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Electroweak radiative corrections to parity-violating electroexcitation of the D
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We analyze the degree to which parity-violating~PV! electroexcitation of theD(1232) resonance may be
used to extract the weak neutral axial vector transition form factors. We find that the axial vector electroweak
radiative corrections are large and theoretically uncertain, thereby modifying the nominal interpretation of the
PV asymmetry in terms of the weak neutral form factors. We also show that, in contrast with the situation for
elastic electron scattering, the axialN→D PV asymmetry does not vanish at the photon point as a consequence
of a new term entering the radiative corrections. We argue that an experimental determination of these radiative
corrections would be of interest for hadron structure theory, possibly shedding light on the violation of Hara’s
theorem in weak, radiative hyperon decays.
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I. INTRODUCTION

The electroweak form factors associated with the exc
tion of theD(1232) resonance are of considerable interes
hadron structure physicists. In the largeNc limit, the (N,D)
form a degenerate multiplet under spin-flavor SU~4! symme-
try @1#, and one expects the structure of the lowest-ly
spin-1/2 and spin-3/2qqq states to be closely related. Th
electroweak transition form factors may provide importa
insights into this relationship and shed light on QC
inspired models of the lowest lying baryons. These form f
tors describeN→D matrix elements of the vector and axi
vector currents@2–4#:

^D1~pD!uVm
3 uN&5D̄1n~pD!H FC3

V

M
gl1

C4
V

M2 pD
l 1

C5
V

M2 plG
3~qlgmn2qnglm!1C6

VgmnJ g5u~p! ~1!

^D1~pD!uAm
3 uN&5D̄1n~pD!H FC3

A

M
gl1

C4
A

M2 pD
l G~qlgmn

2qnglm!1C5
Agmn1

C6
A

M2 qmqnJ u~p! ~2!

where q5pD2p and where the nucleon spinoru(p) and
Rarita-Schwinger spinorDn(pD) are defined as in Ref.@5#.
The form factorsC3

V andC5
Aare theN→D analogues of the

nucleon’s electroweak form factorsF1 andGA . At present,
there exist considerable data on the vector current trans
form factors Ci

V ( i 53 –6) obtained with electromagnet
probes. A comparison with theoretical predictions points
significant disagreement~see Ref.@5# for a tabulation of the-
oretical predictions!. For example, lattice QCD calculation
of the magnetic transition form factor yield a value;30%
smaller than obtained from experiment@6#, and constituent
quark models based on spin-flavor SU~6! symmetry similarly
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underpredict the data@7#. One hopes that additional input, i
tandem with theoretical progress, will help identify the orig
of these discrepancies.

The situation involving the axial vector transition form
factors Ci

A ( i 53 –6) is less clear than in the vector cas
since existing data—obtained from charged curr
experiments—have considerably larger uncertainties than
the vector current channel@8–10#. While QCD-inspired
models tend to underpredict the central value for the a
matrix elements by;30% as they do for the vector form
factors@5,7#, additional and more precise experimental info
mation is needed in order to make the test of theory sign
cant. To that end, an extraction of the axial vectorN→D
matrix element using parity-violating electron scatteri
~PVES! is planned at the Jefferson Laboratory@11#. The goal
of this measurement is to perform a&25% determination for
uq2u in the range of 0.1–0.6 (GeV/c)2. If successful, this
experiment would considerably sharpen the present stat
experimental knowledge of the axial vector transition amp
tude.

In this paper, we examine the interpretation of the p
spective measurement. In a previous work@5#, the impact of
nonresonant backgrounds was studied and found no
present a serious impediment to the extraction of theCi

A .
Here, we compute the electroweak radiative correctio
which arise fromO(aGF) contributions to the PV axial tran
sition amplitude. We correspondingly characterize the re
tive importance of the corrections by discussing the ratioRA

D

of the higher-order to tree-level amplitudes. This ratio
nominallyO(a), so that one might naively justify neglectin
radiative corrections when interpreting a 25% determinat
of the axial term. However, previous work on the axial ve
tor radiative correctionsRA

p to PV elastic electron-proton
scattering suggests that the relative importance of such
rections can be both unexpectedly largeand theoretically un-
certain@12–14#. Moreover, results obtained by the SAMPL
Collaboration @15# suggest thatRA

p may be substantially
larger than given by the best theoretical estimate@12#. The
©2001 The American Physical Society01-1
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origin of this apparent enhancement is presently not un
stood. Were similar uncertainties to occur for PV electro
citation of the D, the task of extracting the desired axi
transition form factors from the PV asymmetry would b
come considerably more complicated than assumed in
original incarnation of the experimental proposal.

In what follows, we show thatRA
D—like RA

p—is both large
and theoretically uncertain. We argue, however, that
dominant source of this uncertainty—a new term not pres
in the elastic channel—is of interest in its own right. Mor
over, as a consequence of this new term—which we par
etrize by a low-energy constantdD—the PVN→D asymme-
try does not vanish at the photon point, in contrast to
behavior of the elastic PVep asymmetry. A measurement o
N→D at low uq2u could provide for an experimental dete
mination ofdD , thereby removing the largest theoretical u
certainty in the interpretation of the asymmetry. At the sa
time, knowledge ofdD could provide new insights into th
surprisingly large violation of SU~3! symmetry observed in
DS50 radiative decays of hyperons.

Our development of these points is organized in the
mainder of the paper as follows. Due to the length and te
nical nature of the paper, we first provide—in Sec. II—
overview of our primary results in order to guide the read
through the subsequent sections. In Sec. III, we presen
general features of neutral current electroexcitation of theD,
including a more detailed discussion of various classes
radiative corrections and the implications of Siegert’s th
rem. In Sec. IV, we review our conventions for the parit
conserving~PC! and PV chiral Lagrangians involving theN,
D, p, andg fields. Section V gives the nonanalytic, chir
loop contributions toaD anddD , and in Sec. VI, we compute
the PV d-wave contributions toALR . In Sec. VII, we per-
form model estimates of the analytic parts ofaD , dD and the
PV d-wave couplingsf NDp using vector meson dominanc

for aD and 1
2

2, 3
2

2 pole amplitudes for the latter two. Sectio
VIII contains our numerical analysis of theO(aGF) contri-
butions, including their kinematic dependences, and we s
marize our conclusions in Sec. IX. A reader interested in
general features and implications of our results may wish
skip the technical details contained in Secs. IV–VI, focus
instead on Secs. II, III, and VII-IX.

II. OVERVIEW OF PRIMARY RESULTS

In studying the axial vector radiative corrections, it is im
portant to distinguish two classes of contributions. The fi
involves electroweak radiative corrections to the elemen
V(e)3A(q) amplitudes, whereq is any one of the quarks in
the hadron andV ~A! denotes a vector~axial vector! current.
These terms, referred to henceforth as ‘‘one-quark’’ radiat
corrections, are calculable in the standard model. For ela
scattering from the proton, they contain little theoretical u
certainty apart from the gentle variation with Higgs ma
long-distance QCD effects involving light-quark loops in t
Z-g mixing tensor, and SU~3!-breaking effects in octet axia
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vector matrix elementŝpuAl
(3,8)up&. Such one-quark contri-

butions toRA
p andRA

D can be large, due to the absence in lo
terms of the small (124 sin2uW) factor appearing in the tree
level V(e) coupling and the presence of large logarithms
the type ln(mq /MZ).

The second class of radiative corrections, which we re
to as ‘‘many-quark’’ corrections, involve weak interaction
among quarks in the hadron. In Refs.@12–14#, the many-
quark corrections were shown to generate considerable
oretical uncertainty in the PV axial vectorep amplitude. A
particularly important subset of these effects are associ
with the nucleon anapole moment~AM !, which constitutes
the leading-order, PVgNN coupling. For a general discus
sion of the anapole moment, see Ref.@14#. The result of the
SAMPLE measurements, which combine PV elasticep and
quasielasticed scattering to isolate the isovector, axial vect
ep amplitude, implies that the one-quark/standard mo
plus many-quark/anapole contributions significantly und
predict the observed value ofRA

p Ref. @15#.
In what follows, we compute the analogous radiative c

rectionsRA
D for the axialN→D electroexcitation amplitude

In principle, as in the elastic case, the one-quark correcti
are determined completely by the standard model, altho
long-distance QCD effects—which are finessed for theep
channel using SU~3! symmetry plus nucleon and hypero
b-decay data—are not controlled in the same manner for
N→D transition. We make no attempt to estimate the size
such effects here. Instead, we focus on the many-quark
tributions which, as in the elastic case, can be systematic
organized using chiral perturbation theory (xPT). We com-
pute these corrections throughO(p3). We find:

~i! As in the case ofRA
p , the correctionRA

D is both sub-
stantial and theoretically uncertain. Thus, a proper interp
tation of the PVESN→D measurementmust take into ac-
countO(aGF) effects.

