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We study a two-dimensional XXZ-Ising model on a square-hexagon �denoted for simplicity by 4–6� lattice
with spin 1/2. The phase diagram at zero temperature is discussed, where five states are found, two types of
ferrimagnetic states, two types of antiferromagnetic states, and one ferromagnetic state. To solve this model,
we have mapped onto the eight-vertex model with union Jack interaction term, and it was verified that the
model cannot be completely mapped onto eight-vertex model. However, by imposing an exact solution con-
dition, we have found the region where the XXZ-Ising model on 4–6 lattice is exactly soluble with one free
parameter, particularly for the case of symmetric eight-vertex model condition. In this manner we have ex-
plored the properties of the system and have analyzed the interacting competition parameters which preserve
the region where there is an exact solution. Unfortunately the present model does not satisfy the free fermion
condition of the eight-vertex model, unless for a trivial solution. Even so, we are able to discuss the critical
point region, beyond the region of exact resolvability.
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I. INTRODUCTION

Recently, frustrated magnetic systems have attracted a lot
of attention due to their rich properties. Such systems have
several phase diagrams displaying a number of unusual
quantum phases �1,2�. Frustrated interactions are exhibited
experimentally in inelastic neutron scattering. Therefore the
two-dimensional magnetic lattice has become a challenge for
theoretical investigation. After Onsager’s �3� solution for the
square two-dimensional Ising lattice, other solutions for
regular two-dimensional lattices, such as triangular �4,5�,
honeycomb �6�, kagome �7� lattice, and others, were ex-
plored in several works and their importance in statistical
physics has encouraged physicists to search for a group of
completely solvable models. The problem concerning the ex-
act solution and the critical behavior of two-dimensional
models were investigated by Fan and Wu �8,9�. In those
works the free fermion �FF� condition and the free fermion
approximation were studied in detail and the relations of
Boltzmann weights for obtaining exact solvable models were
established. In many situations where the FF condition is not
satisfied completely it is possible to find restricted values of
the parameters for which one can obtain a good approxima-
tion of the model. This is the case investigated by Tang �10�,
where the critical coupling of mixed Ising spin 1/2 with the
arbitrary Ising spin S was studied using the free fermion
approximation.

Since then, many theoretical investigations were devel-
oped, such as the Ising-Heisenberg kagome lattice �11,12�,
the quantum square-kagome antiferromagnetic lattice �13�,
the doubly decorated Ising-Heisenberg model �14�, and the
mixed-spin Ising model on a decorated square lattice with
two different kinds of decorated spins on horizontal and ver-
tical bonds �15�. Another exactly solvable Ising-model lattice
known as square hexagon �4–6� was considered by Lin and
Wang �16�. On the other hand different 4–6 lattices as a
special case of the 4-8 lattices �17� were studied by Oitmaa
and Keppert �18�, where the solution for the Ising model
with spin 1/2 was solved fully mapping into an eight-vertex

model. It is remarkable that, the free fermion condition for
the Boltzmann weights is satisfied identically in these mod-
els and the exact critical point can be obtained so that, the
model falls within the standard Ising-model universality
class.

Several real systems motivate the investigation of these
kinds of lattices, such as the recently discovered two-
dimensional magnetic materials Cu9X2�cpa�6 ·xH2O
�cpa=2-carboxypentonic acid; X=F, Cl, or Br�, where the
Cu spins are situated on the triangular kagome lattice �19�
with Heisenberg interaction type. Liquid crystal networks
composed of pentagonal, square, and triangular cylinders
�20�. Another recent investigation was about the crystal
structure of solvated �Zn�tpt�2/3�SiF��H20�2-�MeOH�� �tpt
=2,4,6-tris�4-pyridyl�-1,3,5-triazine� networks with the
�10,3�-a topology �21�.

The present paper is organized as follows. In Sec. II we
present explicitly the two-dimensional Hamiltonian of
XXZ-Ising model on the 4–6 lattice. In Sec. III we study the
phase diagram at zero temperature, showing some interesting
phases. Section IV is devoted to the study of the exact solv-
able condition of the model, which is obtained by mapping
onto symmetric eight-vertex model �SEVM� and the free fer-
mion condition. Finally in Section V we give our conclu-
sions.

