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Abstract We consider upscaling of non-Darcy flow in heterogeneous porous media.

Our approach extends the pressure-based numerical homogenization procedure for lin-

ear Darcy flow, due to Durlofsky, to the nonlinear case. The effective coefficients are

not constants but rather mildly varying functions of prevailing gradients of pressure.

The upscaled model approximates the fine grid model accurately and, in some cases,

more accurately than what is expected for Darcy flow; this is due to the non–Darcy ef-

fects which suppress heterogeneity. We provide comparisons of alternative approaches

as well as consider several variants of numerical realizations of the non–Darcy flow

model. Numerical results show effectiveness of the upscaling procedure.
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1 Introduction

When modeling flow and transport in heterogeneous porous media using numerical

methods one often needs to consider a scale H coarser than the h scale at which the

data are given. Over the last two or three decades various techniques of upscaling from

scale h to H, also called numerical homogenization, have been defined and critically

evaluated, see original papers [14], review [45], and recent work [49,28,8,7]. While

methods of upscaling for linear single equation models are reasonably well understood,

upscaling nonlinear models or systems, beyond the progress made for multiphase flow

[1,17,7], remains, in general, an open field.
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In this paper we are concerned with upscaling of non-Darcy model of single-phase

incompressible fluid flow in saturated porous medium Ω ⊂ IRd, d = 1, 2, 3, in the form

(K−1 + βI|u|)u = −∇p. (1)

This extends the linear Darcy’s law

u = −K∇p, (2)

with p denoting pressure or potential, K denoting the hydraulic conductivity tensor,

I ∈ IRd×d the identity matrix and where u is the velocity (volumetric flux) of the

fluid. Here β is the nonnegative scalar known as the Forchheimer coefficient, and the

model (1) is due to Forchheimer [25]. Clearly if β = 0, then (1) reduces to (2). Other

formulations are available in literature; we develop these and the notation in Section 2.

The conservation of mass is given by

∇ · u = 0, (3)

or, more generally, with a distributed source q by

∇ · u = q. (4)

The central issue addressed in this paper concerns heterogeneous porous media

when K = K(x),x ∈ Ω. We assume β ≡ const or β = β(x) which occurs for example

when β is correlated to K via some relationship β = g(K).

Specifically, the natural question that arises is how to upscale the model (1), (3).

That is, given values of Kh and βh at a scale h, what values of KH and βH should

one use in a numerical model at a scale H >> h ? In particular, if βh is constant, is

it appropriate to assume so for βH ? Similar questions arise when βh is not constant

but rather correlated to Kh; the answers are not straightforward due to nonlinearity

of (1).

For the linear case, that is, Darcy’s flow (2)–(3), various upscaling and numerical

homogenization methods have been shown to be very effective; see [14,45,8,28]. Com-

bine (2) and (3) and consider a numerical approximation on grid parametrized by h of

the resulting elliptic PDE, −∇h · (Kh∇hph) = 0. Upscaling to scale H means we want

to solve −∇H · (KH∇HpH) = 0, where the upscaled coefficient KH is obtained from

one of the known methods; see details in Section 4.

Upscaling of nonlinear models presents a challenge. In particular, consider a non-

linear PDE of the form

∇ · K(∇ph) = 0,

where K(ξh) = K(θh; ξh) is a general nonlinear function of ξ parameterized by some pa-

rameters θ, both given at scale h. In general, there is no guarantee that the nonlinearity

K∗ in the upscaled model

∇ · K∗(∇pH) = 0,

is parameterized in the same way as K is in the original model, and even if so, that

these parameters are equal to some upscaled θH . In other words, in general it is not

true that one has K∗(ξH) = K(θH ; ξH). Rather, to identify K∗, one has to consider a

collection of nonlinear upscaled maps; these follow from solutions to local cell problems
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Fig. 1 Schematic difference between linear and nonlinear upscaling. Left: linear upscaling of
Kh delivers a constant upscaled value KH . Right: nonlinear upscaling of βh delivers a map
βH(α) where α represents a local boundary condition value.

posed at the scale h with cells of size H but in general are not decoupled from the

global equation; see [16,7,18]. Additional difficulties in using θH arise for systems even

if they are linear [40]. See Figure 1 for illustration.

In the problem of interest to this paper, in the nonlinear PDE obtained from (1),

(3), we have K(ξh) = K(Kh, βh; ξh). In what follows we show that upscaling of K gives

a satisfactory upscaled model with K∗(ξH) = K(KH , βH ; ξH), where the upscaled

coefficients KH , βH are computed numerically via solutions to cell problems. It turns

out that βH is, in general, not constant but varies midlly with the average flow rates.

We focus primarily on pressure-based upscaling after Durlofsky [14].

As a result, we obtain an efficient and accurate method of upscaling (1). We believe

that the success of this nonlinear upscaling procedure is due to the fact that the inertia

effects appear to supress heterogeneity of K for large β, which of course helps in the

process of upscaling. In addition, we show that in some cases it is reasonable to use

a simpler upscaled model with K∗(ξH) ≈ K(KH , β
g
H ; ξH) where βg

H does not require

nonlinear upscaling.

Nonlinear upscaling methods with applications to porous media have been applied

to multiphase flow problems. There, in addition to deriving KH , one considers up-

scaling of nonlinear multiphase flow properties such as saturation-dependent relative

permeabilities and/or capillary pressure relationships. The use of pseudo-functions [3,

10] is considered an effective yet not always fully satisfactory approach. Difficulty in

upscaling multiphase models is associated with large heterogeneity contrasts, with de-

pendence of multiphase flow properties on rock-type, as well as with the nonlinear

coupled nature of systems of PDEs that have to be solved. For ongoing research see [8,

7].

On the other hand, there has been considerable research devoted to analysis [24]

and numerical approximation [12,36] of non-Darcy flow in homogeneous porous me-

dia. To our knowledge, however, not much work has been done for non-Darcy flow in

heterogeneous media or devoted to the effects the Forchheimer correction has on the

flow in heterogeneous case. In non-Darcy case, the only considerations known to us

are in [35] where a scalar case is considered and recent work in [34] where a separate

approach applicable to fractured media is considered. In this paper we take a first step

towards upscaling of non-Darcy flow for flow driven by boundary conditions only. When

q 6≡ 0, for example, when wells are present, non-Darcy flow in homogeneous media was

considered in [22]; upscaling around wells for Darcy or for multiphase flow has been

considered in [48,11]. Upscaling of non-Darcy flow around wells is outside the present

scope.
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The plan of the paper is as follows. In Section 2 we give details of the model (1);

we also provide analytical bounds and examples which show the connection between

K, β, and u, and effects of inertia associated with β on heterogeneity. These results

help to explain the success of our upscaling procedure to be developed. In Section 3

we define the numerical discretization, with technical details deferred to Appendix. In

Section 4 we define our upscaling approach, and in Section 5 we present results of the

upscaling method.

Throughout the paper we assume the nondimensional form of (1)–(3) so that

Ω,K,u are represented in computational expriments by simple nondimensional quan-

tities. In the presentation we also assume d = 2 and Ω ∋ x = (x1, x2) and u = (u1, u2),

with natural simplifications or extensions used when d = 1, 3. Gravity effects are not

included in this paper explicitely, but are easily accounted for in the numerical imple-

mentation.

Let K = K(x),x ∈ Ω be a symmetric, bounded, and positive definite uniformly

in x conductivity coefficient. We assume K is diagonal: K = diag(K1, . . .Kd), i.e.,

the principal axes of permeability variation are aligned with the coordinates x. We

note that some pressure-based upscaling methods deliver a non-diagonal KH even if

the original Kh is diagonal; however, restriction to diagonal Kh makes the current

exposition manageable, and we drop the off-diagonal terms in KH , should they arise.

Henceforth we assume that each of components satisfies Km(x) ≥ κ,m = 1, . . . d for

some κ > 0. In the isotropic case we have K = KI.

2 Non-Darcy model, analytical solutions and bounds for (1)

Various formulations of non-Darcy models exist and have been argued as valid in

various regimes of flow. In general, it is recognized [20,21,32,4,13] that the non-Darcy

flow effects are important in regions of high pressure gradients/ high velocity, and

are due to inertia effects, and were originally connected to the onset of turbulence at

porescale level. Specifically, for 1 < Re < 100 the Darcy equation (2) should be replaced

by its extended form including additional terms polynomial in velocity modeling inertia.