~ii ! In contrast with the elastic PV asymmetry, theN
→D asymmetry does not vanish atq250. This result fol-
lows from the presence of anO(aGF) contribution—having
no analogue in the elastic channel—generated by a new
gND electric dipole couplingdD . Specifically, we show be-
low that

ALR~q250!'2
2dD

C3
V

MN

Lx
1••• ~3!

where ALR(q2) is the PV asymmetry on theD resonance,
Lx54pFp;1 GeV is the scale of chiral symmetry brea
ing, C3

V;2 is the dominantN→D vector transition form
factor, dD is a low-energy constant whose scale is set
hadronic weak interactions, and the1••• denotes nonreso
nant, higher order chiral, and 1/MN corrections.

~iii ! The experimental observation of surprisingly lar
SU~3!-violating contributions to hyperon radiative deca
suggests that the effect ofdD could be significantly enhance
1-2
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ELECTROWEAK RADIATIVE CORRECTIONS TO . . . PHYSICAL REVIEW D65 033001
over its ‘‘natural’’ scale, yielding anN→D asymmetry
;1026 or larger at the photon point.1

~iv! The presence of the PVdD coupling implies that the
q2 dependence of the axial vector transition amplitude en
ing PV electroexcitation of theD could differ significantly
from the q2 dependence of the corresponding amplitu
probed with neutral current neutrino excitation of theD. As
we demonstrate below, it may be possible to separate thdD

contribution from other effects by exploiting the uniqueq2

dependence associated with this new term. We illustrate
possibility by considering a low-uq2u, forward angle asym-
metry measurement.

~v! An experimental separation of thedD contribution
from the remaining terms in the axial vector response wo
be of interest from at least two standpoints. First, it wou
provide a unique window—in theDS50 sector—on the dy-
namics underlying the poorly understood PVDS51 radia-
tive and nonleptonic decays. Second, it would help to
move a significant source of theoretical uncertainty in
interpretation of theN→D asymmetry, thereby allowing on
to extract theN→D axial vector form factors with less am
biguity.

~vi! A comparison of PV electroexcitation of theD with
more precise, prospective neutrino excitation measurem
would be particularly interesting, as inelastic neutrino sc
tering is insensitive to the largeg-exchange effects arising a
O(aGF) which contribute to PV electron scattering@13,14#.

While the remainder of the paper is devoted to a deta
discussion of these points, several aspects deserve fu
comment here. First, the origin of the nonvanishingALR(q2

50) in Eq. ~3! is readily understood in terms of Siegert
theorem@18,19#, familiar in nonrelativistic nuclear physics
For electron scattering processes such as shown in Fig. 1
leading PVg-hadron coupling@Fig. 1~d!# corresponds to ma
trix elements of the transverse electric multipole opera
T̂J51l

E , and according to Siegert’s theorem matrix eleme
of this operator can be written in the form2

^ f uT̂J51l
E u i &52A2

3
v^ f u E d3x xY1l~V!r̂~x!u i &1O~q2!,

~4!

wherev5Ef2Ei . The leading component in Eq.~4! is q2

independent and proportional tov times the electric dipole
matrix element. Up to overall numerical factors, thisE1 ma-
trix element is simplydD /Lx . It does not contribute to PV
elastic electron scattering, for whichv50. The remaining
terms ofO(q2) and higher contain matrix elements of th
anapole operator@20,14#, which generally do not vanish fo
either elastic or inelastic scattering. When^ f uT̂J51l

E u i & is in-

1For a PV photoproduction asymmetry of this magnitude, a m
surement using polarized photons at Jefferson Lab would be
interesting—and potentially feasible@16#—possibility. An analysis
of the realg asymmetry appears in a separate communication@17#.

2We adopt the ‘‘extended’’ version of Siegert’s theorem derived
Ref. @19#.
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serted into the full electron scattering amplitude, the 1q2

from the photon propagator cancels the leadingq2 from the
anapole term, yielding aq2-independent contact interaction
In contrast, for inelastic processes such as electroexcita
of theD, v5mD2mN does not vanish, and the dipole matr
element in Eq.~4! generates a contribution to the PV scatte
ing amplitudeM PV behaving as 1/q2 for low uq2u. Since the
parity-conserving~PC! amplitudeM PC—whose interference
with M PV gives rise toALR—also goes as 1/q2, the inelastic
asymmetry does not vanish at the photon point. Hencefo
we refer to the dipole contribution to the asymmetry
ALR

Siegert, and the correspondingO(a) correction to the
O(GF) Z0-exchange, axial vector neutral current amplitu
asRA

Siegert. We note that the importance ofALR
Siegert, relative to

the anapole andZ0-exchange contributions to the asymmet
increases as one approaches the photon point, since the
vanish forq250.

It is straightforward to recast the foregoing discussion i
covariant framework using effective chiral Lagrangians. T
dipole term in Eq.~4! corresponds to the operator@12,21#

L Siegert5 i
edD

Lx
D̄m

1glPFml1H.c. ~5!

where P is the proton field andFmn is the photonic field-
strength tensor, while the transition anapole contribut
arises from the effective interaction

L anapole5
eaD

Lx
2 D̄m

1P]lFlm1H.c. ~6!

-
an

FIG. 1. Feynman diagrams describing resonant pion electro
duction. The dark circles indicate parity violating coupling.~d!
gives transition anapole and Siegert’s term contributions.~e! leads
to the PVd-wavepND contribution.
1-3
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The form of the operators in Eqs.~5!, ~6! points to an
interesting theoretical feature ofRA

D not present in theep
case. In the largeNc limit, the nucleon andD become de-
generate@1#, while in the heavy baryon limit, matrix ele
ments ofL Siegert are proportional tod/Lx , whered5MD

2MN . Thus, we obtain the following theorem regardin
ALR

Siegert: For any q2, one has

ALR
Siegert~q2!50 ~7!

whenNc→`, MN→`. As a corollary, it follows that

ALR~q250!;O~1/MN! ~8!

in the largeNc limit. Naively, corrections to Eqs.~7!, ~8!
should scale as 1/Nc for finite Nc and infiniteMN . This 1/Nc
scaling is obscured in Eq.~3!, due to subtleties involved in
taking various limits~see Sec. III!, but does become appare
when considering theratio of ALR

Siegert to otherO(aGF) con-
tributions. In particular, one would expect the ratio of t
Siegert and anapole contributions to scale as

ALR
Siegert/ALR

anapole5
dD

aD

Lxd

q2
;

dD

aD

1

Nc

Lx
2

q2
. ~9!

To the extent thatdD;aD , one would expectALR
Siegert

*ALR
anapole for uq2u&Lx

2/3;0.3 (GeV/c)2—roughly the re-
gion that will be accessed in the Jefferson Lab measurem
In principle, then, one may be able to kinematically separ
ALR

Siegert from the otherO(aGF) contributions to the axia
vector amplitude and test the prediction that the effect
L Siegertscales as 1/Nc .