II. TWO-DIMENSIONAL XXZ-ISING MODEL
ON 4–6 LATTICE

In this paper we discuss the two-dimensional XXZ-Ising
model on a square-hexagon �4–6� lattice, displayed sche-
matically in Fig. 1. A single line represents the Ising interac-
tion, whereas a double line represents the XXZ interaction. A
similar lattice was discussed by Oitmaa and Keppert �18�,
where the interaction terms of the Hamiltonian were Ising
interaction types �18� only.

The Hamiltonian of XXZ-Ising model on 4–6 lattice given
in Fig. 1�a� can be expressed by
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H����,�S��� = �
i

JSi�i + �
�i,j	

�J�Si
xSj

x + Si
ySj

y� + JzSi
zSj

z� ,

�1�

where the first summation runs over all sites involving the
Pauli operator � with two possible values �1, while the
second summation with �i , j	 runs over nearest neighbor of
whole lattice containing the S� spin-1/2 operators with �
= �x ,y ,z�.

III. PHASE DIAGRAM

The phase diagram at zero temperature for the two-
dimensional XXZ Ising on 4–6 lattice is analyzed by com-
puting the ground-state energy as a function of the model
parameters. For each unitary cell �Fig. 1�b��, we diagonalize
the square with the Heisenberg interaction coupling since the
particles on each vertex of the square do not interact with
squares of the other unitary cells. Fixing the values of spins
��1 ,�2 ,�3 ,�4� in Fig. 1�b� we have 16 eigenvalues for each
unitary cell. We use the rotation operator and spin inversion
symmetry related to the spins ��1 ,�2 ,�3 ,�4�: �i� �+, + , + ,
+�, �ii� �+, + , + ,−�, �iii� �+, + ,− ,−�, and �iv� �+,−, + ,−�.
These configurations are discussed in detail as follows.

A. Configuration {+, + , + ,+}

Let us start by discussing the configuration �+, + , + ,+� of
the energy levels. The square with Heisenberg coupling is
the quantum Hamiltonian part of Eq. �1�. To obtain the ei-
genvalues we need to diagonalize the second term of this
Hamiltonian for each unitary cell, obtaining 16 eigenvalues.
From that set of eigenvalues, we are able to find some energy
levels that could become the ground-state energy for a given
values of the parameters of Hamiltonian �1�. Full eigenvalues
of this configuration are given in the first column of Table I,
while the second column gives the degeneracy of each eigen-
values.

One possible lowest eigenvalue is �FM=4Jz+4J for J�0
and its corresponding eigenstate is represented by


FM	 = �++++

++++
� . �2�

With large sign �+� �inner squared of signs� we represented
the Heisenberg interaction particles with spin S, whereas by

the corner small signals �+� we indicated the Ising interaction
particles with spin �. Since all spins are parallel, this state
corresponds to the ferromagnetic state �
FM	�.

Another possible lowest eigenvalue is given by �AF1
=4Jz−4J for �J�0� and its corresponding eigenstate can be
represented as


AF1	 = �+−−+

+−−+
� �3�

using the same notation as above. The magnetization for the
unitary cell is null; therefore this state corresponds to an
antiferromagnetic state �
AF1	�.

Two further possible ground-state energies are �FI�

= �6J, for which in the square Heisenberg interaction the
configuration becomes


FI�	 = �
r=0

3

��R�r��++�

�−+�
� , �4�

where R represents the rotation operator acting only on
Heisenberg interaction particles with spin S. Each rotation is
of 	

2 , around the axis perpendicular to the plane of lattice.
The magnetization for the unitary cell is neither saturated;
therefore, these states are known as ferrimagnetic. The ferri-
magnetic state 
FI+	 has magnetization 3/4 and the ferrimag-
netic state 
FI−	 has magnetization 1/4.