In most early works an extended model for the scalar case proposed first by Forch-

heimer [25] was used and validated in the laboratory

K
−1
u+ β|u|u = − dp

dx
. (5)

However, there is no uniform agreement on how this equation should be extended to two

or three dimensions, how to account for anisotropy, or for multiphase flow. Porescale

explanations of non-Darcy phenomena via averaging Navier-Stokes or Oseen flows [47,

31,9,13,33,41] suggest that the form (1) is appropriate, with a possible enhancement

of the inertia term to include a full tensor. Our upscaling method does not depend on

the particular form of (1) and the form of upscaled βH suggests a tensor form more

general than βI|u|, see Section 5. However, at this point we do not know how succesful

our upscaling method is when applied to nonlinearities other than those in (1); this is

subject of current and future research.

As concerns heterogeneity of porous media, it is one of its most distinctive proper-

ties, and it accounts for difficulties in analysis and numerical simulation not encountered

in man-made materials science. Most of the heterogeneity in flow models is reflected

by dependence of K = K(x). As concerns β, the experiments in which the values of β
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were calculated for a given isotropic rock sample suggest that β may be correlated with

various powers of K [27]. Also, β is high for carbonate rocks such as limestone and

sandstone and generally higher for vugular than for non-vugular rocks [30]. In general,

it is reasonable to conclude that in heterogeneous nonisotropic porous media, β = β(x)

whenever K = K(x).

In this paper we report, for simplicity, only on two variants of β, indexed by B,

which for isotropic K = KI read

β = gB(β0,K) =

{

β0, B = 0
β0√
K
, B = 1

. (6)

More [27,30] can be easily incorporated. However, a special case of non-smooth g

such as the one for fracture systems where inertia terms are neglected in the matrix,

will not be considered here but is a topic of future work. See also Section 5.3.4 on

our computational results regarding correlation. In general β may actually vary with

pressure and/or composition of fluids, and some formulations of (1) account for this

[12,23,24,22]. For simplicity throughout this paper we consider a fixed single phase

fluid and, hence, we lump the viscosity and density coefficients along with K, β.

For nonisotropic diagonal K the correlations (6) should be considered component-

wise; we find it therefore natural to allow for β = (β1, β2) to be a vector. Non-isotropic

β may also arise in the process of upscaling; a vector form of β does not introduce

additional difficulties in a numerical model. With this, we rewrite (1) componentwise,

with the coupling term between components given by |u| =

√

∑d
m=1 u

2
m,

(K−1
m + βm|u|)um = − ∂p

∂xm
, m = 1, . . . d. (7)

A simplified version, in which the nonlinearity in velocity components is decoupled, is

the one adapted in [22], and it is a multi-dimensional analogue of (5),

(K−1
m + βm|um|)um = − ∂p

∂xm
, m = 1, . . . d. (8)

Since (7) is more general, it will be used as a basis for numerical models. Interestingly,

in some numerical discretizations, a discrete version of (8) arises on its own from

discretization of (7).

2.1 Analytical solution and bounds

It is not difficult to find an analytical solution u to (5). In the multidimensional case, it

may no more be directly possible. Below we derive bounds which are helpful in scalar

and non-scalar cases.

2.1.1 Estimates for scalar case

Let D = − dp
dx . Rewrite (5) as

u = K(D), (9)
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Fig. 2 Analytical solution u = K(K, β; D). Left: we show u = K(1, β; D) for a fixed β in
function of D. Note the deviation of non-Darcy velocity from linear Darcy velocity (β = 0).
Middle and right: plot of u = K(1, β; 1) versus β and zoom of the figure. Both exact values
and asymptotic bounds are shown.

Fig. 3 Effects of inertia on heterogeneity. Shown is pressure solution for cross flow in a layered
medium where K varies from 1 (left and right) to 10−4 in the middle part, for various values
of β. Notice a sharp jump of pressure gradient for the case β = 0; the jump becomes smaller
with larger β.

where K(D) = K(K,β;D). Solving (5) gives the following

u = K(K,β;D) =







0, D = 0,

KD, β = 0,

sgn(D)
−K−1+

√
(K−1)2+4β|D|
2β , β 6= 0, D 6= 0,

(10)

where sgn(D) denotes the sign of D. One can also write

u = K(K,β;D) =
2D

K−1 +
√

(K−1)2 + 4β|D|
, (11)

from which it readily follows that K(K,β;D) is continuous in all arguments and param-

eters. Also, K is increasing in D but decreasing in β. See Figure 2 for typical behavior

of u = K(K,β;D). The calculation

∂K
∂D

=
sgn(D)

√

(K−1)2 + 4|D|β
(12)

with ∂K
∂D |β=0 = K for Darcy flow, is useful in Jacobian; see Sections 3 and 7.1.
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2.1.2 Bounds for u

An expression equivalent to (11) is

u = K(K,β;D) = sgn(D)

(

−c+

√

c2 +
|D|
β

)

, c =
K−1

2β
, β 6= 0. (13)

Clearly, since −c +

√

c2 +
|D|
β ≤ KD, we have K(D) ≤ KD; i.e., the non-Darcy

velocities do not exceed the Darcy velocities for the same pressure gradients. We recall

that K−1 is sometimes called a resistance parameter which grows with increasing β or

|u| [13].

On the other hand, from 1√
2
(r + q) ≤

√

r2 + q2 ≤ r + q for any r, q ≥ 0, we see

that, for β 6= 0

K(K,β;D) ≤
√

|D|
β

(14)

K(K,β;D) ≥
√

|D|
2β

− K−1

2β
(1 − 1√

2
) (15)

and that for large β ≥ βcrit = 2
|D|K2 , one actually has

K(K,β;D) ≥
√

|D|
2β

, β ≥ βcrit. (16)

For β ≥ βcrit, since K(K,β;D) decreases with β, we additionally have

K(K,β;D) ≤ K(K,βcrit;D) =
DK

2
, β ≥ βcrit. (17)

These bounds are useful in numerical calculations since they help to select a good

initial guess for a local nonlinear solver.

More importantly, we obtain the asymptotics for large β which follows from (14),

(16),

u = K(K,β;D) ≈ θ

√

|D|
β
, θ ≈ 1. (18)

This approximation is quite revealing; it demonstrates that for really large inertia

effects, the flux u is essentially independent of K. While u computed for realistic values

of K,β,D found in porous media may not necessarily be in this asymptotic regime, (18)

shows that the qualitative nature of u may be only mildly affected by heterogeneity

of K, if large inertia effects are present. This is illustrated by numerical experiments

shown in Figure 3 where we see that with increasing β one obtains more smoothing of
dp
dx .

For a given boundary condition, one can solve for p by integrating (10); we skip

the calculation. This is not in general possible for the nonscalar case.

It is convenient to define the transmissibility [37]

T (K,β, γ, u) =
1

K−1 + β
√

γ2 + u2
, (19)

and rewrite (5) in an implicit form as

u =
D

K−1 + β|u| = T (K,β, 0, u)D. (20)
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2.1.3 Non-scalar case

Now we set Dm = − ∂p
∂xm

, and use γ2 =
∑

n6=m(un)2 which combines all components

of velocity other than m, and we rewrite (7)

(

K
−1
m + βm

√

γ2 + (um)2
)

um = Dm. (21)

We then have

um = T



Km, βm,

√

∑

n6=2

u2
n, um



Dm.

Note that T (Km, βm,

√

∑

n6=2 u
2
n, um) = T (Km, βm, 0, |u|); this simplifies the forth-

coming numerical calculations discussed in Section 7.1.

Given (un)n6=m, that is, γ, one can find um explicitly from (21) and/or derive

estimates similar to those for the scalar case. In general of course, γ itself is unknown.

However, given Dm,m = 1, . . . d, one can solve (21) by fixed point or Newtonian

iteration. Difficulties arise in numerical calculations because the discrete form of (21)

involves a large stencil; see Sections 3 and 7.2.

3 Numerical discretization

Here we formulate a discrete version of (3) and (1) as a cell-centered finite difference

method (CCFD) in several variants depending on discretization of |u| in (7). These

variants and discretization are motivated using mixed Finite Elements in Section 7.2;

this development has a theoretical value in that the convergence results proved in

[36] for mixed FE methods apply to our discretization. Additionally, we obtain insight

into why a particular discrete version of (7) is justified. From the point of view of

upscaling, we show later that all the variants behave similarly; in other words, the

success of upscaling is not tied to a particular variant of discretization.

Let the region Ω be decomposed into rectangular elements or cells Ωij on a Carte-

sian grid with natural notation of xij = (x1,ij , x2,ij) denoting cell centers. The ele-

ments Ωij are of size △xi × △yj . The edge Ei+1/2,j between Ωij and Ωi+1,j has a

center at (x1,i+1/2,j , yj), and so on. The distances between cell centers are denoted

by △xi+1/2,j etc.. The parameter h is the maximum of either △xi,△yj . When coarse

grid with parameter H is used, we index the cells using I, J .