The large-Nc heavy baryon version of Siegert’s theore
noted above suggests that a study ofRA

D may provide insight
into another problem involving radiative transitions of bar
ons. It is well known that the ‘‘G parity’’ associated with the
U spin subalgebra of SU~3! requires the vanishing of electri
dipole transitions for the decayS1→pg andJ2→S2g. As
a consequence, the asymmetry parameter associated wit
transition must vanish in the SU~3! limit—a result known as
Hara’s theorem@22#. One would then expect the size of th
measured asymmetry to be governed by the scale of S~3!
breaking: (ms2mu)/Lx;15%. Experimentally, however
one finds an asymmetryaS1p five times larger than this
scale, presenting a puzzle for the phenomenology of h
ronic weak interactions. The authors of Refs.@23,24# pro-
posed a solution to this dilemma by showing that contrib
tions from 1

2
2 resonances could significantly enhance

electric dipole amplitude, yielding a prediction for the asy
metry parameter closer to the experimental value. In w
follows, we argue that a similar mechanism could also le
to an enhancement of the 1/Nc-suppressed electric dipol
gp→D1 amplitude characterized bydD . Thus, if intermedi-
ate, negative parity baryon resonances play an important
in PV nonleptonic and radiative transitions, a sufficien
precise separation ofALR

Siegert from the other contributions to
the asymmetry could provide an independent confirmat
More generally, a determination ofdD could also help deter
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mine the extent to which the hadronic weak interaction
spects the approximate symmetries associated with QCD

Finally, we observe that the resonant amplitude for
pion electroproduction receives an additional contribut
not associated with theN→D transition form factor. As
shown in Fig. 1~e!, this contribution arises from the parity
conserving electromagneticM1 excitation vertex and the PV
D→Np decay amplitude. Angular momentum conside
ations imply that the latter isd wave and, thus,O(p2). The
M1 excitation amplitude is similarlyO(p2). Hence, the am-
plitude in Fig. 1~e! contributes at the same chiral order as
theO(p3) terms in the PV electroexcitation vertex Fig. 1~d!.
The presence of Fig. 1~e! introduces a dependence on a ne
low-energy constant~LEC! associated with the PVNDp
vertex not considered previously. To our knowledge, t
new LEC f NDp is not currently constrained by any exper
mental data, nor have there been any model calculation
indicate its magnitude. Using both naive dimensional ana
sis ~NDA! as well as a baryon resonance model, we arg
that theoretical predictions forf NDp may vary by a factor of
10, and we assign a rather sizable theoretical uncertaint
this constant. The impact of the PVd wave onALR is, nev-
ertheless, considerably smaller than that ofALR

Siegert.

III. ELECTROEXCITATION: GENERAL FEATURES

The amplitudes relevant to PV electroexcitation of theD
are shown in Fig. 1. The asymmetry arises from the inter
ence of the PC amplitude of Fig. 1~a! with the PV amplitudes
of Figs. 1~b!–~e!. In Figs. 1~b!–~d!, the shaded circle denote
an axial gauge boson (V)-fermion ~f! coupling, while the
remaining V-f couplings are vectorlike. In Fig. 1~e!, the
shaded circle indicates the PVNDp d-wave vertex. All re-
maining NDp vertices in Fig. 1 involve strong, PC cou
plings. In general, the interaction vertices of Fig. 1 conta
loop effects as well as tree-level contributions. The loo
relevant to the PV interactions~up to the chiral order of our
analysis! are shown in Figs. 2–5.

The formalism for treating the contributions toALR from
Figs. 1~a!–~c! is discussed in detail in Ref.@5#. Here, we
review only those elements most germane to the discus
of electroweak radiative corrections. We also discuss gen
features of the new contributions from Figs. 1~d!,~e! not pre-
viously analyzed.

Kinematics

We define the appropriate kinematic variables for the
action

e2~k!1N~p!→e28~k8!1D~pD!→e28~k8!

1N8~p8!1p~pp!. ~10!

In the laboratory frame one has

s5~k1p!2, q5pD2p5k2k8, pD5p81pp ,
~11!

wherep50, and
1-4
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FIG. 2. Meson-nucleon intermediate sta
contributions to theN→D transition anapole and
Siegert couplingsaD and dD , respectively. The
shaded circles denote the PV vertex. The sin
solid, double solid, dashed, and curly lines corr
spond toN, D, p, andg, respectively.
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s5k212k•p1p25m212Me1M2, ~12!

e being the incoming electron energy andm andM5mN the
electron and nucleon masses, respectively. One may r
the square of the four-momentum transfer

Q25uqW u22q0
2 ~13!

to s and the electron scattering angleu as

sin2u/25
M2Q2

~s2M2!~s2MD
2 2Q2!

. ~14!

The energy available in the nucleon–gauge boson (g or Z0)
center of mass~CM! frame isW[ApD

2 and the energy of the
gauge boson in the CM frame is

q05
W22Q22M2

2W
. ~15!

PV asymmetry

As shown in Ref.@5#, one may distinguish three separa
dynamical contributions to the PV asymmetry. Denoti
these terms byD ( i )

p ( i 51, . . .,3), one has

ALR5
N12N2

N11N2
5

2Gm

A2

Q2

4pa
@D (1)

p 1D (2)
p 1D (3)

p #, ~16!

FIG. 3. Same as Fig. 2 but withD-p intermediate states.
03300
te

whereN1 (N2) is the number of detected, scattered ele
trons for an incident beam of positive~negative! helicity
electrons,a is the electromagnetic fine structure consta
and Gm is the Fermi constant measured inm decay. The
D (1,2)

p contain the vector current response of the target, a
ing from the interference of the amplitudes in Figs. 1~a!,~b!,
while the termD (3)

p contains the axial vector response fun
tion, generated by the interference of Figs. 1~a! and 1~c!–~e!.

The leading term,D (1)
p , is nominally independent of the

hadronic structure—due to cancellations between the
merator and denominator of the asymmetry—whereasD (2,3)

p

are sensitive to details of the hadronic transition amplitud
Specifically, one has

D (1)
p 5gA

ejV
T51 , ~17!

which includes the entire resonant hadronic vector curr
contribution to the asymmetry. Here,gA

e is the axial vector
electron coupling to theZ0 andjV

T51 is the isovector hadron
Z0 vector current coupling@25,26#:

gA
ejV

T51522~C1u2C1d! ~18!

where theC1q are the standardA(e)3V(q) couplings in the
effective four fermion low-energy Lagrangian@27#. At the
tree level,gA

ejV
T5152(122 sin2uW)'1. Vector current con-

servation and the approximate isospin symmetry of the li
baryon spectrum protectD (1)

p from receiving large and theo
retically uncertain QCD corrections. In principle, then, is
lation of D (1)

p could provide a test of fundamental ele

FIG. 4. Same as Fig. 2 but involving insertions of the bary
magnetic moment operator, denoted by the crosses.
1-5
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troweak couplings. As shown in Ref.@5#, however,
theoretical uncertainties associated with the nonreso
background contributionD (2)

p and the axial vector contribu
tion D (3)

p would likely render such a program not feasible
The interest for the Jefferson Lab measurement@11# lies

in the form factor content of the axial vector contributio
D (3)

p . For our purposes, it is useful to distinguish between

FIG. 5. Same as Fig. 2 but with PV electromagnetic insertio
denoted by the overlapping crosses and shaded circles.
t
ts

-
th
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various contributions to this response according to the a
plitudes of Fig. 1. From the interference of Figs. 1~a! and
1~c! we obtain the axial vector neutral current response:

D (3)
p ~NC!'gV

ejA
T51F~Q2,s! ~19!

where

gV
ejA

T51522~C2u2C2d! ~20!

in the absence of target-dependent, QCD contributions to
one-quark electroweak radiative corrections. TheC2q are the
V(e)3A(q) analogues ofC1q @27#, while the function
F(Q2,s) gives the dependence ofD (3)

p (NC) on the axial cou-
plings Ci

A . Following Ref.@5# we obtain

F~Q2,s!5
C5

A

C3
V F11

MD
2 2Q22M2

2M2

C4
A

C5
A

1
q01W2M

2M

C3
A

C5
AGP~Q2,s!, ~21!

where

,

P~Q2,s!5
MMD@~s2M2!1~s2MD

2 !2Q2#

1

2
@Q21~MD1M !2#@Q21~MD2M !2#1~s2M2!~s2MD

2 !2Q2s

. ~22!
e

er
tity
In arriving at Eqs.~19!–~22! we have included only resonan
contributions from theD. Nonresonant background effec
have been analyzed in Refs.@5,28#. Note thatF(Q2,s) is a
frame-dependent quantity, depending as it does onq0. How-
ever, for simplicity of notation, we have suppressed theq0

dependence in the list of the arguments.
The interference of Figs. 1~a! and 1~d! generates the tran

sition anapole and Siegert contributions associated with
interactions of Eqs.~5!, ~6!:

D (3)
p ~Siegert!1D (3)

p ~anapole!, ~23!

while the interference of Figs. 1~a! and 1~e! generates the
response associated with the PVNDp d-wave interaction:

D (3)
p ~d wave!. ~24!

From the total contribution

D (3)
p ~ tot!5D (3)

p ~NC!1D (3)
p ~Siegert!

