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SUMMARY 
 
Growth models are an important component in the study of population biology and are 
generally required in fishery assessment. This paper is concerned with the fit of Schnute’s 
general growth model to an age-length key of the skipjack tuna (Katsuwonus pelamis) caught 
off the southeastern coast of South America. We use the general framework of the model to 
investigate the effect of different error structures and the fit of specific submodels. Depending 
on the error structure different forms of the specialized von Bertalanffy growth curve arise as 
the final choice. We conclude that the classic von Bertalanffy model is adequate for the data at 
hand and present appropriate confidence intervals for the parameters. The existence of 
colinearity among parameter estimates and the implication on the precision of the estimates is 
discussed. 
 

RÉSUMÉ 
 
Les modèles de croissance constituent un élément important dans l’étude de la biologie des 
populations et sont généralement requis dans l’évaluation des pêcheries. Le présent document 
s’intéresse à l’ajustement du modèle de croissance général de Schnute à une clef 
d'identification âge-longueur du listao (Katsuwonus pelamis) capturé au large de la côte sud-
ouest d’Amérique du Sud. Nous employons le cadre général du modèle pour rechercher l’effet 
de différentes structures d’erreurs et l’ajustement de sous-modèles spécifiques. Selon la 
structure d’erreurs, différentes formes de la courbe de croissance spécialisée de von 
Bertalanffy apparaissent comme choix final. Nous en concluons que le modèle classique de von 
Bertalanffy convient pour les données disponibles et présente des intervalles de confiance 
appropriés pour les paramètres. L’existence de colinéarité au sein des estimations de 
paramètre et l’implication sur la précision des estimations sont examinées. 
 

RESUMEN 
 
Los modelos de crecimiento son un componente importante en el estudio de la biología de la 
población y suelen ser necesarios para la evaluación de la pesquería. Este documento se ocupa 
del ajuste del modelo de crecimiento general de Schnute a la clave edad-talla del listado 
(Katsuwonus pelamis) capturado en las aguas de la costa suroriental de América del Sur. 
Hemos utilizado el marco general del modelo para investigar el efecto de las diferentes 
estructuras de error y el ajuste de submodelos específicos. Dependiendo de la estructura de 
error, las curvas de crecimiento especializadas de von Bertalanffy se plantean como la elección 
final. Concluimos que el modelo clásico de von Bertalanffy resulta adecuado para los datos 
disponibles y presenta intervalos de confianza apropiados para los parámetros. Se discute la 
existencia de una colinealidad entre estimaciones de parámetros y la implicación sobre la 
precisión de las estimaciones. 
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1 INTRODUCTION 
 
 Growth models are an important component in the study of population biology and are generally 
required in fishery assessment. Information about growth is necessary in several analytic fishery 
assessment models (e.g. Virtual Population Analysis (VPA)) (Hilborn and Walters, 1992; Quinn and 
Deriso, 1999). This paper examines the fit of growth models for the skipjack tuna (Katsuwonus 
pelamis) caught off the southeastern coast of South America. 
 
 There are two primary types of data used to fit empirical growth models: age-length keys and 
length-frequency distributions. While the latter are studied with modal progression techniques and 
with mixture distributions (Schnute and Fournier, 1980; Foucher and Fournier, 1982) the former are 
suited for growth models relating size and age directly. For skipjack caught off the southeastern coast 
of South America, an age-length key from the mid 1980’s is available in the literature (Vilela 1990). 
There are no data from mark-recapture experiments. Therefore we concentrated our analysis on the 
available age-length key. 
 
 The traditional von Bertalanffy (1938) growth model was fitted to this age-length key by Vilela 
and Castello (1991). However, there is no a priori reason for this to be the most adequate model. In 
the context of a precautionary approach to fishery management, considering model uncertainty is 
recommended (Butterworth, Punt and Smith 1996; McAllister, Starr, Restrepo and Kirkwood 1999). 
Several other possibilities describe length as a function of increasing age in fishes (Ricker, 1979). 
However, to choose the more suitable model based on the available data, different alternatives must be 
compared by some criteria. 
 