The discrete pressures ph ≡ (pij)i,j=1 are associated with cell centers. The normal

components of velocities are associated with midpoints of cell edges; on the cell Ωij the

velocity in direction x1 is defined by its values u1,i−1/2,j on the left and u1,i+1/2,j on

the right edges. The discrete velocities uh can be then considered to be a tensor product

of piecewise linear polynomials in x1 direction and piecewise constant polynomials in

the x1 direction and opposite in the x2 direction. The notation is standard; see [37,46,

6] for details.

Recall [37,46] the standard discrete counterpart of (3)

∇h · uh = 0, (22)
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and of (2), which we develop now. In the direction x1 we have

u1,i+1/2,j = K1,i+1/2,j
pi,j − pi+1,j

△xi+1/2,j
= T1,i+1/2,j

(

pi,j − pi+1,j

)

, (23)

where transmissibility T1,i+1/2,j =
K1,i+1/2,j

△xi+1/2,j
is defined, and harmonic averaging of

permabilities is used [37]:

K
−1
1,i+1/2,j =

1

2 △ xi+1/2,j

(

K
−1
1,ij △ xi +K

−1
1,i+1,j △ xi+1

)

. (24)

3.1 Discrete non-Darcy velocities

With notation as above, we can now state the following discrete counterpart of (1) or

(7), with mixed finite element derivation deferred to Section 7.2:

(

T
−1
1,i+1,j +

1

2

(

β1,ij △ xi|uh|+i,j + β1,i+1,j △ xi+1|uh|−i+1,j

)

)

u1,i+1/2,j

= pi,j − pi+1,j . (25)

An analogous definition can be written immediately in direction x2.

The crucial point is to define the terms |uh|+i,j and |uh|−i+1,j . These have the mean-

ing of magnitude of velocity on the cells i, j and i+ 1, j, respectively, each relative to

the edge Ei+1/2,j on which the velocity component u1,i+1/2,j is being defined. They

can be defined in several ways, which we denote below as variants V = 0, 1, 2, 3.

Consider |uh|+i,j , with |uh|−i,j defined analogously. The simplest way to define it

(V = 0) is to use the magnitude of normal component of uh on the edge Ei+1/2,j that

is, |u1,i+1/2,j |, as was done in [22].

Another way, V = 2, is to use the magnitude of uh itself on the edge Ei+1/2,j

which is defined using

(ūh)+ij =

(

u1,i+1/2,j ,
u2,i,j+1/2 + u2,i,j−1/2

2

)

(ūh)−ij =

(

u1,i+1/2,j ,
u2,i+1,j+1/2 + u2,i+1,j−1/2

2

)

,

or, with the quantity (V = 1),

(ūh)ij =
(ūh)+ij + (ūh)−ij

2
.

Finally, the most general way, called V = 3, is to use the magnitude(s) of (interpolated)

value(s) of

(uh)ij =

(

u1,i+1/2,j + u1,i−1/2,j

2
,
u2,i,j+1/2 + u2,i,j−1/2

2

)

,

(uh)i+1,j =

(

u1,i+1/2,j + u1,i+3/2,j

2
,
u2,i+1,j+1/2 + u2,i+1,j−1/2

2

)

,

in the middle of cells Ωij and Ωi+1,j , respectively.
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Summarizing, we define

|uh|+i,j =















|u1,i+1/2,j |, variant = 0,

|(ūh)ij |, variant = 1,

|(ūh)+ij |, variant = 2,

|(uh)ij |, variant = 3.

(26)

These four variants lead to somewhat different numerical solutions to (1)-(3).

Variant V = 0 is a direct discretization of (8); it can also be seen as a simplifica-

tion/approximation of variants V = 1, 2. It uses the same 5-point stencil as used for

Darcy’ law with diagonal K and allows for analytical component-wise resolution of

local nonlinearities.

Variants V = 1, 2, 3 are associated each with a different method of numerical inte-

gration in mixed FE applied to (7); see Section 7.2. The difference between V = 1 and

V = 2 is not larger than the one appearing in the use of numerical quadrature to derive

(23) from (2) using mixed FE. Both variants couple the velocity u1,i+1/2,j to four other

velocity degrees of freedom, and are equivalent to each other up to higher order terms;

see Section 7.2. With V = 1 we have symmetry in that |uh|+i,j = |uh|−i+1,j , and one

can get around the difficulty of an enlarged stencil when resolving local nonlinearities,

by iteration-lagging those components in |(ūh)ij | other than u1,i+1/2,j . Variant V = 2

is somewhat more complicated than V = 1, because |uh|+i,j is not identical to |uh|−i,j .
Variant V = 3 is the most complex one, and, if applied in (25) alone, it couples

velocity u1,i+1/2,j and pressures pi,j , pi+1,j to 6 other velocity degrees of freedom

appearing in its definition and thereby to 6 additional pressure values. The stencil in

the resulting discrete system is increased from 5-point to 13-point in d = 2. In addition,

resolution of local nonlinearity is not very succesful by iteration lagging and impossible

directly. While we performed numerical experiments with this variant, its complexity

is not offering promise of being a succesful model.

In view of the above, only V = 0, 1 will be discussed further. In summary then,

discretization of (7) or (8) takes the form

(

T
−1
1,i+1,j +B1,i+1/2,j |(uh)Vi+1/2,j |

)

u1,i+1/2,j = pi,j − pi+1,j , (27)

where we define B1,i+1/2,j = 1
2

(

β1,ij △ xi + β1,i+1,j △ xi+1

)

= △xi+1/2β1,i+1/2,j ,

and where |(uh)Vi+1/2,j | is computed according to (26).

It is convenient to cast (27) in a form similar to (23) and (20). Define the trans-

missibilities ΥV
1,i+1/2,j which, unlike T1,i+1/2,j , depend nonlinearly on the solution,

Υ
V
1,i+1/2,j = T (T1,i+1/2,j , B1,i+1/2,j , 0, |(uh)Vi+1/2,j |), (28)

with a similar definition for Υ2,i,j+1/2. Now (27) reads, for every i, j

u1,i+1/2,j = Υ
V
1,i+1/2,j(pi,j − pi+1,j), (29)

u2,i,j+1/2 = Υ
V
2,i,j+1/2(pi,j − pi,j+1), (30)

and in a vector form we can write symbolically, for uh =
(

(u1,i+1/2,j , u2,i,j+1/2)
)

ij
,

uh = TV (Kh, βh, |uh|,uh)∇hph = TV
h∇hph. (31)
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Note finally that if β ≡ 0 we have TV (Kh, 0, |uh|,uh) ≡ −Kh. Also, recall that if

V = 0, the implicit relationships (29) and (30) can be resolved explicitely.

This formulation is used in the remainder of this paper; see Section 7.2 for mixed

FE derivation and Section 7.1 for details of nonlinear solver. Also, see Section 5 for

discussion of the difference between variants V = 0, 1. To complete this Section, we

comment on boundary conditions.

3.1.1 Boundary conditions

D

N

D

N

D

D

N N

D

N

D

N

N

N

P

P

P P+jump

B1 B2 B3 BP

Fig. 4 Boundary conditions used in examples and upscaling procedures

In examples and upscaling procedures discussed in this paper we consider one of

the following types of boundary conditions, represented schematically in Figure 4.

Let us be given ΓD, ΓN which denote the Dirichlet and Neumann no-flow parts of

the boundary ∂Ω, respectively. We impose

p|ΓD
= pD (32)

K∇p · ν|ΓN
= 0. (33)

Examples of ΓD, ΓN for a rectagular domain Ω denoted B1, B2, B3, and used in

examples in Section 5 are shown in Figure 4. Of course, other arrangements are possible.

In the numerical model, we apply Dirichlet boundary conditions using an algorithm

shown in [42,39]. The no-flow Neumann conditions are natural for CCFD and are

equivalent to setting transmissibilities on appropriate edges to 0 [37].

For a rectangular domain Ω, instead of Dirichlet and Neumann conditions, one may

choose to apply periodic boundary conditions (BP). Here we dicern between oppposite

sides of the rectangular domain, say Γ− and Γ+, and impose

p|Γ+
= p|Γ−

+ jump (34)

K∇p · ν|Γ+
= −K∇p · ν|Γ−

. (35)

Here the jump may be equal to 0, or not; usually exactly one of the sides (left or right,

top or bottom) will have a nonzero jump.

Implementation of periodic boundary conditions of the type (BP) shown in Figure 4

is done by introducing an additional set of unknowns p∂Ω . These unknowns play a dual

role: first, they are used as the known values of “Dirichlet data”. Second, their values

on opposite sides of the domain are either matched or are subject to a prescribed jump.