B. Configuration {+,− , + ,−}

Another configuration which may eventually become the
ground-state energy could be included in the configuration,

� � �

� � � � � �

σ1

σ1

σ2

σ2σ3
σ3

σ4 σ4

K

L

MJ

(J, , Jz)

S1

S2

S3

S4

FIG. 1. Schematic representation of the two-dimensional XXZ-Ising model on 4–6 lattice. In �a� we represent by double line the XXZ
interaction whereas with single line we represent the Ising interaction among particles with spin Si and �i. In �b� we illustrate each decorated
cell displayed in �a�. In �c� we represent the transformation of unitary cell �b� into an effective square Ising model with nearest interaction
parameter K, next-nearest interaction parameter L, and quartic interaction parameter M.

TABLE I. The energy levels of square Heisenberg coupling for
the configuration �+, + , + ,+�.

Energy �+, + , + ,+� Degeneracy

�6J 1

�2J 3

4Jz�4J 1

−4Jz 1

0 3

−2Jz�2Jz
2+8J2 1
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namely, �+,−, + ,−�. To find the eigenvalues of this configu-
ration, we need to diagonalize a matrix of dimension 16

16. This matrix can be obtained by fixing the magnetiza-
tion mI=�1+�2+�3+�4. The matrix then becomes blocked
diagonal matrices, with the largest block matrix of 6
6.
This block matrix can even be reduced due to rotation sym-
metry simply to a matrix of dimension 3
3, which reads

Hr = �4J − 4Jz 2J 0

2J 0 2J

0 2J − 4J − 4Jz
� . �5�

The eigenvalues of the reduced matrix Hr can be ex-
pressed as the roots of a polynomial of degree three, obtained
from det�Hr−��. The roots of the cubic equation read

� j = − 8
3 �P1 cos�� j� − Jz� , �6�

with j=0,1 ,2, whereas P1 and � j are defined by

P1 = Jz
2 + 9J2, �7�

� j =
1

3
cos−1� Jz

3

P1
3� +

2	j

3
. �8�

The corresponding eigenstate is written as below,


AF2	 = b1�
r=0

3

Rr� +++−

−−−+
� + �1 + b2R��++−−

−−++
� , �9�

and the coefficients of Eq. �9� are given explicitly by

b1 = 1
6J �2P1 cos��1� + Jz + 3J� , �10�

b2 = 4
3Jb1�P1J cos��1� − Jz� − 1. �11�

Here, there is only one antiferromagnetic state 
AF2	
which could be the ground state. We could say that this state
is a frustrated state �22�. Particularly this lowest energy level
is given by the eigenvalue �1=− 8

3 �P1 cos��1�−Jz�.
All 16 energy levels presented in Table II can easily be

obtained unless of those eigenvalues obtained from a re-
duced 3
3 matrix.

C. Configurations {+, + ,− ,−} and {+, + , + ,−}

The remaining configurations are �+, + ,− ,−� and �+, + ,
+ ,−�. All these states have higher energy than the lowest
energy states discussed above. In the first column of Table

III, we explicitly give the eigenvalues of the configuration
�+, + ,− ,−� and the second column indicates the degeneracy
of each eigenvalue. The energy levels for the configuration
�+, + , + ,−� are given in the third column and in the fourth
column the degeneracies of the energy are given.

The energy levels displayed in Table III use additional
functions to express the energy level in a compact form.
These functions are defined as follows:

� j = 1
3cos−1� 5

32� + 2	j
3 , �12�

P2 = Jz
2 + 10J2 + 2J4Jz

2 + 25J2, �13�

A� =�3 �
2Jz

P2
��Jz

2 + 4J2� + 12J2 − P2
2, �14�

B� = 2Jz
2 + 5J2 � 2J6J2 + Jz

2. �15�

D. Zero temperature phase diagram

The ferromagnetic state �
FM	� given in Eq. �2� for Jz

�0 is limited to 2
5Jz�J�0. This state is depicted as orange

region in Fig. 2. There is also an antiferromagnetic state
�
AF1	�, represented by Eq. �3�, for Jz�0, which is restricted
to the interval 0�J�− 2

5Jz and is displayed in Fig. 2 as a
gray region. It is worth noticing that the state 
AF1	 behaves
as a ferromagnetic for both Ising interaction particles with

TABLE II. The energy levels of the square Heisenberg coupling
for the configuration �+,−, + ,−�, with j=0,1 ,2.