 The alternative explored in this paper is the four parameters model formulated by Schnute (1981), 
which contains many specific growth models (e.g. generalized and restricted von Bertalanffy, 
Gompertz, etc.) as special cases. Schnute´s general formulation is attractive because it allows for a 
smooth transition between models of different functional form (i.e. specific submodels) and because of 
the statistical stability of the resulting parameter estimates (in the sense of numerical convergence). 
 
 Given a specific functional form the appropriate estimation of growth parameters also depends on 
the error structure assumed for the data. If the variability in size is constant as a function of age, an 
additive error structure is suitable. However, if the variability in size increases with age a 
multiplicative error is appropriate (Quinn and Deriso, 1999). The analysis of residuals can be used to 
empirically choose the most appropriate error structure.  
 
 Vilela (1990) constructed an age-length key using samples of skipjack landings collected in the 
mid 80’s. In a preliminary analysis the author had concluded that growth of male and female were not 
statistically different and therefore presented the data lumped by sex. 
 
 In this paper we investigate which growth model is more suitable for skipjack tuna caught in the 
southeastern coast of South America by analyzing the age-length key of Vilela (1990). We do this 
within the framework of Schnute´s general growth model, investigating the effect of assuming an 
additive or a multiplicative error structure as well. Interesting features that arise from the data analysis 
are examined and the implications of structural uncertainty in model choice are discussed.  
 
2 MATERIALS AND METHODS 
 
2.1 Data and Growth Model 
 
 The age-length key constructed by Vilela (1990) included 613 spines sampled between 1986 and 
1988 (Tables 1 and 2). 
 
 The growth model of Schnute (1981) relates age t to some measure of size Y(t) (here taken as 
furcal length) according to the following equation: 
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Parameters 1τ  and 2τ  are fixed ages specified in advance with the restriction 1τ < 2τ . There are four 
parameters to be estimated: a , b , 1γ  and 2γ . Parameters 1γ  and 2γ  are sizes expected at ages 1τ  
and 2τ  respectively, with restriction 0 < 1γ  < 2γ . Various special models known in the literature are 
related to specific values of parameters a and b (see Schnute, 1981). For instance, if a > 0, and b = 1 
the model reduces to the von Bertalanffy growth model for length in which case a is the intrinsic 
growth parameter usually represented by k  in the fishery literature. 
 
2.2 Error Structure in the Models 
 
 To fit the model to observed data an appropriate error structure must be assumed. An additive error 
structure is appropriate when the variability of size )(tY  is constant as a function of age t  
(homoscedasticity). In this case, the observed length of fish i  )( iy  is related to its age it  according to 
the expression 

( ) iii tfy σεφ += ,  (2), 

where φ  = ( a , b , 1γ  , 2γ ) is the parameters vector of the growth model ( )f  defined by the right-
hand side of equation (1), and iε  is the error term, assumed to be a normal random variable with mean 
zero [ ( ) 0=iE ε ] and variance ( ) 2σε =iV .  
 
 If the variability of size increases as a function of age (i.e. heteroscedasticity), then it is more 
adequate to use a multiplicative error structure (Quinn and Deriso, 1999). In this case the length of an 
individual fish should be modeled as 

( ) )exp(, iii tfy σεφ ⋅=  (3) 

with parameters and error distribution as defined above. 
 
2.3 Parameter Estimation 
 
 The estimation of the parameter vector φ  can be reduced to a standard problem in non-linear 
minimization (Press, Flannery, Teukolsky and Vetterling 1986). Finding maximum likelihood 
estimates of φ  under the additive error structure of expression (2) is equivalent to minimizing the 
function 

( ) ( )[ ]∑ −= 2,φφ ii tfyS  (4). 

 Alternatively, if the multiplicative error structure (3) is assumed, the function to be minimized is 

( ) ( )∑
















=

2

,
ln

φ
φ

i

i

tf
yS  (5). 