Finally, to close the system, the fluxes on opposite sides are matched. The system as

such is underdetermined and one has to add an additional condition which fixes the

average of ph over Ω. In implementation one can eliminate the additional unknowns

p∂Ω .
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4 Upscaling

This section provides answers to the core issues addressed in this paper. Let us be given

a scale h, identified as diameter of Ωij , on which the coefficients Kh, βh are given, but

at which it is practically impossible to solve the system (53). Assume there is a coarse

scale H >> h at which such computations are possible. The main issue is to find the

equations which describe the problem at scale H, and to identify their coefficients. Our

premise is that this is possible and that an upscaled version of (53)

∇H · TV
H∇HpH = 0 (36)

can be identified.

Alternatively, one can use a numerical method at scale H which incorporates the

variation of Kh in its definition; this is done in subgrid upscaling or multiscale and vari-

ational approaches to Finite Element methods; see [2,19,15,18,17] and related work.

Yet another alternative is to use mortar upscaling [42].

Our approach in this paper in using (36) is traditional, and we aim to derive KH , βH

from Kh, βh. We briefly review what was done for Darcy flow and then proceed to non-

Darcy case.

4.1 Upscaling Kh and notation

For Darcy flow it is standard to consider the upscaled linear system at scale H to be

of the same form as the one at h, which is also linear. Various methods M of upscaling

(K)h 7→ (K)H have been reviewed in [45]; these include arithmetic M = A or harmonic

M = H averaging and give (K)AH , (K)HH , respectively. The pressure-based methods

[14] which deliver (K)DH ,(K)PH and use Dirichlet and periodic boundary conditions,

respectively, perform better than M = A,H but are more computationally expensive.

They are related to homogenization methods pursued in mathematical analysis [5].

Here we briefly recall the method proposed in [14]. Fix a grid cell ΩIJ at scale H.

By upscaling Darcy flow coefficients, we want to ensure that (23) holds on the grid

H. Since (23) is linear, it is natural to ask that the fluxes on grid H which arise due

to pressure gradients imposed on that grid, agree on average with fluxes on grid h,

when these arise from the same global pressure gradients; this requirement preserves

mass. With this approach, one finds KH |ΩIJ
by inverse modeling as the appropriate

coefficient of proportionality. The caveat is that one has to solve a cell problem on

ΩIJ subject to some global pressure gradients in order to compute that response. How

these pressure gradients are imposed determines the D and P methods.

Consider first the local cell problem with Dirichlet boundary conditions of type B1,

see Figure 4. We solve for p̃h, ũh

−∇h · (Kh∇hp̃h) = 0, y ∈ ΩIJ (37)

p̃|Γ1,I−1/2,J
= 0 (38)

p̃|Γ1,I+1/2,J
= DI,J (39)

(Kh∇p̃ · n)|Γ2,I,J+1/2∪Γ2,I,J−1/2
= 0. (40)
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Then we compute the total flux ũ1,I+1/2,J =
∫

Γ1,I,J+1/2
ũh ·n, and we find KD

1,I+1/2,J

by fitting it into the counterpart of (23)

ũ1,I+1/2,J = K
D
1,I,J

DI,J

△xI,J
. (41)

Next, we solve an analogous cell problem with boundary conditions B2 to find KD
2,I,J .

The two values KD
1,I,J ,K

D
2,I,J form the diagonal upscaled tensor KD

I,J . Repeating cell

calculations on all cells I, J of the grid at scale H, we obtain the collection of diagonal

conductivities KH ≡
(

KD
I,J

)

IJ
.

Instead of using Dirichlet boundary conditions B1, B2, one can solve (37)–(40)

subject to periodic boundary conditions (34), (35), see BP in Figure 4. The jump is

now DIJ . However, the coefficients (KH)PIJ that one gets from inverse matching of

fluxes across all boundaries are, in general, not diagonal even if Kh is diagonal.

The global system −∇H · (KH∇HpH) = 0 solved for pH on grid H with (K)MH
for M = D,P , has reasonable accuracy of global flow patterns in the sense that they

resemble closely those for grid h. In general, M = P leads to better accuracy of global

flow patterns than M = D does, and both are more accurate than M = A,H. See

further discussion of metrics of upscaling accuracy in Section 5.

4.2 Upscaling non-Darcy flow with a pressure-based method

For non-Darcy flow, the underlying problem at scale h is nonlinear and therefore it is

not straighforward to see whether the problem at scale H has the same structure as

the one at scale h, and even if so, how to obtain Kh 7→ KH , and βh 7→ βH .

The following idea comes to mind. Let us be given Kh, βh and some scale H >> h.

LetM = D, hence, we focus for the moment on a pressure-based method using Dirichlet

boundary conditions. Consider ΩIJ and compute solutions to the cell problem on ΩIJ

similar to (37) first setting βh ≡ 0 (Darcy case). Next, we compute the solution with

βh as was given originally. In each cell ΩI,J , the former gives us KD
IJ while the latter

can be used to find a nonlinear transmissibility ΥD,V
IJ . Then find the upscaled βD

IJ by

fitting the nonlinear transmissibility, KD
IJ , DIJ and the fluxes to the analogue of (20);

see details in Section 4.2.1.

This procedure appears quite straightforward. However, the transmissibilities in

non-Darcy flow depend nonlinearly on the fluxes, hence, βD
IJ depends on the boundary

conditions DIJ driving the flow. In other words, βH is not in general constant, but

rather a function of gradients of pressure. When used in the global model (36), βH will

be chosen depending on pH , or uH .

Therefore, the proposed procedure is only useful as a method of upscaling if i) βH

satisfies the same qualitative properties that βh does, and if ii) we are able to determine

how it changes quantitatively with the boundary conditions. In particular, i) βH should

be positive. As concerns ii), since Darcy’s law and its discrete counterparts are linear,

the coefficient KD
I,J does not depend on α = DIJ . However, the fluxes do, and therefore

the transmissibilities ΥD,V
IJ and hence βD

IJ also are functions of α.

Beside qualitative guesses, we found it impossible to predict the character of the

map βH(α) analytically. It has to be computed numerically but is found to vary only

midly; see Section 5.2. In general, only simple smooth relationships appear useful in
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practice, so that it is enough to determine βH(α) on a small set α ∈ A: the values for

α ∈ IR can be found via appropriate interpolation or approximation.

4.2.1 Details of upscaling βh 7→ βH

Now we supply details of the method. Fix I, J . Consider variant V = 0 or V = 1.

Find KD
IJ by solving (37)–(40). Next, consider the following extension of (37)–(40) to

non-Darcy flow

−∇h ·
(

TV
h∇hp̂h

)

= 0, y ∈ ΩIJ (42)

p̂|Γ1,I−1/2,J
= 0 (43)

p̂|Γ1,I+1/2,J
= DI,J (44)

(T (∇hp̂h) · n)|Γ2,I,J+1/2∪Γ2,I,J−1/2
= 0. (45)

This cell problem is solved with the numerical method and Newtonian iteration de-

scribed in Sections 3 and 7.1.

Once p̂h, ûh are known, compute the total flux û1,I+1/2,J =
∫

Γ1,I,J+1/2
ûh · n, and

find the value ΥD
1,I,J from (20)

û1,I+1/2,J = Υ
D
1,I,J

DI,J

△xI,J
. (46)

Finally, compute βD
1,IJ from (20)

β
D
1,IJ =

(

ΥD
1,I,J

)−1 − (KD
1,IJ )−1

|û1,I+1/2,J |
. (47)

Analogous calculations are done for β2,IJ .

Collecting ΥD
1,IJ , Υ

D
2,IJ for all cells (I, J) we have ΥD

H . By collecting βD
1,IJ , β

D
2,IJ

computed componentwise, we finally obtain βD
H .

Consider now M = P . It is straightforward to extend the above procedure to

the case of periodic boundary conditions for cell problems; we have done this com-

putationally. However, the process results in nondiagonal KP
H , Υ

P
H and in more than

two components of βP
IJ . The resulting upscaled model for the full matrix βP

H lacks a

theoretical foundation, and we defer it to future investigation.

4.3 Other methods of upscaling βh

Consider now M = A,H and simple averaging procedures which yield KA
H ,K

H
H .

Consider some divergence-free velocity field ψh on Ωij chosen ad-hoc, that is, with-

out the pressure-solve of (42)–(45). For example, consider ψh arising as a gradient of

linear pressure field satisfying (43)–(44), that is, a uniform velocity field. Note that

since ψh is constant, trivially ∇h · ψh = 0. Another possibility is to use as ψh the

Darcy velocities found in (41). In each case ψh depends linearly on DIJ . Now one can

calculate a fixed quantity Υ (Kh, βh, ψh) which is “like” a transmissibility but which

is inconsistent with (20). Putting aside the concern of inconsistency, a simple average

ΥM
IJ of Υ (Kh, βh, ψh) for M = A,H can be computed. Following a calculation similar
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to (47) one obtains βM
H for M = A,H. This method of upscaling is very inexpensive

computationally, and may offer advantages in some cases especially in layered media.