Energy �+,−, + ,−� Degeneracy

0 3

4Jz 2

�25J 2

�2J 2

− 8
3 �P1 cos�� j�−Jz� 1

TABLE III. The energy levels of the square Heisenberg cou-
pling for the configurations �+, + ,− ,−� and �+, + , + ,−�, with j
=0,1 ,2. The new parameters included in these eigenvalues are de-
fined in Eqs. �12�–�15�.

Energy �+, + ,− ,−� Degeneracy Energy �+, + , + ,−� Degeneracy

4Jz 2 0 2

�2J�2J 2 �2J 1

0 1 4Jz�2J 1

−4Jz 1 −2Jz�B+ 1
Jz

4 − P2�A+ 1 −2Jz�B− 1
Jz

4 + P2�A− 1 �
4J
3 �4 cos�� j�−1� 1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-8

-6

-4

-2

0

2

4
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8
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J

|FM�

|AF1�

|AF2�

|FI−�

|FI+�

FIG. 2. �Color online� The phase diagram at zero temperature as
a function of Jz and J.
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spin � and Heisenberg interaction particles with spin S, but
with antiparallel orientation between them. Under the same
conditions we also have two types of ferrimagnetic states
�FI� which are explicitly given by Eq. �4�: for Jz�0, the

FI+	 is the ferrimagnetic state with magnetization 3/4, lim-
ited to 2

5Jz�J0.430 675 03Jz, whereas the 
FI−	 corre-
sponds to the ferrimagnetic state with magnetization 1/4, re-
stricted by −0.430 675 03JzJ�− 2

5Jz. The value
0.430 675 03 is expressed numerically because in this situa-
tion we have a cumbersome transcendental equation, result-
ing from a root of a cubic equation �see Eq. �6��. These
regions are illustrated in Fig. 2 as brown �
FI+	� and cyan
�
FI−	� regions. These ferrimagnetic states are invariant under
whole exchange of spin orientation �� and S�.

The antiferromagnetic state 
AF2	 is present for arbitrary
values of J when Jz�0, whereas for Jz�0 this state is lim-
ited by 
J
�−0.430 675 03Jz, as illustrated in Fig. 2. We re-
mark that in this case we have an antiferromagnetic interac-
tion for both Ising and XXZ interaction particles.

We verify that there are five different states at zero tem-
perature, as illustrated in Fig. 2. It is worth commenting that
this model has a multicritical point at zero temperature,
where the five states converge at J=Jz=0.

IV. MAPPING INTO AN EXACTLY SOLVABLE MODEL

To find a solution of Hamiltonian �1�, one possibility is to
map into a vertex model, which satisfies the exactly solvable
condition of the eight-vertex model �23�. A similar mapping
also was considered for studying the classical spin Ising
model on 4–6 lattice; thus this model was solved exactly
�18� by fully mapping into the eight-vertex model. However
when quantum interaction term is included, solution be-
comes possible only for specific values of the parameters.

To study the thermodynamics of the model, we have writ-
ten the partition function of the decorated XXZ-Ising model
on 4–6 lattices, given by Hamiltonian �1� which reads as

Z��� = �
���=�1

tr�S���e−�H����,�S���� . �16�

After taking the trace over operators �S�� we have trans-
formed the decorated XXZ-Ising model into an effective
Ising model, with next-nearest and quartic interaction param-
eters, whose effective Hamiltonian may be expressed in gen-
eral by

H̃����� = K�
�i,j	

�i� j + L�
�i,j�

�i� j + M �
all

square

�1�2�3�4,

�17�

with K being the nearest-neighbor interaction, L being the
next-nearest-neighbor interaction parameter, and M being the
quartic interaction parameter. This transformation is also rep-
resented schematically in Fig. 1�c�. The effective Ising model
is the so-called “union Jack” lattice, which is an exactly solv-
able model �23�.