 After choosing appropriate starting values, the search for the point of global minimum denoted 
mleφ  is obtained in two stages. First a simplex algorithm searches the parameter space to escape any 

eventual local minima. After convergence, current estimates are used as starting values in a more 
refined Quasi-Newton procedure to get to the final estimates. The covariance matrix of the estimated 
parameters is obtained in the usual way from the Hessian matrix of second derivatives of the 
likelihood function evaluated at mleφ  (Lehmann, 1983). 
 
 The standard error of the assymptotic length L∞ (which is defined as a function of the parameter 
vector φ  whenever a > 0) and the construction of confidence regions was obtained with a parametric 
bootstrap (Efron and Tibshirani, 1993) by simulating from a multivariate Gaussian density centered at 
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mleφ  and with the estimated covariance matrix. 
 
 The stability of parameter estimates within Schnute´s parameterization was verified by specifying 
different starting values for the unknown parameters and using different pairs of fixed ages 1τ  and 2τ . 
 
2.4 Comparing Growth Models 
 
 As pointed out in Quinn and Deriso (1999) two types of comparisons among growth models are 
needed. First, there is the need to select some best model for a particular data set. Second, there is the 
need to compare growth models obtained from different data sets. In this study we analyze only one 
data set, hence we can only make the first type of comparison. 
 
 We will perform our analysis by first fixing an error structure (additive or multiplicative) and, 
given that structure, search for the most appropriate growth model. The simple regression between the 
absolute residuals (observed – predicted) and age (Glejser, 1969) will be used to confront the additive 
and multiplicative error structures. 
 
 There are several statistical tests to compare nested growth models (e.g. Hotelling, Fisher´s F, and 
likelihood-ratio tests). We used the F-statistic presented in Schnute (1981) to decide between the 
general four parameter model and some nested submodel of interest. Cerrato (1990) showed that this 
simple F-statistic could be successfully used in the generalized von Bertalanffy growth model if the 
sample size is large. We used this test statistic to compare specific growth models nested within the 
generic Schnute formulation. For some sample of size n  this F-statistic is given by the expression 
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κ  and υ  (κ  > υ ) are the number of free parameters in models with parameter vectors 1φ  and 2φ  
respectively. Under the null hypothesis that all κ-υ parameters that φ1 has in excess to φ2 are zero, this 
statistic has approximately a Fisher distribution with parameters (κ-υ, n-κ). 
 
 The selection of some “best” model starts by choosing the maximum likelihood fit for the full 
model given by equation (1). The next step is an inspection of parameter estimates for a and b in the 
context of some submodel (for example, with a parameter restriction like b=1). After obtaining 
parameter estimates for the submodel, the F statistic (6) is calculated. If there is no evidence for 
rejecting the submodel (null hypothesis) this simpler model is a justified choice by the principle of 
parsimony. 
 
 All calculations and bootstrap simulations were performed with the statistical software Statistica 
version 5.1.  
 
3 RESULTS 
 
 The distribution of skipjack tuna samples between December 1983 and March 1989 is shown in 
Table 1 suggesting that there is no change in the sampled length range over the period. Overall sample 
sizes and variances in length are calculated from the age-length key (Table 2) and displayed by age in 
Figure 1. There is no clear trend in variance by age. While variances of length tend to increase until 
age 3, the pattern is erratic for older age classes, which were poorly sampled. 
 
 We fitted Schnute´s general growth model using several pairs of fixed ages 1τ  and 2τ  together 
with different starting values for the unknown parameters but the estimated parameters were always 
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the same. For the results presented here we fixed the ages 1τ = 1, 2τ = 4 and the starting values ( a , b , 

1γ , 2γ ) = (0.1, 0.1, 30, 60). 
 
 The results of the analysis are summarized in Table 3. Case 1 refers to the fit of the four 
parameters model while Case 2 refers to the submodel selected for comparison in each situation. 
 