For lack of space we do not present results.

5 Results

Here we illustrate results of the upscaling methodology proposed in Section 4 and we

verify its accuracy; this follows in Sections 5.2 and 5.3. For the sake of exposition

we provide first an illustration of numerical methods and effects of heterogeneity for

non-Darcy flow (Section 5.1).

5.1 Non-Darcy flow results
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Fig. 5 Field Kh for three cases a) layered, b) periodic (jump of a factor of 10), c) heterogeneous

Consider a 2D region of flow with Kh as shown in Figure 5 with permeability field a)

layered isotropic, b) periodic (similar to a fracture system), and c) small heterogeneous.

For each Kh, let βh be given by (6) with B = 0, 1, and β0 as indicated in each case.

Now solve the problem (53) subject to boundary conditions of type B1, B2, or B3,

as shown in Figure 4, with unit Dirichlet data. In the numerical model we consider

velocity variants V = 0, 1 as in (26). Below follows a discussion of most interesting and

at the same time simple enough cases.

As concerns the layered case a), the results shown earlier in Section 2.1 in Figure 2

c) are representative of cross-sections when Kh is layered and boundary conditions B1

are used. With large β0, the profiles of pressure become more typical of those for a

homogeneous medium. If boundary conditions B2 are used, the flow field is uniform;

we skip the presentation of these results.

Results for the periodic field b) are shown in Figure 6. Here, we use boundary

conditions B3 in order to make the flow patterns interesting enough. The same effect

of smoothing effects of larger β0 on pressure profiles is observed.

Next we show the effects of the choice of B and of V; we focus on the heterogeneous

case c) and use β0 = 100. See Figure 8, where pressure profiles for different choices of

B,V are shown. It is evident that the solutions for different variants V = 0, 1 do not

differ much; this is also true for other values of β0 (not shown). However, as expected,

the solutions for different B = 0, 1 differ substantially. This suggests that care must be

taken in real simulations to determine an appropriate model (6) of β.
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Fig. 6 Heterogeneity effects for non-Darcy flow, boundary condition B3, permeability field
periodic, and B = 0,V = 0. Far left: reference field Kh. Left to right: pressure profiles ph for
β0 = 0 (Darcy), β0 = 1, 102, 103, respectively.
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Fig. 7 Heterogeneity effects for non-Darcy flow, boundary condition B3, permeability field
heterogeneous, and B = 0,V = 0. Far left: reference field Kh. Left to right: pressure profiles
ph for β0 = 0 (Darcy), β0 = 1, 102, 103, respectively.
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Fig. 8 Dependence of numerical solution on the choice of B,V. In all examples we use β = 100.

5.2 Results of upscaling

Now we come to the central issue of this paper on upscaling Kh, βh. Given Kh, βh we

want to i) compute KH , βH , ii) use these to solve for pH , and iii) verify the accuracy

of our upscaling procedure. Throughout this section we use H = Nh with N > 1.

We restrict presentation to the method M = D using pressure-based solver with

Dirichlet boundary conditions; as mentioned above, M = P leads to still open theo-

retical questions on the form of non-Darcy correction. Methods M = A,H are very

simple but in general less accurate than M = D,P due to inconsistency and will not

be discussed.

For logical verification of the upscaling methodology we first set up a trivial problem

with Kh ≡ const = K0, with some given isotropic or anisotropic K0. Clearly we obtain

KH = K0 for any H. One can also expect that for any β0 and βh = gB(β0,Kh),

our upscaling procedure should deliver βH = gB(β0,KH). This expectation is readily

confirmed by numerical results for all cases B = 0, 1, V = 0, 1; detailed presentation is

omitted.

Next we consider nontrivial Kh. We compute KH (upscaled Darcy permeability)

for Kh, H as indicated in Figure 9. We then let βh = gB(β0,Kh), consider B = 0, 1 and

V = 0, 1 and use the upscaling procedure defined in Section 4 with Dirichlet boundary

data pD = α which is allowed to vary and thus determine βH(α). The collection of

values α in practice need not be large.
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Fig. 9 Field Kh and grid H indicated by thick grid lines for three cases a) layered, b) periodic,
c) large heterogeneous with 3x3 coarse grid, d) large heterogeneous with 6x6 coarse grid

Of interest is variability of βH on Dirichlet boundary data α, and its anisotropy,

particularly when βh itself is isotropic. In general, we find nonisotropic βH even if βh

is isotropic, and that βH 6= g(β0,KH).

In the case of constant βh we find

B = 0 : βh = g0(β0,Kh) ≡ β0

βH(α) =
(

βH,1(α), βH,2(α)
)

= (R1(α),R2(α))β0, (48)

where both ratios Rx,Ry, for a fixed β0, are mildly varying functions of α.

In the correlated case we find, abusing notation as concerns diagonal components

of Kh and KH ,

B = 1 : βh = g1(β0,Kh) =
β0√
Kh

,

βH(α) =
(

βH,1(α), βH,2(α)
)

=
(R1(α),R2(α))β0√

KH
. (49)

Remark 1 In summary, we find that

βH(α) = gB(β0,KH) (R1(α),R2(α)) , (50)

that is, βH is constant or correlated to KH , up to a non-isotropic multiplicative cor-

rection dependent on α.

The usefullness of our upscaling procedure depends on the range and variability

of Ri(α), i = 1, . . . d. In particular, in order for non-Darcy flow to retain its physical

character reflected by monotonicity of the map K(K,β;D), we expect that each of the

ratios must be positive; this is confirmed in our experiments. Results depend on Kh,B
and less significantly on V, see below. Finally, the variability of Ri(α), i = 1, . . . d turns

out to be small and so our upscaling method in practice does not require tremendous

computational effort: Ri(α), i = 1, . . . d needs to be computed only for a few values of

α.

5.2.1 Upscaled map βH for layered case

First we discuss the results of the layered case, as they are quite illuminating; see

Figure 10. If B = 0 and βh ≡ β0, it is at a first glance reasonable to expect that the

upscaled βH = gB(KH) ≡ β0. However, this is in fact only true for the flow across

the layers, where we see thatR1(α) ≡ 1. We hypothetise that this is due to harmonic

weighting of transmissibilities which is in perfect agreement with arithmetic averaging
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of βh and a constant unidirectional flux. On the other hand, the R2(α) is not constant

and it is decreasing with α. In summary, in this case we obtain

βH(α) = (1,R2(α))β0. (51)

However, we find that while βH does indeed vary with both α and β0, the ratios

Ri remain mildly varying as functions of the product of β0α. Qualitatively, this is

not surprising given the analytical solution derived in Section 2.1, see also Figure 2.

From computational point of view, this property makes our upscaling method effective

because results obtained for a fixed β0 and several values of α can be reused for another

set of values of β0 and α.
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Fig. 10 Upscaled map βH(α) for the layered case. Each figure shows R1(α),R2(α) called
’ratiox,ratioy’, respectively, for various values of β0. Top: dependence of Ri(α). Bottom shows
Ri as a function of the product αβ0.

5.2.2 Upscaled map βH for heterogeneous case

Observations similar to the layered case can be made for the periodic and heterogeneous

cases, where Kh is as in Figure 9b) and c). Of these two, the heterogeneous case is

more interesting; see results shown in Figure 11. (We show only (βH)11(α)).

The main observation with respect to the layered case is that both Ri, i = 1, 2

vary with α and β0. This obviously results from nonuniform flow in both xi, i = 1, . . . d

directions.

5.3 Comparison of fine and coarse grid solutions

Now we discuss the accuracy of upscaling non-Darcy flow by comparing results on

coarse grid H to those on the original fine grid h.

In various papers devoted to upscaling, authors use different metrics to compare

fine grid and coarse grid solutions; some compare ph and pH pointwise, some only

show profiles of pressures and/or discuss agreement of velocity and streamline patterns

between the two grids. In other papers, when wells are included, the well rates are
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Fig. 11 Upscaled map βH(α) for heterogeneous case when βh = gB(β0,Kh). Each figure
shows (R1,R2) denoted by ratiox, ratioy, respectively, as a function of the product αβ0.

compared. On the other hand, it was pointed out that minimizing a particular norm of

ph − pH may be associated with a particular upscaling method, see [28,49]. In general,

conclusions of comparisons depend on the metric that was chosen, and on the global

boundary conditions and/or flow patterns. Finally, one should consider both accuracy

and efficiency of an unpscaling method.