1D (3)
p ~anapole!1D (3)

p ~d wave! ~25!

we may define the overallO(a) correctionRA
D to theO(GF)

axial response via
e

D (3)
p ~ tot!52~124 sin2uW

0 !~11RA
D!F~Q2,s! ~26!

whereuW
0 is the weak mixing angle at the tree level in th

standard model:

sin2uW
0 ~12sin2uW

0 !5
pa

A2GmMZ
2

, ~27!

or

sin2uW
0 50.2121560.00002. ~28!

One may decompose theO(a) effects described byRA
D ac-

cording to several sources:

RA
D5RA

ewk1RA
Siegert1RA

anapole1RA
d wave1•••, ~29!

where the1••• indicates possible contributions from oth
many-quark and QCD effects not included here. The quan
RA

ewk denotes the one-quark radiative corrections,

RA
ewk5

C2u2C2d

C2u
0 2C2d

0
21 ~30!
1-6
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ELECTROWEAK RADIATIVE CORRECTIONS TO . . . PHYSICAL REVIEW D65 033001
with the superscript ‘‘0’’ denoting the tree-level values of t
C2q . The correctionRA

ewk denotes the effects of bothO(a)
corrections to the relation in Eq.~27! as well asO(aGF)
contributions to the neutral currente-q amplitude. While the
tree-level weak mixing angle is renormalization scheme
dependent, both sin2uW and the correctionRA

ewk depend on
the choice of renormalization scheme. In what follows,
quote results for both the on-shell renormalization~OSR!
and modified minimal subtraction (MS) schemes. Note tha
our convention for theRA

(k) differs from the convention
adopted in our earlier work of Ref.@12#, where we normal-
ized to the scheme-dependent quantity 124 sin2uW.

The remaining corrections are defined by

RA
Siegert5D (3)

p ~Siegert!/D (3)
p ~NC!0 ~31!

RA
anapole5D (3)

p ~anapole!/D (3)
p ~NC!0 ~32!

RA
d wave5D (3)

p ~d wave!/D (3)
p ~NC!0, ~33!

where the ‘‘0’’ denotes the value of the NC contribution
the tree level.

Electroweak radiative corrections

The parity violating amplitude for the processeWp→eD is
generated by the diagrams in Figs. 1~b!–~e!. At tree level in
the standard model, one has

iM PV5 iM AV
PV1 iM VA

PV , ~34!

where

iM AV
PV52 i

Gm

2A2
l l5^DuJluN& ~35!

from Fig. 1~b! and

iM VA
PV52 i

Gm

2A2
l l^DuJl5uN& ~36!

from Fig. 1~c!. Here,Jl (Jl5) andl l ( l l5) denote the vector
~axial vector! weak neutral currents of the quarks and ele
tron, respectively@25#. Note that the vector leptonic wea
neutral current contains the factorgV

e5(2114 sin2uW)'
20.1, which strongly suppresses the leading or
Z0-exchange amplitude of Fig. 1~c!.

The interactions given in Eqs.~5!, ~6! generate additiona
contributions toMVA

PV when a photon is exchanged betwe
the nucleon and the electron@Fig. 1~d!#. The corresponding
amplitudes are

iM Siegert
PV 52 i

~4pa!dD

Q2Lx

ēgmeD̄n@~M2MD!gmn2qngm#N

~37!

iM anapole
PV 5 i

~4pa!aD

Lx
2 ēgmeD̄mN. ~38!
03300
-

-

r

We note that, unlikeMVA
PV , the amplitudes in Eqs.~37! and

~38! contain no (124 sin2uW) suppression. Consequently, th
relative importance of the PVg-exchange many-quark am
plitudes is enhanced by 1/(124 sin2uW);10 relative to the
leading order neutral current amplitude.

The constantsdD andaD contain contributions from loops
~L! generated by the Lagrangians given in Sec. IV below a
from counterterms~CT! in the tree-level effective Lagrang
ian of Eqs.~5!,~6!:

dD5dD
L 1dD

CT ~39!

aD5aD
L 1aD

CT . ~40!

In heavy baryon chiral perturbation theory (HBxPT), only
the parts of the loop amplitudes nonanalytic in quark mas
mq can be unambigously indentified withdD

L and aD
L . Con-

tributions analytic inmq have the same form as operato
appearing in the effective chiral Lagrangian, and since
latter carry coefficients unknowna priori which must be
fitted to experimental data, one has no way to distingu
their effects from loop contributions analytic inmq . Conse-
quently, all remaining analytic terms may be incorporat
into dD

CT andaD
CT . In Sec. V, we compute explicitly the vari

ous loop contributions up throughO(p3). In principle, dD
CT

andaD
CT should be determined from experiment. At prese

however, we know of no independent determination of th
constants to use as input in predictingRA

D , so we rely on
model estimates for this purpose~see Sec. VII!.

The structure arising from the PVd-wave amplitude@Fig.
1~e!# is considerably more complex than those associa
with Figs. 1~b!–~d!, and we defer a detailed discussion
Sec. VI. We note, however, that the amplitude of Fig. 1~e!—
like its partners in Fig. 1~d!—does not contain the 1
24 sin2uW suppression factor associated with theO(GF)
amplitude of Fig. 1~c!.

For future reference, it is useful to give expressions
the various contributions toD (3)

p as well as the correspondin
contributions toRA

D and the total asymmetryALR . For the
response function, we have

D (3)
p ~Siegert!5

8A2pa

GmQ2

dD

C3
V Fq01W2MN

2Lx
GP~Q2,s!

~41!

D (3)
p ~anapole!52

8A2pa

GmLx
2

aD

C3
VP~Q2,s! ~42!

D (3)
p ~d wave!52

8A2pa

GmLx
2 F Lx

MD1MN
G

3
f NDp

gpND
H~Q2,s!P~Q2,s!. ~43!

The appearance ofP(Q2,s) results from the different kine-
matic dependences generated by the transverse PC and
vector PV contributions to the electroexcitation asymme
1-7



-

d

E
r-
he
w
e

e

all
ral

o

ote

rt
are
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@5,25#. The functionH(Q2,s) is a gently varying function of
Q2 defined in Eq.~111! of Sec. VI.

The corresponding radiative corrections are

RA
Siegert5

8A2pa

GmLx
2

1

124 sin2uW
0

dD

2C5
A

Lx
2

Q2

3
q01W2M

2Lx
f ~Q2,s!21 ~44!

RA
anapole52

8A2pa

GmLx
2

1

124 sin2uW
0

aD

2C5
Af ~Q2,s!21

~45!

RA
d wave52

4A2pa

GmLx
2

1

124 sin2uW
0

Lx

mD1mN

3
f NDp

gpND

C3
V

C5
A H~Q2,s! f ~Q2,s!21, ~46!

where

f ~Q2,s!511
MD

2 2Q22M2

2M2

C4
A

C5
A

1
q01W2M

2M

C3
A

C5
A ;1.

~47!

In order to set the overall scale ofRA
Siegert, RA

anapole, and
RA

d wave, we follow Ref. @12# and setdD;aD; f NDp;gp ,
wheregp53.831028 is the ‘‘natural’’ scale for charged cur
rent hadronic PV effects@29,30#. Using C5

A;1, C3
V/C5

A

;1.6, gpND;1, f (Q2,s);1 andH(Q2,s);0.1, we obtain

RA
Siegert;0.0041 ~Lx

2/Q2! ~48!

RA
anapole;20.0041 ~49!

RA
d wave;20.0002. ~50!

As we show below,RA
anapolemay be significantly enhance

over this general scale. From Eqs.~44! and ~45! we also
observe that the ratio of radiative corrections scales as in
~9! ~up to a factor of 2!. Thus, we expect the relative impo
tance of the two contributions to depend critically on t
ratio of dD /aD at theG0 kinematics, and we argue belo
that dD—like aD—may be significantly enhanced over th
scalegp .

Finally, the total contribution to the asymmetry from th
various response functions is given by
03300
q.

ALR@D (1)
p #5

GmQ2

4A2pa
2~C1u2C1d!

'2931025@Q2/~GeV/c!2#
~51!

ALR@D (3)
p ~NC!#5

GmQ2

4A2pa
2~C2u2C2d!F~Q2,s!

'26.331026F~Q2,s!

3@Q2/~GeV/c!2# ~52!

