	0,347581	$0,\!476522$	0,006821
	027	0,120634	$0,\!476522$	0,011215
	028	0,807536	0,577350	0,024488
	029	0,738819	0,577350	0,030749
	030	0,663019	0,577350	$0,\!004570$
	031	0,577350	0,577350	0,028200
	032	$0,\!476522$	0,577350	0,004570
	033	$0,\!347581$	0,577350	0,030749
	034	0,120634	0,577350	0,024488

Tabela 8.29: Quadratura simétrica de nível S_{20} - continuação.

Esquema	i	μ	η	ω
S_{20}	035	0,738819	0,663019	0,013604
	036	0,663019	0,663019	0,000004
	037	$0,\!577350$	0,663019	0,004570
	038	$0,\!476522$	0,663019	0,004570
	039	$0,\!347581$	0,663019	0,000004
	040	0,120634	0,663019	0,013604
	041	0,663019	0,738819	0,013604
	042	0,577350	0,738819	0,030749
	043	$0,\!476522$	0,738819	0,005665
	044	$0,\!347581$	0,738819	0,030749
	045	$0,\!120634$	0,738819	0,013604
	046	0,577350	0,807536	0,024488
	047	$0,\!476522$	0,807536	0,006821
	048	$0,\!347581$	0,807536	0,006821
	049	$0,\!120634$	0,807536	0,024488
	050	$0,\!476522$	0,870847	0,011215
	051	$0,\!347581$	0,870847	0,031800
	052	$0,\!120634$	0,870847	0,011215
	053	$0,\!347581$	$0,\!929857$	0,033267
	054	$0,\!120634$	$0,\!929857$	0,033267
	055	$0,\!120634$	0,985340	0,037037
	056	-0,985340	0,120634	0,037037
	057	-0,929857	0,120634	0,033267
	058	-0,870847	0,120634	0,011215
	059	-0,807536	0,120634	0,024488
	060	-0,738819	0,120634	0,013604
	061	-0.663019	0.120634	0.013604

Esquema	i	μ	η	ω
S_{20}	062	-0,577350	0,120634	0,024488
	063	-0,476522	0,120634	0,011215
	064	-0,347581	0,120634	0,033267
	065	-0,120634	0,120634	0,037037
	066	-0,929857	0,347581	0,033267
	067	-0,870847	0,347581	0,031800
	068	-0,807536	0,347581	0,006821
	069	-0,738819	0,347581	0,030749
	070	-0,663019	0,347581	0,000004
	071	-0,577350	0,347581	0,030749
	072	-0,476522	0,347581	0,006821
	073	-0,347581	0,347581	0,031800
	074	-0,120634	0,347581	0,033267
	075	-0,870847	$0,\!476522$	0,011215
	076	-0,807536	$0,\!476522$	0,006821
	077	-0,738819	$0,\!476522$	0,005665
	078	-0,663019	$0,\!476522$	0,004570
	079	-0,577350	$0,\!476522$	0,004570
	080	-0,476522	$0,\!476522$	0,005665
	081	-0,347581	$0,\!476522$	0,006821
	082	-0,120634	$0,\!476522$	0,011215
	083	-0,807536	0,577350	0,024488
	084	-0,738819	$0,\!577350$	0,030749
	085	-0,663019	$0,\!577350$	0,004570
	086	-0,577350	$0,\!577350$	0,028200
	087	-0,476522	$0,\!577350$	0,004570
	088	-0,347581	0,577350	0,030749

Esquema	i	μ	η	ω
S_{20}	089	-0,120634	0,577350	0,024488
	090	-0,738819	0,663019	0,013604
	091	-0,663019	0,663019	0,000004
	092	-0,577350	0,663019	0,004570
	093	-0,476522	0,663019	0,004570
	094	-0,347581	0,663019	0,000004
	095	-0,120634	0,663019	0,013604
	096	-0,663019	0,738819	0,013604
	097	-0,577350	0,738819	0,030749
	098	-0,476522	0,738819	0,005665
	099	-0,347581	0,738819	0,030749
	100	-0,120634	0,738819	0,013604
	101	-0,577350	0,807536	0,024488
	102	-0,476522	$0,\!807536$	0,006821
	103	-0,347581	$0,\!807536$	0,006821
	104	-0,120634	0,807536	0,024488
	105	-0,476522	0,870847	0,011215
	106	-0,347581	0,870847	0,031800
	107	-0,120634	0,870847	0,011215
	108	-0,347581	$0,\!929857$	0,033267
	109	-0,120634	$0,\!929857$	0,033267
	110	-0,120634	0,985340	0,037037
	111	-0,985340	-0,120634	0,037037
	112	-0,929857	-0,120634	0,033267
	113	-0,870847	-0,120634	0,011215
	114	-0,807536	-0,120634	0,024488
	115	-0.738819	-0,120634	0,013604

Esquema	i	μ	η	ω
S_{20}	116	-0,663019	-0,120634	0,013604
	117	-0,577350	-0,120634	0,024488
	118	-0,476522	-0,120634	0,011215
	119	-0,347581	-0,120634	0,033267
	120	-0,120634	-0,120634	0,037037
	121	-0,929857	-0,347581	0,033267
	122	-0,870847	-0,347581	0,031800
	123	-0,807536	-0,347581	0,006821
	124	-0,738819	-0,347581	0,030749
	125	-0,663019	-0,347581	0,000004
	126	-0,577350	-0,347581	0,030749
	127	-0,476522	-0,347581	0,006821
	128	-0,347581	-0,347581	0,031800
	129	-0,120634	-0,347581	0,033267
	130	-0,870847	-0,476522	0,011215
	131	-0,807536	-0,476522	0,006821
	132	-0,738819	-0,476522	0,005665
	133	-0,663019	-0,476522	0,004570
	134	-0,577350	-0,476522	0,004570
	135	-0,476522	-0,476522	0,005665
	136	-0,347581	-0,476522	0,006821
	137	-0,120634	-0,476522	0,011215
	138	-0,807536	-0,577350	0,024488
	139	-0,738819	-0,577350	0,030749
	140	-0,663019	-0,577350	0,004570
	141	-0,577350	-0,577350	0,028200
	142	-0,476522	-0,577350	0.004570