In this paper we compare boundary fluxes across outflow parts of ∂Ω

f =

∫

Γoutflow

K∇p · ν,

and we also consider the following.

Remark 2 In any comparison one has to keep in mind the fact that, due to numerical

error arising from discretization on grid h or H, the difference between solutions on

grid h and H, regardless of the metrics, will likely be non-zero even for homogeneous

uniform Kh. (This does not apply directly to mortar or subgrid upscaling; see [42,38,

2]). To alleviate the effect of discretization error on upscaling error, one can compare

the solution ph on grid h obtained using Kh, βh, to that pH 7→h computed on the same

grid h but with data KH 7→h, βH 7→h. Here by KH 7→h, βH 7→h, we mean KH , βH which

were downscaled to the original grid h, for example by simple injection. We found this

method of comparison very useful, but it requires computation of a solution pH 7→h on

grid h which is expensive and does not relate directly to pH . We emphasize that this

idea is suggested only for theoretical purposes to compare various upscaling methods

M ; in a practical upscaling simulation it would not be employed. See Table 1 for

comparison of four upscaling methods M = A,D, P,H for Darcy case for all three

types of boundary conditions B1, B2, and B3, for heterogeneous Kh.

Now we discuss results for non-Darcy upscaling; we test the accuracy of nonlinear

upscaling relative to the accuracy of upscaling the linear Darcy case. We consider

various patterns of Kh and H, shown in Figure 9. As before, βh, is given by (6). We

consider three cases of global boundary conditions B1, B2, and B3 as in Figure 4 so that

the flow is from right to left, top to bottom, or crossflow from right to left, respectively.

We use a prescribed global gradient of pressure D and fix B,V.

We first compute KH and the map βH for each case, as shown in Section 5.2. To

verify that it is important to calculate the upscaled map βH via (48)–(49) rather than

to use the original value or correlation, we also set

β
g
H(α) = g(β0;KH). (52)

Then we solve for ph on grid h and for pH and pg
H on grid H, and compute fluxes.
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Table 1 Comparison of M = A, D, P,H for Darcy flow for heterogeneous Kh. Note that flux
fH for M = A / M = H seems to always overpredict/ underpredict fh; this is consistent with
Hashin-Shtrikman bounds [29,45]. Also, M = D, P give significantly more accurate results
than M = A,H. Note that M = P while in general more accurate than M = D here may be
less so due to the off-diagonal terms of KP

H
which are dropped. Finally, for more complicated

flow pattern associated with B3, the use of downscaled solution shows that the coefficients KH

and the numerical error are jointly contributing to (in)accuracy of upscaled solution.

BC M fh fH fH 7→h |
fh−fH

fh
| |

fh−fH 7→h
fh

|

B1 A 32.57484362 55.03545873 55.09824639 0.68950799 0.69143548
D 32.57484362 32.35069719 32.38584459 0.00688097 0.00580199
P 32.57484362 32.41986422 32.45464733 0.00475764 0.00368985
H 32.57484362 26.14566346 26.17359339 0.19736642 0.19650901

B2 A 51.38471961 58.92646422 58.97261428 0.14677018 0.14766831
D 51.38471961 51.34424224 51.38080698 0.00078773 0.00007614
P 51.38471961 50.55448835 50.58589065 0.01615716 0.01554604
H 51.38471961 35.73207110 35.77021427 0.30461679 0.30387449

B3 A 17.85362214 20.76764487 26.32567940 0.16321745 0.47452876
D 17.85362214 13.98183753 17.75764287 0.21686269 0.00537590
P 17.85362214 13.85705590 17.63303101 0.22385184 0.01235554
H 17.85362214 10.29882863 12.91371346 0.42315186 0.27668944

Table 2 Layered case upscaled to 2x2. Column BC describes the boundary condition used.

BC D β0 fh fH |
fh−fH

fh
| f

g

H
|
fh−f

g
H

fh
|

B1 1 0 0.15625 0.156250 0 0.156250 0
B2 1 0 0.46 0.460000 1.2e-016 0.460000 1.2e-016
B1 1 0.01 0.156212 0.156212 1.4e-013 0.156212 1.4e-013

1 1 0.152611 0.152611 2.9e-015 0.152611 2.9e-015
1 100 0.072995 0.072995 1.9e-016 0.072995 1.9e-016
100 1 7.29952 7.299524 2.4e-016 7.299524 2.4e-016
0.01 1 0.001562 0.001562 1.4e-013 0.001562 1.4e-013

Remark 3 To compute pH , one needs to use the upscaled map βH(α), that is, we have

to select the particular α that is needed. The α can be found by iteration lagging

in global Newton iteration described in Section 7.1. Since βH(α) does not have large

derivatives, such estimation does not introduce much additional error.

Results corresponding to permeability cases from Figure 9 are summarized in Ta-

bles 2, 3, 4, respectively. Additionally, pressure profiles are shown for selected examples.

Discussion follows. For the sake of brevity as before we restrict ourselves to only most

interesting cases and results. Recall also that non-Darcy case results are only consid-

ered for M = D for reasons explained above. We do not show downscaled results for

lack of space; they are qualitatively consistent with non-downscaled results.

5.3.1 Upscaling of layered case

In the layered case and B1 and B2, the agreement of fh and fH is perfect. This is

expected: for B1, the upscaled value KH agrees with harmonic average, and for B2

with arithmetic average of Kh, and this is reflected in the values of fh, fH for Darcy

case β = 0. For β 6= 0, we have that βH is constant and so pH = p
g
H and we see also

very good agreement of fh with both fH , f
g
H . Other results for B1, B2 reproduce the

same behavior.
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Table 3 Results of non-Darcy upscaling for periodic case upscaled to 3x3 grid. Here we show
results for B1 only, since the case is symmetric.

D β0 fh fH |
fh−fH

fh
| f

g

H
|
fh−f

g
H

fh
|

1 0 0.451148 0.451148 8.06e-007 0.451148 8.06e-007
V = 0,B = 0

0.01 0.44762 0.447621 7.77e-007 0.450233 0.00583
0.1 0.420943 0.420943 5.70e-007 0.442321 0.050787
1 0.312592 0.312592 5.31e-008 0.384463 0.22992
10 0.174966 0.174966 5.43e-007 0.224258 0.28172
100 0.079319 0.079319 8.33e-007 0.089529 0.12872

1 0 0.451148 0.451148 8.06e-007 0.451148 8.1e-07
0.01 1 0.004473 0.004476 1.46e-005 0.004502 0.00594
0.1 1 0.042045 0.042050 0.000116 0.044232 0.05200
1 1 0.311185 0.311187 6.23e-006 0.384463 0.23547
10 1 1.74129 1.741323 2.04e-005 2.242580 0.28788
100 1 7.92272 7.922750 4.41e-006 8.952939 0.13003

V = 0,B = 1
1 0 0.451148 0.451148 8.06e-007 0.451148 8.06e-007
1 0.01 0.447594 0.447595 7.77e-007 0.449789 0.00490
1 1 0.310331 0.310331 6.72e-008 0.362759 0.16894
1 100 0.0671734 0.067173 9.04e-007 0.074849 0.11426

V = 1,B = 0
1 0 0.451148 0.451148 8.06e-007 0.451148 8.06e-07

0.01 0.447573 0.447561 2.55e-005 0.450233 0.00594
0.1 0.420478 0.420481 7.89e-006 0.442321 0.05194
1 0.311185 0.311187 6.24e-006 0.384463 0.23547
10 0.174126 0.174132 3.35e-005 0.224257 0.28790
100 0.0792157 0.079227 0.000149 0.089529 0.13019

5.3.2 Upscaling periodic case

In the periodic case, if βH is used, the upscaled fluxes fH are as accurate as in the

layered case for all cases with B = 0, 1 and V = 0, 1. However, the fluxes fg
H are not in

very good agreement with fh. See Table 3.

5.3.3 Upscaling heterogeneous case

We consider isotropic and anisotropic variants. In the latter case, (K2)ij = 5(K1)ij .

Results are, respectively, in Table 4, and in Table 5. It can be seen from Table 4 that

the use of βH gives significantly better results than the use of βg
H . In particular, when

comparing the results for β = 0 to those for β 6= 0, we see that the fluxes fH are, at

least for B1 and B2, quite close to fh. In the non-isotropic case the results of non-Darcy

upscaling appear in better agreement than those with Darcy case.

5.3.4 Correlation between βH and KH

Our last result answers a natural question, and let B = 0 and β0 = 1. Let us be given a

fine grid heterogeneous Kh such as in Figure 9, c). After KH and βH(α) are computed,

the questions is: for a fixed α, is there any correlation between βH(α) and KH ?