ALR@Dp
(3)~Siegert!#52

2dD

C3
V

d

Lx
P~Q2,s!

'2231028FdD /gp

C3
V GP~Q2,s!

~53!

ALR@Dp
(3)~anapole!#5

2aD

C3
V

Q2

Lx
2P~Q2,s!

'2.831028FaD /gp

C3
V GP~Q2,s!

3@Q2/~GeV/c!2# ~54!

ALR@D (3)
p ~dwave!#5

f NDp

gpND
H~Q2,s!P~Q2,s!

3
2Q2

Lx~mD1mN!

'3.031028F f NDp /gp

gpND
GH~Q2,s!

3P~Q2,s!@Q2/~GeV/c!2#. ~55!

Chiral and 1ÕNc counting

A consistent treatment of the asymmetry must consider
contributions to the PV amplitudes through a given chi

TABLE I. Chiral orders for the vertices in Fig. 1. The first tw
lines apply to Fig. 1~d!, while the second refers to Fig. 1~e!. The
orders for both tree-level and loop corrections are indicated. N
that the tree-level Siegert interaction isO(p2), while the corre-
sponding tree-level anapole interaction isO(p3). Loop effects gen-
erateO(p3) and O(p2) contributions, respectively, to the Siege
and transition anapole interactions. The vertices in the third line
tree level only.

PV Vertex g* N→D D→Np Amplitude

g* N→D, Siegert O(p2,p3) O(p) O(p2,p3)
g* N→D, anapole O(p2,p3) O(p) O(p2,p3)
D→Np, d wave O(p2) O(p2) O(p3)
1-8
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ELECTROWEAK RADIATIVE CORRECTIONS TO . . . PHYSICAL REVIEW D65 033001
order. One may identify the chiral order either according
powers of 1/Lx and 1/mN or in terms of powers ofp, where
p denotes a small external momentum or mass or the ph
field. In general, the two schemes are easily interchanged
the present case, the interactions in Eqs.~5!, ~6! are, respec-
tively, O(1/Lx,1/Lx

2) or O(p2,p3). In what follows, we
adopt thep-counting scheme exclusively, following the sma
scale expansion framework of Ref.@31#. We truncate our
expansions ofdD andaD at O(p3).

While one may readily identify the formal chiral order o
various contributions toALR , the physical significance o
chiral counting is complicated by the dominance of theD
intermediate state at resonant kinematics. As a first step
identify the chiral order of various contributions to thereso-
nantPV amplitudes in Figs. 1~d! and 1~e!. The order of each
interaction vertex is listed in Table I, along with the order
the corresponding amplitude. Here, we count theD propaga-
tor asO(p21), though other conventions exist in the liter
ture @32#. From the third column of Table I, it is clear tha
one must include both the amplitude of Fig. 1~d! as well as
that of Fig. 1~e!. Loop corrections to the PVD→Np vertex
always lead to a higher order PV amplitude in chiral cou
ing as shown in Sec. VI. Details can be found in Appendix

The list of amplitudes in Table I does not include vario
nonresonant background contributions, even though s
may be formally of lower chiral order than those involvin
the D intermediate state~see, e.g., the studies of PV thres
old p production in Refs.@16,30,33#!. The reason for the
omission is that for resonant kinematics the contribution
the D is enhanced relative to the nonresonant~NR! back-
ground contributions by

sD/sNR;~2MD /GD!4;23104 ~56!

and, thus, more than compensates for the relative chira
ders of theD and NR contributions. Indeed, from a blin
application of chiral power counting toALR , one might er-
roneously truncate the chiral expansion atO(p), retaining
only the non-resonant background contributions to the re
nant asymmetry. In this context, then, chiral power count
is appropriately used as a means of organizing various r
nant contributions but not to delineate the relative imp
tance of resonant and nonresonant amplitudes.

These considerations take on added importance w
studying the largeNc limit of ALR . In carrying out this limit,
one must take care to includeboth the D and NR contribu-
tions. To that end, we write

ALR5
DsD1DsNR

sD1sNR
, ~57!

wheresD andsNR denote theD and NR contributions to the
helicity-independent electron scattering cross section
DsD and DsNR are the corresponding helicity differenc
cross sections. In the physical regime withNc53, one has,
for resonant kinematics,
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usNRu!usDu ~58!

uDsNRu!uDsDu. ~59!

Hence, to an excellent approximation,

ALR'
DsD

sD . ~60!

At Q250, the only contribution toDsD arises fromL Siegert,
whose matrix element scales asd. For these kinematics, th
parity conservingM1 amplitude which governssD also var-
ies asd, yielding thed-independent result of Eq.~3!. This
feature appears in the functionP(Q2,s) which is}1/d when
Q250. We emphasize that the result in Eq.~3!, obtained for
Nc53 andq250, expresses the relevant limit for the inte
pretation of prospectiveALR measurements.

To obtain thetheoreticallimit Nc→`, we first treatN and
D as degenerate states with zero widths. In this case,
may no longer distinguish resonant and NR contributions
ALR , and theD contributions are no longer enhanced relati
to those involving a nucleon intermediate state. Moreov
Siegert’s theorem implies thatDsD50 atQ250 when theN
and D are degenerate, heavy baryons. Thus, we obtain
result quoted in Eq.~7! and the PV asymmetry becomes

ALR~Q250,Nc→`!'
DsNR1O~1/MN!

sD1sNR
, ~61!

where O(1/MN) denotes recoil-order corrections from
L Siegert. SinceDsNR is also ofO(1/MN) @16,33,30#, the total
asymmetry at the photon point must beO(1/MN). Thus, we
obtain the corollary quoted in Eq.~8!. In short, the largeNc
behavior ofALR is hidden in Eq.~3! by the dominance of the
D cross section at resonant kinematics in theNc53 world. In
order to obtain the appropriate largeNc limit, one must con-
sider theNc scaling of the PV and PC amplitudesbefore
forming the asymmetry and settingq250.

IV. NOTATION AND CONVENTIONS

In computing the loop contributions todD and aD , we
follow the standard conventions for HBxPT @34,35#. An ex-
tensive discussion of the relevant formalism, including co
plete expressions for the nonlinear PV and PC Lagrangia
can be found in Refs.@36,12,37,30# and Appendix A. Since
we focus here on the PVgND transition, however, we give
the full expression for the corresponding Lagrangian:
1-9
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L PV
gDN5 ie

d1

Lx
T̄3

mgnFmn
1 N1 ie

d2

Lx
T̄3

mgn@Fmn
1 ,X1

3 #1N1 ie
d3

Lx
T̄3

mgn@Fmn
1 ,X1

3 #2N1 ie
d4

Lx
T̄3

mgng5Fmn
2 N

1 ie
d5

Lx
T̄3

mgng5@Fmn
1 ,X2

3 #1N1 ie
d6

Lx
T̄3

mgng5@Fmn
2 ,X1

3 #1N1 ie
d7

Lx
T̄3

mgn@Fmn
2 ,X2

3 #1N1 ie
d8

Lx
T̄3

mgn@Fmn
2 ,X2

3 #2N

1 ie
d̃1

Lx
T̄3

mgn^Fmn
1 &N1 ie

d̃2

Lx
T̄3

mgn^@Fmn
1 ,X1

3 #1&N1 ie
d̃3

Lx
T̄3

mgn^@Fmn
1 ,X1

3 #2&N1 ie
d̃4

Lx
T̄3

mgng5^Fmn
2 &N

1 ie
d̃5

Lx
T̄3

mgng5^@Fmn
1 ,X2

3 #1&N1 ie
d̃6

Lx
T̄3

mgng5^@Fmn
2 ,X1

3 #1&N1 ie
d̃7

Lx
T̄3

mgn^@Fmn
2 ,X2

3 #1&N

1 ie
d̃8

Lx
T̄3

mgn^@Fmn
2 ,X2

3 #2&N1e
a1

Lx
2
T̄3

m@D n,Fnm
1 #N1e

a2

Lx
2
T̄3

m
†@D n,Fnm

1 #,X1
3
‡1N1e

a3

Lx
2
T̄3

m
†@D n,Fnm

1 #,X1
3
‡2N

1e
ã1

Lx
2
T̄3

m^@D n,Fnm
1 #&N1e

ã2

Lx
2
T̄3

m^†@D n,Fnm
1 #,X1

3
‡1&N1e

ã3

Lx
2
T̄3

m^†@D n,Fnm
1 #,X1

3
‡2&N1H.c. ~62!
in

t in
Here,

XL
a5j†taj, XR

a5jtaj†, X6
a 5XL

a6XR
a ~63!

with

S5j2, j5expS ip

Fp
D , p5

1

2
pata ~64!

andFp592.4 MeV is the pion decay constant. In addition,N
is the nucleon isodoublet field,Tm

i are decuplet isospurion
fields given by

Tm
3 52A2

3S D1

D0 D
m

, Tm
15S D11

D1/A3
D

m

,

Tm
252S D0/A3

D2 D
m

, ~65!

and

F6
mn5

1

2
~]mAn2]nAm!~jQ8j†6j†Q8j! ~66!

where

Q85S 1 0

0 0D . ~67!