 The predicted length for skipjack tunas of ages 1 and 4 are very similar in all four cases (full and 
submodels, with additive and multiplicative erros) with values close to 43 cm and 64 cm, respectively. 
In the most general models (Case 1) the estimated values for the parameters a  and b  are sensitive to 
the choice of an additive or multiplicative error structure. With an additive error the maximum 
likelihood estimates of a  and b  are about 0.2 and 1.3 respectively. When a multiplicative error is 
assumed, the estimates of a  and b  are both about 0.3. While the model with multiplicative error 
structure points to the von Bertalanffy model usually adopted for growth in weight (b =1/3) the 
additive error structure favors the von Bertalanffy model usually adopted for growth in length (b =1). 
These three-parameter submodels are denoted as Case 2 and the estimates are listed in Table 3 as well. 
The strong negative correlation between estimates of a and b for both Case 1 models indicate high 
colinearity between these parameters. This explains the considerable gain in precision in the estimates 
when going from Case 1 to Case 2 regardless of the assumed error structure. 
 
 Assuming an additive error, comparisons between the four parameters free Schnute model (Case 
1) and the model with b =1 (Case 2) showed no significant differences in the model fit (F = 0.031; p > 
0.85) (Table 4). Similarly, there is no significant difference between the four parameters model (Case 
1) and the three parameters model with b =1/3 (Case 2), when a multiplicative error is assumed (F = 
0.001; p > 0.95). Within the range of ages available in the data set both models with three free 
parameters (Case 2), give an almost indistinguishable fit (Figure 2). The residual plot (Figure 3) 
further confirms the similarity between these two fits. 
 
 For all growth models considered here, estimates of the assymptotic length L∞ and the age at 
length zero t0 can be obtained as functions of φ  (for appropriate expressions see Schnute´s paper) and 
are also displayed in Table 3 in both Case 2 models. The additive error structure suggests an 
assymptotic length of about 90 cm, exceeding by roughly 10 cm the estimate obtained for the 
multiplicative error. The overlap of the bootstrap confidence intervals suggest that this difference is 
unclear from a statistical standpoint. 
 
4 DISCUSSION 
 
 Within the framework of Schnute’s general growth model and assuming additive error, the 
traditional von Bertalanffy growth model (b = 1) is an acceptable choice with parameters given in 
Table 4. However, the assumed error structure proved to be essential to elect this growth model for 
the available skipjack tuna data. Additive and multiplicative errors point to different most suitable 
growth models (i.e. both Case 2 models). The inspection of the shapes (Figure 2) and of the residuals 
(Figure 3) suggest that the practical difference is minor within the range of observed ages. The effect 
of model structure on the final estimates can also be analyzed by comparing the confidence intervals 
for L∞; showing that most of the region is shared by both models. However, the possible effect of 
using any of these models to estimate catch at age (or even optimized age-length keys) in the stock 
assessment approach, should be verified in the future. 
 
 Conceptually the increase of variance in length as a function of age is an expected pattern for a 
natural fish population favoring a multiplicative error structure. However, small sample sizes or even 
some effects of gear selectivity (e.g. Rosa-Lee effect) can preclude the observation of an increase in 
the variability of length in relation to the age. 
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 There is high colinearity between parameters estimates a and b (Case 1) as indicated by the 
estimated correlation of –0.987 resulting in low precision in the estimates (large confidence intervals). 
After fixing b (Case 2) the precision in the estimate of a increases more then six times (0.25÷0.04 = 
6.25 ) regardless of the chosen error structure. It is interesting to notice that the precision in estimates 
of 1γ  and 2γ  is almost unaffected by the choice between Cases 1 and 2, although the multiplicative 
erros structure provides slightly more precise estimates. 
 
 A previous analysis by Villela and Castello (1991), using Marquart´s procedure, provided point 
estimates similar to the maximum likelihood estimates obtained for our Case 2 with additive error 
structure. Those authors however did not provide confidence intervals. The confidence intervals of a 
and L∞ presented here (Case 2) give a wrong idea about the range of possible pairs of values because 
of a hidden but strong non-linear correlation among these parameters. This feature becomes apparent 
in the scatterplots of Figure 4. This is a remainder that marginal (one-dimensional) confidence 
intervals can be misleading if carelessly used. 
 