The answer is illustrated in Figure 15 and it appears to suggest a mild correlation

βH ≈ c(KH)s where s < 0 and |s| is small, and which is qualitatively independent of

β0 or α.
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Table 4 Results for heterogeneous, isotropic case. Upscaling to 3x3 and 6x6; only interesting
cases shown. Throughout V = 0.

BC D β0 fh fH |
fh−fH

fh
| f

g

H
|
fh−f

g
H

fh
|

B1 1 0 32.5748 32.350697 0.0068809674 32.350697 0.00688
B2 1 0 51.3847 51.344242 0.00078773182 51.344242 0.00078773182
B3 1 0 17.8536 13.981838 0.21686269 13.981838 0.21686269

B = 0 upscaling to 3x3

B1 1 0.01 8.30372 8.292560 0.0013440962 8.535338 0.02789
1 1 0.98079 0.980768 2.26e-005 0.984167 0.0034434907
1 100 0.0998039 0.099805 9.14e-006 0.099840 0.00036680035

B1 0.01 1 0.0830359 0.082925 0.0013346016 0.085353 0.027909566
1 1 0.98079 0.980768 2.26e-005 0.984167 0.0034434907
100 1 9.98054 9.980541 8.34e-009 9.984043 0.0003509255

B = 1 upscaling to 3x3

B1 1 0.01 16.4825 16.581159 0.0059877337 16.736875 0.015435089
1 10 0.771172 0.788014 0.021839215 0.758147 0.016889485
1 1 2.36765 2.416472 0.020619331 2.335706 0.013492875
1 100 0.246165 0.251634 0.022216664 0.241736 0.017991781
10 1 7.71176 7.880148 0.0218355 7.581472 0.016894391

B2 1 0.01 8.46364 8.392461 0.0084098349 8.980445 0.061061964
1 1 0.981007 0.980862 0.00014691914 0.989225 0.0083772249
1 100 0.0998052 0.099805 4.8381498e-006 0.099892 0.00086514693

B = 0 upscaling to 3x3

B3 1 1 0.537621 0.443146 0.17572764 0.445521 0.17131009
1 0.01 4.49917 3.685097 0.18093908 3.846547 0.14505487
1 100 0.0548129 0.045192 0.17552435 0.045217 0.17507379

B = 1 upscaling to 3x3

B3 1 0.01 8.90008 7.152788 0.19632361 7.416759 0.16666418
1 1 1.28143 1.047498 0.18255851 1.043956 0.18532221
1 100 0.133437 0.109215 0.18152499 0.108140 0.18958172

B = 0 upscaling to 6x6

B1 1 0.01 8.30372 8.296412 0.00088023584 8.525850 0.0267505
1 1 0.98079 0.980768 2.1964034e-005 0.984003 0.0032759738
1 100 0.0998039 0.099804 2.4940728e-006 0.099838 0.00033819023

B2 1 0.01 8.46364 8.391858 0.0084810113 8.933469 0.055511652
1 1 0.981007 0.980852 0.00015715651 0.988642 0.0077834603
1 100 0.0998052 0.099805 1.6263878e-006 0.099885 0.00080476623

Table 5 Heterogeneous case 30x30 with anisotropy ratio 5 upscaled to 3x3. Throughout B =
0,V = 0.

BC D β0 fh fH |
fh−fH

fh
| f

g

H
|
fh−f

g
H

fh
|

B1 1 0 34.8733 33.689881 0.033933817 33.689881 0.033933817
B2 1 0 243.981 246.780723 0.011473481 246.780723 0.011473481
B3 1 0 24.5257 18.026847 0.26498012 18.026847 0.26498012
B1 1 0.01 8.32665 8.305207 0.0025747009 8.586365 0.031191334

1 1 0.980837 0.980788 4.967377e-005 0.984753 0.0039928307
1 100 0.0998053 0.099805 3.2948047e-007 0.099846 0.00041092264

B2 1 0.01 9.63034 9.625004 0.00055404447 9.776467 0.015173625
1 1 0.996125 0.996118 6.3406493e-06 0.997739 0.0016202148
1 100 0.0999578 0.099934 0.00023912392 0.099977 0.00019552109

B3 1 0.01 4.71649 3.821925 0.18966706 3.988913 0.15426174
1 1 0.540639 0.444926 0.1770378 0.447171 0.17288422
1 100 0.0548442 0.045206 0.1757355 0.045233 0.17524023
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Fig. 12 Data for upscaling heterogeneous case to 3x3 grid. First row: original Kh (isotropic)
and upscaled permeabilities KH (nonisotropic). Second row: upscaled β1,H(1), β2,H(1) for
β0 = 1e2 for B = 0 (left) and B = 1 (right).
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Fig. 13 Upscaling heterogeneous case to 3x3 grid with B3 boundary conditions: pressure
contours for β0 = 100, B = 0. Far left: Kh. Left: fine grid solution ph, middle: pH . Right: p
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Fig. 14 Upscaling heterogeneous case to 6x6 grid with B3 boundary conditions: pressure
contours for β0 = 0 (top), and β0 = 1. Throughout B = 0. Far left: Kh and H. Left: fine grid
solution ph, middle: pH . Right: p
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This may indicate why several authors report on different correlations between

measured K and β; our calculations show that the computational correlations appear

to depend on the scale at which they are measured.
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Fig. 15 Scatter-plot of βH(α) vs KH for α = 1 for heterogeneous case.

6 Conclusions

In this paper we have addressed the issue of upscaling non-Darcy flow driven by bound-

ary conditions, where a simple quadratic model of velocity parametrized with a positive

coefficient β and conductivity K extends the linear Darcy case. Given Kh, βh at fine

scale h, the approach is to determine KH , βH . Our method extends the one for Darcy

case [14]. The resulting upscaled coefficient βH is a mildly varying map which supplies

an anisotropic correction to the original coefficient from fine scale. We presented the

numerical method, the upscaling procedure, and numerical results which demonstrate

the accuracy of the method. Some simple variants of the procedure which may be less

computationally cumbersome but are also less accurate have been also proposed. Val-

ues of βH appear correlated to some function(s) of KH ; this appears independent of

the correlation at fine scale.

There remain open questions as concern an appropriate anistropic model of non-

Darcy correction, other non-Darcy models, fracture systems, as well as upscaling around

wells. These are topics of future work.
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7 Appendix

7.1 Nonlinear solver

Here we discuss the solution of the nonlinear discrete system that arises from (22),

some imposed boundary conditions, and the implicit relation (31). In summary, we

solve for ph the system

∇h · TV
h∇ph = 0. (53)

This system of equations is nonlinear and, if V = 1, it additionally requires a local

internal iteration to resolve the local implicit relationships (29), (30). The latter is not

required for V = 0.

Consider first V = 0. One can compute explicitly uh = T0(ph) pointwise from (31),

if only ph is known. Since ph is, of course, unknown, we have to solve (53) by iteration.
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As initial guess p
(0)
h one can use the Darcy pressures which can be found by solving

a linear counterpart of (53) setting β = 0. Or, for large β, additionally one may try

the method of continuity in which one starts with β = 0 and then iterates, gradually

increasing β to the desired magnitude, thereby obtaining a better initial guess.

It appears very natural to solve (53) using successive substitutions iterating on

(31). Unfortunately, for small h and large heterogeneities, this simple iteration may

have trouble converging and/or is very slow. The only reasonable alternative is to use

Newton’s method. We set it up as follows.

Given an initial guess p
(0)
h , iterate for n = 0, 1, . . . until convergence

(∗) compute u
(n)
h = TV

(

Kh, βh, |u(n)
h |,u(n)

h

)

∇hp
(n)
h

compute residual R(n) = ∇h · u(n)
h

compute Jacobian J(n) =
∂

∂ph
R(n)

advance p
(n+1)
h = p

(n)
h − (J(n))−1R(n)

In this algorithm, the step (∗) can be executed pointwise analytically, if V = 0. The

residual calculations of R(n) are quite simple as we only have to calculate the current

∇h ·u(n)
h . Jacobian calculations of J(n) are done with the help of (12). Overall however,

the method converges generally quite fast, even for large β.

Consider now V = 1. Now the step (∗) cannot be executed exactly and, in order to

resolve (21), we compute an iteration-lagged approximation ũ
(n)
h to u

(n)
h via

ũ
(n)
h = TV

(

Kh, βh, |u(n−1)
h |, ũ(n)

h

)

∇hp
(n)
h .

This introduces a mild inconsistency in the residual and Jacobian calculations. How-

ever, the Newton iteration converges at least as fast as the one for V = 0. If the

iteration is run under strict convergence tolerance criteria, then one can assume that

ũ
(n)
h ≈ u

(n)
h . Note that due to a different formulation ph,uh obtained with V = 0, 1

are (somewhat) different, see results shown in Section 5.