For an arbitrary operator we define

^Ô&5Tr~O!. ~68!

The decuplet fields satisfy the constraints
03300
t iTm
i 50 ~69!

gmTm
i 50 ~70!

pmTm
i 50. ~71!

We eventually convert to the heavy baryon expansion,
which case the latter constraint becomesvmTm

i 50 with vm

being the heavy baryon velocity. Another useful constrain
HBxPT is

SmTm
i 50 ~72!

which arises from the fact thatg5gmTm
i 50 in relativistic

theory.

The PVgDN couplingsd122 ,a122 , d̃122 and ã122 are
associated, at leading order in 1/Fp , with zero-pion vertices.
In terms of these couplings, one has

dD
CT52A2

3
~d114d21d̃114d̃2! ~73!

aD
CT52A2

3
~a114a21ã114ã2!. ~74!
1-10
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The PV gpDD interactions contribute through loops. Th
corresponding Lagrangian is

L PV
gDD5

b1

Lx
T̄nsmn@Fmn

1 ,X2
3 #1Tn1

b2

Lx
T̄nsmnFmn

2 Tn

1
b3

Lx
T̄nsmn@Fmn

2 ,X1
3 #1Tn1 i

b4

Lx
T̄mFmn

2 Tn

1 i
b5

Lx
T̄m@Fmn

1 ,X2
3 #1Tn1 i

b6

Lx
T̄m@Fmn

2 ,X1
3 #1Tn

1
b7

Lx
T̄mg5F̃mn

2 Tn1
b8

Lx
T̄mg5@ F̃mn

1 ,X2
3 #1Tn

1
b9

Lx
T̄mg5@ F̃mn

2 ,X1
3 #1Tn, ~75!

where all the vertices have one pion when expanded to
leading order.

The PC strong and electromagnetic interactions involv
N, D, p andg fields are well known, so we do not discu
them here~see Appendix A!. Since the corresponding P
interactions may be less familiar, we give expressions
these interactions expanded toO(1/Fp

2 ). In the (g, N, p)
sector one has

L PV
pNN52 ihp~ p̄np12n̄pp2!F12

1

3Fp
2 S p1p2

1
1

2
p0p0D G2

hV
014/3hV

2

A2Fp

@ p̄gmnDmp1

1n̄gmpDmp2#1 i
hA

11hA
2

Fp
2 p̄gmg5p~p1Dmp2
03300
e

g

r

2p2Dmp1!1 i
hA

12hA
2

Fp
2 n̄gmg5n~p1Dmp2

2p2Dmp1!1 i
A2hA

2

Fp
2 p̄gmg5np1Dmp0

2 i
A2hA

2

Fp
2 n̄gmg5pp2Dmp0, ~76!

whereDm is the electromagnetic covariant derivative and
have retained theO(1/Fp

2 ) three-pion terms arising from th
PV Yukawa interaction.

When including theD, one deduces from angular mome
tum considerations that the lowest-order PVpND interac-
tion having only a single pion isd wave and thus contain
two derivatives@12,30#. The leading one and two pion con
tributions are

L PV
pND52

1

Fp
S 2 f 11

2

3
f 4D N̄g5~Dmp0Tm

3 1Dmp2Tm
1

1Dmp1Tm
2!1

2

Fp
f 4N̄g5Dmp0Tm

3 2
2

Fp
f 2N̄g5

3~2Dmp2Tm
11Dmp1Tm

2!2
2

Fp
f 3N̄g5t3

3~Dmp0Tm
3 1Dmp2Tm

11Dmp1Tm
2!2

2

Fp
f 5N̄g5t3

3~Dmp2Tm
11Dmp1Tm

2!1H.c. ~77!

and
L PV
ppND52

ihA
pD11p2p0

Fp
2

p̄Dm
11Dmp2p02

ihA
pD11p0p2

Fp
2

p̄Dm
11Dmp0p22

ihA
pD1p0p0

Fp
2

p̄Dm
1Dmp0p0

2
ihA

pD1p1p2

Fp
2

p̄Dm
1Dmp1p22

ihA
pD1p2p1

Fp
2

p̄Dm
1Dmp2p12

ihA
pD0p1p0

Fp
2

p̄Dm
0 Dmp1p02

ihA
pD0p0p1

Fp
2

p̄Dm
0 Dmp0p1

2
ihA

pD2p1p1

Fp
2

p̄Dm
2Dmp1p12

ihA
nD11p2p2

Fp
2

n̄Dm
11Dmp2p22

ihA
nD1p2p0

Fp
2

n̄Dm
1Dmp2p0

2
ihA

nD1p0p2

Fp
2

n̄Dm
1Dmp0p22

ihA
nD0p0p0

Fp
2

n̄Dm
0 Dmp0p02

ihA
nD0p1p2

Fp
2

n̄Dm
0 Dmp1p22

ihA
nD0p2p1

Fp
2

n̄Dm
0 Dmp2p1

2
ihA

nD2p1p0

Fp
2

n̄Dm
2Dmp1p02

ihA
nD2p0p1

Fp
2

n̄Dm
2Dmp0p11H.c., ~78!
1-11
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where the PV couplingsf i etc. are defined in Appendix A.
Finally, we require the PVpDD interaction:

L PV
pDD52 i

hD

A3
~D̄11D1p12D̄1D11p2!

2 i
hD

A3
~D̄0D2p12D̄2D0p2!

2 i
2hD

3
~D̄1D0p12D̄0D1p2! ~79!

L V
pDD52

hV
D11D1

Fp
~D̄11gmD1Dmp11D̄1gmD11Dmp2!

2
hV

D1D0

Fp
~D̄1gmD0Dmp11D̄0gmD1Dmp2!

2
hV

D0D2

Fp
~D̄0gmD2Dmp11D̄2gmD0Dmp2!. ~80!

In order to obtain the proper chiral counting for th
nucleon, we employ the conventional heavy baryon exp
sion of L PC and, in order to consistently include theD, we
follow the small scale expansion proposed in@31#. In this
approach bothp,E!Lx and d!Lx are treated asO(e) in
chiral power counting. The leading order vertices in th
framework can be obtained projectively viaP1GP1 where
G is the original vertex in the relativistic Lagrangian and

P65
16v”

2
~81!

are projection operators for the large~small! components of
the Dirac wave function, respectively. Likewise, th
O(1/mN) corrections are generally proportional
P1GP2 /mN . In previous work the parity conservin
pNDg interaction Lagrangians have been obtained
O(1/mN

2 ) @31#. We collect some of the relevant terms in A
pendix A.

V. CHIRAL LOOPS: dD
L AND aD

L

Using the interactions given in the previous section,
can compute the contributions toaD anddD generated by the
loops of Figs. 2–5. Loop corrections to the PVpND d-wave
interaction contribute at higher order than considered h
so we do not discuss them explicitly. To assist the reade
identifying the chiral order of each Feynman diagram, we
the chiral powers of all relevantp,N,D vertices in Table II.

We regulate the loop integrals using dimensional regu
ization ~DR! and absorb into the countertermsaD

CT anddD
CT

the divergent—1/(d24)—terms as well as finite contribu
tions analytic in the quark mass andd. For the sake of clar-
ity, we discuss the contributions toaD anddD separately. We
note, however, that the PVpND interaction isO(p2), so that
the loops in Figs. 2~f!–~i! and 3~e!–~h! do not contribute to
aD anddD to the order we are working.
03300
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We first consider the contributions toaD
L generated by the

PV pNN couplings. The leading contributions arise from t
PV Yukawa couplinghp contained in the loops of Fig. 2~a!–
~c!. To O(p3), the diagram 2~c! containing a photon insertion
~minimal coupling! on a nucleon line does not contribu
since the intermediate baryon is neutral.3

The sum of the nonvanishing diagrams Figs. 2~a!,~b!
yields a gauge invariantO(p2) result:

aD
L ~Y1!52

A3

6p
gpNDhpLxE

0

1

dx~2x21!x

3E
0

`

dy
G~11e!