Therefore the corresponding partition function of the ef-
fective Ising-model lattice is given by

Zeff = f �
���=�1

�e−�H̃������ . �18�

Using the Boltzmann weights displayed in Fig. 3, these
are standard notations in the eight-vertex model �24�. Thus
we are able to map Hamiltonian �1� into Eq. �17� where their
parameters are related by the following expressions:

f = �w1w2w3
2w5

4�1/8, �19�

K = −
1

8�
ln�w1

w2
� , �20�

L = −
1

8�
ln�w1w2

w3
2 � , �21�

M = −
1

8�
ln�w1w2w3

2

w5
4 � . �22�

Performing some algebraic manipulation we obtain cum-
bersome expressions for the associated Boltzmann weights
of Hamiltonian �1�. These large expressions are written using
some additional functions which enable us to obtain a com-
pact form. Those additional functions were already defined
in Eqs. �7�, �8�, and �12�–�15�,

w1 = 3 + e4�Jz + 8 cosh3�2�J� + 2e−4�Jz cosh�4�J�

+ 2e−4�Jz cosh�2�Jz
2 + 8J2� , �23�

w2 = 3 + 2e−4�Jz + 4 cosh�2�J� + 4 cosh�25�J�

+ �
j=0

2

exp�−
8

3
��P1 cos�� j� − Jz�� , �24�

w3 = 1 + e4�Jz + 2e−4�Jz + 8 cosh�22�J�cosh�2�J�

+ 2 exp��
4 Jz��e�P2 cosh��A+� + e−�P2 cosh��A−�� ,

�25�

w5 = 2 + 2�
j=0

2

cosh�4�J

3
�4 cos�� j� − 1�� + 2e2�Jz�cosh��B+�

+ cosh��B−�� + 2 cosh�2�J��1 + e−4�Jz� . �26�

The other Boltzmann weights can be obtained using the
symmetry rotation. Our model satisfies the following identi-
ties for arbitrary parameter values:

w3 = w4, w5 = w6 = w7 = w8. �27�

In general the two-dimensional XXZ-Ising model on 4–6
lattices has no exact solution which fully maps onto the
eight-vertex model, but it may be possible to find some re-

w1 w2 w3 w4 w5 w6 w7 w8

FIG. 3. The eight-vertex configurations �24�. Inversion of all
spins corresponds to the same vertex.
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stricted solutions imposing the exact solvable condition of
the eight-vertex model. Therefore we will analyze the region
where the model may have an exact solution.

A. Exactly solvable condition

An extensive study of the exactly solvable models is
given in Ref. �24�. On the other hand, recently two-
dimensional lattice models were solved mapping onto the
eight-vertex model �11,12�. In general the mapping of our
model into the eight-vertex model for arbitrary parameters of
Hamiltonian �1� is not fully mapped onto the eight-vertex
model. In what follows we will discuss these restricted map-
ping, where the model becomes solvable.

1. Symmetric eight-vertex model condition

The first branch of a possible exact solution could be ob-
tained when the Boltzmann weights satisfy the so-called
SEVM condition �23�, where we must have the following
relations:

w1 = w2, w3 = w4, w5 = w6, w7 = w8. �28�

Our model satisfies all the relations given by Eq. �28� except
the first one �see Eq. �27��.

Imposing the first relation of Eq. �28� we have one pos-
sible solution with restricted parameters. In Fig. 4�a� we dis-
play the restricted parameter J as a function of the parameter
Jz, where the exact solution under the SEVM condition is
satisfied. Therefore we have shown that, for one free param-
eter, Hamiltonian �1� can be exactly solved; the transcenden-
tal equation involves a complicated relation among Jz and J.
Therefore we are not able to invert one of the parameters
explicitly as a function of the other one, but even so, we can
invert numerically. In the limit of large values of Jz and J, we
have the asymptotic limit where the relation is approximately
given by J= �2.713 579Jz. We also have a trivial solution
when J=0; this corresponds just to a set of noninteracting
square Ising models. For details see Hamiltonian �1�.