Our experience with performance of the Newton solver for variants V = 0, 1, models

B = 0, 1 of βh and values of Kh can be summarized as follows. The solver needs more

iterations in the case of strong anisotropy especially if β is correlated with K. Next, one

should formulate the stopping criteria very carefully: in terms of simple mass-balanced

residual norms, the iteration appears not to be making much progress, while pressure

and velocity values have not yet converged. As concerns velocity variants, variant V = 0

requires more iterations to converge than V = 1, especially for strong anisotropy ratio

and large uncorrelated heterogeneities; this is likely caused by V = 1 being capable

of carrying more information. The opposite appears true for small correlation lengths,

for example for the periodic fissure problem (see Section 5) and is probably due to the

inconsistency of residuals discussed above playing more substantial role in the absence

of other difficulties.

7.2 Mixed FE derivation of (25)

Here we use mixed finite elements of type RT[0] on a rectangular grid to derive (25);

we focus on details leading to (26). Such derivation was done for Darcy’s flow in [46].
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The non-Darcy flow equations were discretized using mixed FE in [12,36] but, to our

knowledge, the use of quadrature and identification with CCFD discussed here has not

been carried out. The importance of this derivation is that it extends the convergence

results of mixed FE to CCFD formulation; on the other hand, it uncouples the saddle

point formulation of mixed FE [46]. For notation see also [6].

First consider the weak formulation of (1), (4) complemented by no-flow boundary

conditions (33) with ΓN ≡ ∂Ω. Let (W,V) = (L2(Ω), {v ∈ H(div;Ω) : v · ν|ΓN
= 0}).

The weak solution (p,u) ∈ (W,V) satisfies the system obtained by by multiplying (4),

(1) by test functions w ∈W,v ∈ V and integrating by parts over Ω

∫

Ω

∇ · uw =

∫

Ω

qw, ∀w ∈W, (54)

∫

Ω

K−1u · v +

∫

Ω

β|u|u · v =

∫

Ω

p∇ · v, ∀v ∈ V (55)

The mixed FE solution (ph,uh) ∈Wh×Vh whereWh ⊂W,Vh ⊂ V. The functions

in Wh are piecewise constant on each cell; a test function ξij ∈ Wh is a characteristic

function of the cell Ωi,j so that ph(x, y) =
∑

ij ξij(x, y)pij . Recall that the functions

vh ∈ Vh from space RT[0] [43] are piecewise linear in one coordinate direction and

piecewise constant in the others and can be written symbolically as a tensor product

RT[0] = P1,0 × P0,1 [6][46,43]. Here Pq,r(S) denotes a space of polynomials of degree

q in x1 and of degree r in x2 which are variables over a subset S ⊂ IRd. We have

uh(x, y)|Ωij
=
(

ψi−1/2,j(x)ui−1/2,j + ψi+1/2,j(x)ui+1/2,j ,

φi,j−1/2(y)vi,j−1/2 + φi,j+1/2(y)vi,j+1/2

)

,

with the basis functions ψi+/−1/2,j(x), φi,j+/−1/2(y) in P1,0 and P0,1, respectively.

Note that ψi+1/2,j(x) is supported only on Ωij ∪Ωi+1,j .

It is also useful to consider the value of uh on the edge Ei+1/2,j,k = ∂Ωij∩∂Ωi+1,j .

By definition of uh, we are guaranteed the continuity of its normal component (uh)1
but not of its tangential component (uh)2 across that edge. The discrete solution

(ph,uh) satisfies an equation analogous to (54) in which

∫

Ω

∇ · uhwh =

∫

Ω

qwh, ∀wh ∈Wh,

and using wh = ξij one derives pointwise

ui+1/2,j − ui−1/2,j + ui,j+1/2 − ui,j−1/2 = qij △ xi △ yj , (56)

which can be interpretted as (22) when q ≡ 0. The discrete analogue to momentum

equation (55) is

∫

Ω

K−1
h uh · vh +

∫

Ω

βh|uh|uh · vh =

∫

Ω

ph∇ · vh, ∀vh ∈ Vh (57)

forming a linear saddle-point system along with (22).

Now, as shown in [46] for Darcy flow, the integrals in (57) can be replaced by

their numerical approximations, namely, a combination of trapezoidal and midpoint

quadrature rules, at the expense of introducing a quadrature error of higher order than

approximation order. In this way the discrete velocity values are identified with those in
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CCFD formulation; the numerical integration approach entirely decouples the original

saddle-point system and allows to solve a symmetric non-negative-definite system in

ph unknown only. We notice that this is possible for diagonal K.

We follow the same idea here for non-Darcy flow. Use the test function vh =

(ψi+1/2,j , ξjk) ∈ Vh and integrate over its support Ωij ∪ Ωi+1,j , with the trapezoidal

rule applied to integration in x1 direction and the midpoint rule applied in y1 directions,

which we denote by subscripts (TM).

The integration rules used below for products are all of second order accuracy with

respect to the size of domain: trapezoidal
(

∫ b

a
f(t)g(t)dt

)

T
= (b− a)

f(a)g(a)+f(b)g(b)
2 ,

the midpoint rule
(

∫ b

a
f(t)g(t)dt

)

M
= (b − a)f(a+b

2 )g(a+b
2 ). Additionally, we define

the product P rule as
(

∫ b

a
f(t)g(t)dt

)

P
= (b−a)f(a+b

2 )
g(a)+g(b)

2 . One can show using

standard numerical analysis that the P rule has (at least) the same order of accuracy

as the trapezoidal rule.

Using the (TM) rule for the first integral on left hand side, and integrating directly

the right hand side of (57) we obtain expressions as in Darcy’s case, since vh equals

zero on both edges Ei−1/2,j , Ei+3/2,j

(∫

Ω

K−1uh · vh

)

TM

=

(

∫

Ωij

K
−1
1,ijuh · vh

)

TM

+

(

∫

Ωi+1,j

K
−1
1,i+1,juh · vh

)

TM

= △yjT
−1
1,i+1/2,jui+1/2,jk,

∫

Ω

ph∇ · vh =

∫

Ωij

pij∇ · vh +

∫

Ωi+1,j

pi+1,j∇ · vh = △yj(pij − pi+1,j).

The new and most important element in the non-Darcy case is handling of the

second term on the left side of (57). Using the (TM) quadrature rule over Ωij ∪Ωi+1,j ,

we get

(∫

Ω

β|uh|uh · vh

)

TM

= βij

(

∫

Ωij

|uh|uh · v
)

TM

+ βi+1,j

(

∫

Ωi+1,j

|uh|u · v
)

TM

(58)

Consider one of the integrals on the right side, which gives exactly

(

∫

Ωij

|uh|uh · v
)

TM

=
△xi △ yj

2
|(uh)+ij |u1,i+1/2,j , (59)

and which is consistent with V = 2 in (26) and the following expression

(

T
−1
1,i+1/2,j +

1

2

(

△xiβ1,ij |uh|+ij + △xi+1β1,i+1,j |uh|−i+1,j

)

)

u1,i+1/2,j (60)

= pi,j − pi+1,j .

Since each |uh|+ij , |uh|−ij depends on u1,i+1/2,j and on other velocity degress of freedom,

as mentioned before, the solution u1,i+1/2,j cannot be obtained analytically or even

by local iteration.
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This issue can be somewhat rectified by the use, instead of the discontinuous values

|uh|+ij , |uh|−ij in (60), of their average |ūh|ij as in V = 1 leading to

(

T
−1
1,i+1,j +

1

2
(△xiβ1,ij + △xi+1β1,i+1,j)|

(uh)+ij + (uh)−i+1,j

2
|
)

u1,i+1/2,j

= pi,j − pi+1,j . (61)

This introduces an additional error which is however readily seen to be of order not

exceeding that of numerical integration, via expansion, for any z,
√

1 + z = 1 + z
2 −

1
8z

2 +O(z3). Further details will not be provided as they are not essential.

Now we discuss V = 3. This arises if in (58) one uses the (PM) integration rule

instead of (TM),

(

∫

Ωij

|uh|uh · v
)

PM

=
△xi △ yj

2
|(uh)ij |u1,i+1/2,j

which provides the following alternative to (27),

(

T
−1
1,i+1/2,j +

1

2

(

△xiβ1,ij |(uh)ij | + △xi+1β1,i+1,j |(uh)i+1,j |
)

)

u1,i+1/2,j

= pi,j − pi+1,j .

Since this formulation leads to an excessively wide stencil, it is not pursued here.

Finally we interpret V = 0. It arises if instead of (7) one discretizes (8). Alter-

natively, V = 0 can be seen as an approximation to V = 1 in which the tangential

components of velocity are ignored.
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