C2~x,y!11e

52A 3

6p
gpNDhp

Lx

mp
F0

N , ~82!

where gpND is the strongpND coupling, C6(x,y)5y2

62yd(12x)1x(12x)Q21mp
2 2 i e and the functionsFi

N,D

are defined in Appendix A. Due to the 1/mp dependence of
aD

L (Y1), this contribution appears at one order lower than
tree-level contribution from Eq.~6!. Hence, the latter is a
subleading effect.

As the PV Yukawa interaction is of orderO(p0), we must
consider higher order corrections involving this interactio
which arise from the 1/mN expansion of the nucleon propa
gator and various vertices. SinceP1•1•P250, there is no
1/mN correction to the PV Yukawa vertex. From the 1/mN

N̄N terms in Eq.~A3! we have

aD
L ~Y2!5

A3

144p
gpNDhp

Lx

mN
G0

2
A3

6p
gpNDhp

Lx

mN
F1

N , ~83!

wherem is the subtraction scale introduced by DR and

3In fact, even if the intermediate state were charged, this clas
diagram would vanish since the loop integral has exactly the s
form as that in Eq.~92! which is shown to be zero.

TABLE II. Chiral orders for the meson-baryon vertices in th
loop calculation. TheO(p) PC ppNN vertex arises from chiral
connection while the PVO(p0) vertex comes from the Yukawa
coupling.

Vertex type Parity conserving Parity violating

pNN O(p) O(p0,p)
pND O(p) O(p2)
pDD O(p) O(p0,p)

ppNN O(p,p2) O(p)
ppND O(p2) O(p)
ppDD O(p,p2) O(p)
1-12
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G05E
0

1

dx lnS m2

mp
2 1x~12x!Q2D . ~84!

Finally, the 1/mN correction to the strongpND vertex yields

aD
L ~Y3!52

A3

6p
gpNDhp

Lx

mN

d

mp
F2

N . ~85!

For the PV vectorpNN coupling we consider Figs. 2~a!–~d!,
which contribute

aD
L ~V!5

A6

36
gpNDS hV

01
4

3
hV

2 DG0 . ~86!

Similarly for the PVpDD Yukawa coupling in Figs. 3~a!–
~c! we have

aD
L ~YD1!5

A3

18p
gpNDhD

Lx

mp
F0

D . ~87!

As in the case ofaD
L (Y1), the contributionaD

L (YD1) occurs
at O(p2), one order lower than the tree-level contributio
The 1/mN expansion of the delta propagator yields theO(p3)
term

aD
L ~YD2!52

A3

18p
gpNDhD

Lx

mN
F13

24
G0

2
d

mp
F0

D1S d2

mp
2 21DF1

DG , ~88!

while the 1/mN expansion of the strong vertices leads to

aD
L ~YD3!51

A3

18p
gpNDhD

Lx

mN
F 1

12
G02

d

mp
F0

DG . ~89!

For the PV vectorpDD coupling we consider diagrams Fig
3~a!–~d!. Their contribution is

aD
L ~VD!5

1

6
gpNDS hV

D1D0

A3
1hV

D11D1D G0 . ~90!

The contribution generated from the PV axialppND ver-
tices comes only from the loop Fig. 2~e!, and its contribution
is

aL~AD!52
1

6
~hA

pD1p1p2
2hA

pD1p2p1

!G0 . ~91!

Finally, the nominallyO(p3) diagram Fig. 2~j! does not
have the transition anapole Lorentz structure. It contribu
only to the pole part of the Siegert operator, and its effec
completely renormalized away by the counterterm.

An additional class of contributions toaD
L arises from the

insertion of PC nucleon or delta resonance magnetic
ments. The relevant diagrams are collected in Fig. 4. Si
the PV pND vertices areO(p2), the correction from Figs
4~e!–~h! is O(p5) or higher. In contrast, when the PV verte
is Yukawa type as in Figs. 4~a!–~d!, these diagrams naivel
03300
.

s
is

o-
e

appear to beO(p3). However, such diagrams vanish aft
integration within the framework of HBxPT for reasons dis-
cussed below@see Eq.~92!#. Moreover, these diagrams d
not generate the tensor structure given in Eq.~6!. As for the
PV electromagnetic insertions in Fig. 5, their contribution
O(p4) or higher, as we have explicitly verified, and we n
glect them in the present analysis.

In principle, a large number of diagrams contribute todD
L

at one loop order. However, our truncation atO(p3) signifi-
cantly reduces the number of diagrams that must be exp
itly computed. For example, the amplitudes in Fig. 5~b! and
5~e! are O(p4). The diagram in Fig. 2~j! arises from the
expansion of thedi terms in Eq.~62! up to two pions, and its
contribution is alsoO(p4). The diagrams arising from PV
axial and vector vertices in Figs. 2 and 3 do not have
tensor structure as in Eq.~5!. Another possible source is PC
magnetic insertions in Fig. 4 with the PV Yukawa vertice
However, their contribution vanishes after the loop integ
tion is performed. For example, for Fig. 4~a! we have

iM 4a5 ie
mnhpgpND

A3FpmN

emnab«mqnvaSb

3E dDk

~2p!D

ks

~v•k!@v•~q1k!#~k22mp
2 1 i e!

522ie
mnhpgpND

A3FpmN

emnab«mqnvaSb

3E
0

`

sdsE
0

1

duE dDk

~2p!D

3
ks

@k21sv•k1usv•q1mp
2 #3

~92!

wheremn is the neutron magnetic moment,qm is the photon
momentum,« is the photon polarization vector,s has the
dimensions of mass, and we have Wick rotated to Euclid
momenta in the second line. From this form it is clear th
iM 4a}vs . However, the indexs is associated with the delt
spinor, and from the constraintTsvs50 we conclude that
this amplitude vanishes. Similar arguments hold for the
maining diagrams in Fig. 4. Hence, the only nonvanish
contributions toO(p3) come from the PV Yukawa vertice
of Figs. 2~a!–~c! and 3~a!–~c!, including the associated 1/MN
corrections.

The chiral correction from the PVpNN Yukawa vertex
reads

dD
L ~Y1!52

A3

3p
hpgpNDF1

4
G01

d

mp
F3

NG . ~93!

The 1/mN correction to the propagator yields

dD
L ~Y2!52

A3

3p
hpgpND

mp

mN
F4

N ~94!
1-13
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while the 1/mN correction to the strong vertex leads to

dD
L ~Y3!52

A3

3p
hpgpNDFp2 mp

mN
2

d

2mN
G02

d2

mNmp
F5

NG .
(95)

Similarly, the PVpDD Yukawa vertex yields

dD
L ~YD1!52

A3

9p
hDgpNDF1

4
G02

d

mp
F3

DG . ~96!

The 1/mN correction to the propagator yields

dD
L ~YD2!52

A3

9p
hpgpNDFp

2

mp

mN
1

d

2mN
G0

2
d2

mNmp
F3

D2
d22mp

2

mNmp
F4

DG , ~97!

while the 1/mN correction to the strong vertex leads to

dD
L ~YD3!5

A3

9p
hpgpNDFp2 mp

mN
1

d

2mN
G02

d2

mNmp
F3

DG .
(98)

Summing the results in Eqs.~82!–~98! we obtain the total
loop contributions toaD anddD :

aD
L ~ tot!52

A3

6p
gpNDhpF Lx

mp
F0

N2
1

24

Lx

mN
G01

Lx

mN
F1

N

1
Lx

mN

d

mp
F2

NG1
A3

18p
gpNDhDF Lx

mp
F0

D2
11

24

Lx

mN
G0

2
Lx

mN
S d2

mp
2 21DF1

DG1
A6

36
gpND

3S hV
01

4

3
hV

2 DG01
1

6
gpNDS hV

D1D0

A3
1hV

D11D1D G0

2
1

6
~hA

pD1p1p2
2hA

pD1p2p1

!G0 ~99!

dD
L ~ tot!52A 3

3p
hpgpNDF1

4
G01

d

mp
F3

N1
mp

mN
F4

N1
p

2

mp

mN

2
d

2mN
G02

d2

mNmp
F5

NG2
A3

9p
hDgpND

3F1

4
G02

d

mp
F3

D2
d22mp

2

mNmp
F4

DG . ~100!