Esquema	i	μ	η	ω
S_{20}	143	-0,347581	-0,577350	0,030749
	144	-0,120634	-0,577350	0,024488
	145	-0,738819	-0,663019	0,013604
	146	-0,663019	-0,663019	0,000004
	147	-0,577350	-0,663019	0,004570
	148	-0,476522	-0,663019	0,004570
	149	-0,347581	-0,663019	0,000004
	150	-0,120634	-0,663019	0,013604
	151	-0,663019	-0,738819	0,013604
	152	-0,577350	-0,738819	0,030749
	153	-0,476522	-0,738819	0,005665
	154	-0,347581	-0,738819	0,030749
	155	-0,120634	-0,738819	0,013604
	156	-0,577350	-0,807536	0,024488
	157	-0,476522	-0,807536	0,006821
	158	-0,347581	-0,807536	0,006821
	159	-0,120634	-0,807536	0,024488
	160	-0,476522	-0,870847	0,011215
	161	-0,347581	-0,870847	0,031800
	162	-0,120634	-0,870847	0,011215
	163	-0,347581	-0,929857	0,033267
	164	-0,120634	-0,929857	0,033267
	165	-0,120634	-0,985340	0,037037
	166	0,985340	-0,120634	0,037037
	167	0,929857	-0,120634	0,033267
	168	0,870847	-0,120634	0,011215
	169	0,807536	-0,120634	0.024488

Esquema	i	μ	η	ω
S_{20}	170	0,738819	-0,120634	0,013604
	171	0,663019	-0,120634	0,013604
	172	0,577350	-0,120634	0,024488
	173	$0,\!476522$	-0,120634	0,011215
	174	0,347581	-0,120634	0,033267
	175	0,120634	-0,120634	0,037037
	176	$0,\!929857$	-0,347581	0,033267
	177	0,870847	-0,347581	0,031800
	178	0,807536	-0,347581	0,006821
	179	0,738819	-0,347581	0,030749
	180	0,663019	-0,347581	0,000004
	181	0,577350	-0,347581	0,030749
	182	$0,\!476522$	-0,347581	0,006821
	183	$0,\!347581$	-0,347581	0,031800
	184	$0,\!120634$	-0,347581	0,033267
	185	0,870847	-0,476522	0,011215
	186	0,807536	-0,476522	0,006821
	187	0,738819	-0,476522	0,005665
	188	0,663019	-0,476522	0,004570
	189	0,577350	-0,476522	0,004570
	190	$0,\!476522$	-0,476522	0,005665
	191	$0,\!347581$	-0,476522	0,006821
	192	0,120634	-0,476522	0,011215
	193	0,807536	-0,577350	0,024488
	194	0,738819	-0,577350	0,030749
	195	0,663019	-0,577350	0,004570
	196	0.577350	-0.577350	0.028200

Esquema	i	μ	η	ω
S_{20}	197	0,476522	-0,577350	0,004570
	198	0,347581	-0,577350	0,030749
	199	0,120634	-0,577350	0,024488
	200	0,738819	-0,663019	0,013604
	201	0,663019	-0,663019	0,000004
	202	0,577350	-0,663019	0,004570
	203	$0,\!476522$	-0,663019	0,004570
	204	0,347581	-0,663019	0,000004
	205	0,120634	-0,663019	0,013604
	206	0,663019	-0,738819	0,013604
	207	0,577350	-0,738819	0,030749
	208	$0,\!476522$	-0,738819	0,005665
	209	0,347581	-0,738819	0,030749
	210	0,120634	-0,738819	0,013604
	211	0,577350	-0,807536	0,024488
	212	$0,\!476522$	-0,807536	0,006821
	213	0,347581	-0,807536	0,006821
	214	0,120634	-0,807536	0,024488
	215	$0,\!476522$	-0,870847	0,011215
	216	0,347581	-0,870847	0,031800
	217	0,120634	-0,870847	0,011215
	218	0,347581	-0,929857	0,033267
	219	0,120634	-0,929857	0,033267
	220	0,120634	-0,985340	0,037037

Tabela 8.36: Quadratura simétrica de nível S_{20} - continuação.

Figura 8.1: Arranjo das direções e pesos para quadratura ${\cal S}_2.$

Figura 8.2: Arranjo das direções e pesos para quadratura $S_4.$

Figura 8.3: Arranjo das direções e pesos para quadratura $S_{\rm 6}.$

Figura 8.4: Arranjo das direções e pesos para quadratura $S_{\rm 8}.$

Figura 8.5: Arranjo das direções e pesos para quadratura $S_{12}.$

Figura 8.6: Arranjo das direções e pesos para quadratura $S_{14}.$

Figura 8.7: Arranjo das direções e pesos para quadratura S_{16} .

Figura 8.8: Arranjo das direções e pesos para quadratura $S_{18}.$

Figura 8.9: Arranjo das direções e pesos para quadratura $S_{\rm 20}.$