REFERENCES 
 
VON BERTALANFFY, L. 1938. A quantitative theory of organic growth (Inquires on growth laws 

II). Human Biol. 10: 181-213. 
BUTTERWORTH, D. S., A. E. Punt and A. D. M. Smith. 1996. On plausible hypotheses and their 

weightings, with implications for selection between variants of the Revised Management 
Procedure. Rep. Int. Ehal. Commn. 46: 481-491. 

CERRATO, R. M. 1990. Interpretable statistical tests for growth comparisons using parameters in the 
von Bertalanffy equation. Can. J. Fish. Aquat. Sci. 47: 1416-1426. 

EFRON, B. and R. Tibshirani. 1993. An Introduction to the Bootstrap. New York: Chapman and Hall. 
436 pp. 

FOUCHER, R. P. and D. Fournier. 1982. Derivation of Pacific cod age composition using length-
frequency analysis. N. Amer. J. Fish. Manage. 2: 276-284. 

GLEJSER, H. 1969. A new test for heteroscedasticity. J. Amer. Statist. Assoc. 64: 316-323. 
HILBORN, R. and C. J. Walters. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics 

and Uncertainty. Chapman and Hall, New York. 
LEHMANN, E. L. 1983. Theory of Point Estimation. New York: Wiley. 
McALLISTER, M. K., P. J. Starr, V. Restrepo and G. P. Kirkwood. 1999. Formulating quantitative 

methods to evaluate fishery management systems: what fishery processes should we model and 
what trade-offs do we make? ICES J. Marine Science 56: 900-916. 

PRESS, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. 1986. Numerical Recipes: The 
Art of Scientific Computing. New York: Cambridge University Press. 

QUINN, T. J., II and R. B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press, New 
York. 

RICKER, W. E. 1979. Growth rates and models. In: Hoar, W. S. and Randall, D. J. (Eds.). Fish 
Physiology. Vol III. Chapter 11. 677-743. 

SCHNUTE, J. and D. A. Fournier. 1980. A new approach to length frequency analysis: growth 
structure. Can. J. Fish. Aquat. Sci. 37: 1337-1351. 

SCHNUTE, J. 1981. A versatile growth model with statiscally stable parameters. Can. J. Fish. Aquat. 
Sci. 38(9): 1128-1140. 

VILELA, M. J. A. and J. P. Castello. 1991. Estudio de la edad y del crecimiento del barrilete 
(Katsuwonus pelamis) en la región sur y sudeste de Brasil. Frente Maritimo 9(sec. a):29-35. 

VILELA, M. J. A. 1990. Idade, crescimento, alimentação e avaliação do estoque de bonito listado, 
Katsuwonus pelamis (Scombridae: Thunnini), explorado na região sudeste-sul do Brasil. MSc. 
Thesis. Fundação Universidade do Rio Grande, RS, Brasil. 81 pp. 



 1922

Table 1. Date, range length and number of spines used to construct the age-length key for skipjack tuna 
(Katsuwonus pelamis) caught in the southeastern South America. (Redraw from Vilela, 1990). 
 

Date Length Range in the Sample (cm) Number of Spines 
December/1983 35 – 60 154 
December/1985 46 – 53 27 
January/1986 46 – 65 93 
February/1986 48 – 67 31 

April/1986 37 – 51 30 
May/1988 34 – 69 134 
July/1988 41 – 68 123 

September/1988 42 – 63 81 
November/1988 47 – 70 76 
February/1989 44 – 58 116 
March/1989 43 – 64 100 

 
 
 
Table 2. Age-length for skipjack tuna (Katsuwonus pelamis) caught in the southeastern South America. (Redraw 
from Vilela, 1990). 
 