2. Free fermion condition

The second candidate for an exact solution is the so-called
FF condition �23� when the following relation,

� = w1w2 + w3w4 − w5w6 − w7w8, �29�

must satisfy the condition �=0.
Unfortunately on imposing the FF condition ��=0�, we

were unable to find a solution for the model given by Hamil-
tonian �1�, except a trivial solution when J=0. In spite of �
becoming a very cumbersome expression when J�0, we are
able to explore its behavior using algebraic software �25�.
Thus we verified that in FF condition � /wmax

2 always has a
positive amount. However, we can note that, when plotted
for small � /wmax

2 , the relation of Jz and J in units of � dis-
plays a wide valley which satisfies the condition � /wmax

2

�1, as depicted in Fig. 4�b�, for � /wmax
2 �10−3, whereas the

gray region corresponds to the condition of � /wmax
2 �10−3.

This means that we can approximate our model to the FF
condition and solve it with good approximation in the whole
region of the valley.

B. Critical line

It is also possible to discuss the critical behavior even
when an exactly solvable condition is not satisfied. For the
first branch solution �SEVM�, the critical condition must sat-
isfy the following relation:

w1 + w3 + w5 + w7 = 2 max�w1,w3,w5,w7� . �30�

Thus in Fig. 5 we display the critical line region as a function
of the parameters J and Jz in units of �, and we represent it
by a blue solid line. The convergence for this case is satisfied
in all critical points 
��
 /wmax

2 �1, with 
��
= 
w1−w2
 and
wmax=max�w1 ,w2�.

The second branch of critical point region is obtained
when we impose the FF condition,

w1 + w2 + w3 + w4 = 2 max�w1,w2,w3,w4� . �31�

In Fig. 5 we display the critical line region as a function of
the parameters J and Jz in units of �, when the case of the
Boltzmann weight w1 is taken as the maximum value. The
red solid line indicates the region where the FF approxima-
tion is valid �
�
 /w1

2�1�, and the red dotted line indicates
the region where 
�
 /w1

2�1. The black solid line displays
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∆ > 10−3w2
max

∆ > 10−3w2
max

∆ < 10−3w2
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FIG. 4. In �a� the exactly solvable condition for SEVM �w1

=w2� is displayed. �b� The FF is imposed and there is no exact
solution. However there is a wide valley where � /wmax

2 �1, particu-
larly we show the region for � /wmax

2 �10−3 as gray region.
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4

8

β
J

βJz

w1 > w2 � � � �

w1 < w2 � � � �

w1 = w2 � � � � � �

FIG. 5. �Color online� The critical point region under FF condi-
tion: red line corresponds to the condition of w1�w2; black lines
represent the condition when w1�w2. Dotted line corresponds to
the region where � /wmax

2 �1. When the SEVM condition is im-
posed, the critical region becomes curve given by the blue line.
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the critical condition region when the w2 is the largest one,
with restriction � /w2

2�1, while the black dotted line repre-
sents the critical region when � /w2

2�1.

V. CONCLUSION

In this work we have discussed some particular solutions
of two-dimensional XXZ-Ising model on a square-hexagon
lattice. The decoration can be considered to be the square
with an XXZ interaction and the interaction terms of the lat-
tice are given by Ising-type coupling. We have discussed the
phase diagram at zero temperature, displaying five different
phases. To study the thermodynamics, imposing the exact
solvable condition, the two parameters used originally were
constrained. In this manner we have obtained a two-

dimensional XXZ Ising on 4–6 lattice with one free param-
eter under the SEVM condition. Imposing the FF condition,
we displayed a wide valley where the model could be con-
sidered to approximately satisfy the FF condition � /wmax

2

�1. We have also discussed the critical condition even when
the exact result condition was not satisfied. This model was
fostered due to the recent discovery of real systems �19–21�
with structures similar to those which we have considered in
this work.
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