Length/Age 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 
36 2         
37 1 1        
38 1 5        
39 2 7        
40 2 1        
41 2 5        
42  1 1       
43  4 5       
44  6 5       
45  3 14       
46  2 24 2      
47  1 30 9      
48   23 16      
49   22 15      
50   13 25 2     
51   7 34 10     
52   5 42 12     
53   4 27 14     
54    25 21 5    
55    14 18 4    
56    10 13 5    
57    1 7 4    
58     10 3 2   
59     7 3    
60     4 5 4 2  
61     1 9 4 1  
62      2 1 1  
63      3 4 1  
64      3 2 1  
65       1 1  
66        1  
67         1 
68         1 
69          
70        2  
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Table 3 - Schnute model parameters estimates for the skipjack tuna (Katsuwonus pelamis) caught in the 
southeast of South America. Case 1 represents the four parameter model, and case 2 represents the three 
parameter model with restrictions b = 1 (additive error structure), and  b = 1/3 (multiplicative error structure). 
 

 Additive Error Multiplicative Error 
 Case 1 Case 2 Case 1 Case 2 

1
γ̂ ± 1 SE 42.742 ± 0.251 42.737 ± 0.251 42.648 ± 0.213 42.649 ± 0.208 

95% CI for 
1

γ̂  (42.249;43.235) (42.246;43.229) (42.230;43.066) (42.241;43.057) 

2γ̂ ± 1 SE 64.187 ± 0.524 64.142 ± 0.460 63.932 ± 0.646 63.943 ± 0.538 

95% CI for 2γ̂  (63.159;65.214) (63.240;65.044) (62.666;65.198) (62.890;64.997) 

â ± 1 SE 0.176 ± 0.249 0.220 ± 0.040 0.333 ± 0.258 0.325 ± 0.040 
95% CI for â  (-0.311;0.664) (0.141;0.298) (-0.172;0.839) (0.246;0.404) 

b̂ ± 1 SE 1.288 ± 1.624 1 0.281 ± 1.610 1 / 3 

95% CI for b̂  (-1.896;4.472)  (-2.874;3.436)  

∞L̂ ± 1 SE  87.078 ± 7.359  79.757 ± 4.339 

95% CI for ∞L̂   (78.143;105.260)  (73.213;90.335) 

ot̂   -2.071  -4.135 

Correlations     
( )2ˆ,ˆ

1
γγ  0.175 0.147 0.190 0.090 

( )â,ˆ
1

γ  -0.209 -0.573 -0.282 -0.483 

( )b̂,ˆ
1

γ  0.124  0.209  

( )â,ˆ2γ  -0.593 -0.799 -0.647 -0.822 

( )b̂,ˆ2γ  0.488  0.544  

( )ba ˆ,ˆ  -0.987  -0.987  

 
 
 
 
 
 
Table 4 - Statistics and hypothesis tests from the Schnute growth model for the skipjack tuna (Katsuwonus 
pelamis) from the southeast South America. 
 

 Additive Error (AE) Multiplicative Error (ME) 
 Case 1 Case 2 Case 1 Case 2 

Residual sum of squares 3812.408989 3812.602856 1.470810 1.470812 
Residual mean square ( 2σ̂ ) 6.260113 6.250169 0.002415 0.002411 

σ̂  2.502022 2.500034 0.049144 0.049104 
F (case1 x case2) 0.031 (P > .85) 0.001 (P > .95) 
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Fig. 1 - Sample size and length variance in relation with age as calculated from the age-length key for skipjack 
tuna (Katsuwonus pelamis) presented in Vilela (1990). 
 
 

 
 
Fig. 2 – Schnute model fitted to data from skipjack tuna (Katsuwonus pelamis) caught in the southeast South 
America. Continuous line represents the fit with b = 1 pointed as the suitable model when assumed additive 
error (AE) structure. Dotted line represents the fit with b = 1/3 pointed as the suitable model when assumed 
multiplicative error (ME) structure. 
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Fig. 3 – Residuals when assumed additive (RES_AE) or multiplicative error (RES_ME) structure to fit the 
Schnute model. 
 
 
 

 
 
Fig. 4 – Scatterplots for the parameters L∞ and a (related to k of the traditional von Bertalanffy formulation) 
from a parametric bootstrap for the skipjack tuna (Katsuwonus pelamis) caught in the southeastern coast of 
South America. (AE) Additive error; (ME) Multiplicative error. 
 