VI. PV pND d-WAVE CONTRIBUTION

The PVpND d-wave interaction given in Eq.~77! can be
derived from the more general, nonlinear PVf i terms in the
general PVpND effective Lagrangian in Appendix A. Fo
present purposes, we require only the terms involvingD1:
03300
L pND
PV 52A2

3

f pD1p0

Fp
p̄g5Dm

1Dmp0

1A1

3

f nD1p2

Fp
n̄g5Dm

1Dmp21H.c. ~101!

where

f pD1p0522 f 11
4

3
f 422 f 322 f 5

f nD1p2522 f 112 f 212 f 32
2

3
f 422 f 5 .

~102!

In order to see thed-wave character of these interactions, w
make the replacement

g5→
l mgmg5

mD1mN
~103!

wherel m is the pion momentum. In the nonrelativistic limi
the spatial part ofgmg5 is just Sm , so that these interaction
are quadratic inl m as advertised.

The dominant contribution fromL pND
PV to ALR arises from

thes-channel process of Fig. 1~e!. In addition, theu-channel
diagram (p and g vertices interchanged! also contributes.
The latter is strongly suppressed, however, byGD

2 /mD
2

;0.01 for resonant kinematics, making its effect commen
rate with that of other background contributions, such as
s-channel amplitude containing nucleon,Dp, etc. intermedi-
ate states. Consequently, we do not include it explicitly he
Similarly, as shown in Appendix C, loop contributions to th
PV pND d-wave interaction arise only at higher order th
we include here. Hence, we compute only the tree-level c
tribution to ALR .

The full expressions for the PV and PC cross sections
too lengthy to be presented here. For illustrative purpos
however, we quote the lowest-order contributions. In do
so, we adopt the following counting:~1! We count
mN ,mD ,km;O(p0) andqm ,l m;O(p) wherekm ,qm ,l m are
the electron, photon and pion momenta, respectively.~2!
Whenever we encounter scalar product of two momenta,
first employ the on-shell condition and other kinematic
constraints like (p1q)25pD

2 5mD
2 . For example, we have

l •k;O(p),l •q;O(p2),k•q52Q2/2;O(p2),p•k;O(p0)
etc.

The lowest chiral orderO(p6) parity violating response
function reads

WPV;2
2Q2

9mD
4 ~mN2mD!~mN1mD!2$4Ep

3 mN
5 ~mN

2 1mD
2

22s!116Ep
2 mD

2 mN
3 m3

2~2mN1mD!1EpmD
2 mNmp

2

3~mN
2 26mNmD23mD

2 !~mN
2 1mD

2 22s!

24mD
4 m3

2mp
2 ~mN

2 12mNmD23mD
2 !%, ~104!
1-14
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while the lowest chiral orderO(p4) parity conserving re-
sponse function is

WPC;
16

9mD
~mN2mD!~mN1mD!2m3

2$22Epm3
2mN

3

1mDmN@2~mN
2 2s!m2

22mNEpm3
2#

13mD
2 @4~mN

2 2s!m2
21mNEpm3

2#%. ~105!

The lowest order expressions forEp ,m2
2 ,m3

2 are

Ep5
mD

2 2mN
2 1mp

2

2mDmN
~mD2q0! ~106!

m2
25

mD
2 2mN

2 1mp
2

2mD
q0 ~107!

m3
25

mD
2 2mN

2 1mp
2

2mD

Q21s2mN
2

2mD
~108!

whereq05(mD
2 2Q22mN

2 )/2mD .
From these expressions, we obtain the contribution to

asymmetry from Fig. 1~e!:

ALR
D @D (3)

p ~d wave!#5
f NDp

gpND
H~Q2,s!P~Q2,s!

2Q2

Lx~mD1mN!

(109)

where

f NDp5
1

3
f nD1p21

2

3
f pD1p0. ~110!

The functionH(Q2,s) is defined as

P~Q2,s!H~Q2,s!5
Lx

Q2

M PV

M PC
~111!

where we have inserted the factorLx to make the whole
expression dimensionless. Explicit numerical calculat
shows that

uH~Q2,s!u,0.1 ~112!

over the kinematic range of the Jefferson Lab measurem
At present, the PVNDp coupling f NDp is unknown. In

Sec. VII, we discuss various estimates for its magnitude.
note, however, that the PVd-wave contribution toALR has
the same leadingQ2 dependence as the anapole and neu
current contributions, and it is consequently highly unlike
that one will be able to isolate this term using the remain
kinematic dependences contained inH. Thus, we treatf NDp

as an additional source of uncertainty in theO(aGF) contri-
butions.
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VII. LOW-ENERGY CONSTANTS AND HADRONIC
RESONANCES

As discussed in Ref.@12#, a rigorous HBxPT treatment of
RA

Siegert, RA
anapole, andRA

d wave would use measurements of th
axial response to determine thea priori unknown constants
aD

CT , dD
CT , andf NDp . Our goal in the present work, howeve

is to estimate the size of the radiative corrections in orde
clarify the interpretation of the proposed measurement.
that end, we turn to theory in order to estimate the size
these counterterms. Because they are governed in part b
short-distance (r .1/Lx) strong interaction, such terms ar
difficult to compute from first principles in QCD. One ma
however, obtain simple estimates using the ‘‘naive dime
sional analysis’’ of Ref.@38#. According to this approach
effective weak interaction operators should scale as

S c̄c

LxFp
2 D kS p

Fp
D l S Dm

Lx
D m

3~LxFp!23gp , ~113!

where

gp;
GFFp

2

2A2
~114!

is the scale of weak charged current hadronic processes
cussed above andDm is the covariant derivative. In all case
of interest here, one hask51. The interactions of Eqs.~5!,
~6! correspond tol 50 andm52 ~Siegert operator! and m
53 ~anapole operator!. Consequently, the Siegert and an
pole interactions should scale asgp /Lx andgp /Lx

2 , respec-
tively. For the PVNDp d-wave interaction, one hasl 51
andm51, so that this interaction should scale asgp /Fp ~the
heavy baryon expansion includes an additional explicit fac
of Dm /MN). From the normalization of the operators in Eq
~5!,~6!,~101!, we conclude thatdD

CT , aD
CT , and f NDp should

all beO(gp). As we discuss below, however, different mo
els for short distance hadron dynamics governing these
energy constants may yield significant enhancements o
the NDA scale.

Transition anapole

In our previous work@12#, we adopted a resonance sat
ration model for the elastic analogues ofaD . The justifica-
tion for this choice relies on experience withxPT in pseu-
doscalar meson sector, where theO(p4) low-energy
constants are well described using vector meson domina
~VMD ! @39#. In Ref. @12#, we used VMD and obtained large
negative values foraN

CT . The resulting prediction forRA
p lies

closer to the experimental result than if one assumed theaN
CT

were of ‘‘natural’’ size. Consequently, we adopt a simila
approach here in order to estimateaD

CT .
The relevant VMD diagrams are shown in Fig. 6. No

that parity violation enters through the vector meso
nucleon-delta interaction vertices. The relevant PV vec
meson-nucleon Lagrangians are@40#
1-15
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L rND
PV 52hDNr

0 N̄rm iTm i2hDNr
1 N̄rm0Tm

3 2hDNr81

3~N̄rm1Tm22N̄rm2Tm12N̄t irm iTm
3 !1H.c.

~115!

L DNv
PV 52hDNv

1 N̄vmT3
m1H.c., ~116!

where the PV coupling constantshDNr
i etc. have been esti

mated in Refs.@40#.
For theV-g transition amplitude, we use

LVg5
e

2 f V
FmnVmn , ~117!

wheree is the charge unit,f V is theg-V conversion constan
(V5r0,v,f), and Vmn is the corresponding vector meso
field tensor.~This gauge-invariant Lagrangian ensures t
the diagrams of Fig. 6 do not contribute to the charge of
nucleon.! The amplitude of Fig. 6 then yields

aD
CT~VMD !5A2

3

hDNr
0 1hDNr

1 2hDNr81

f r
S Lx

mr
D 2

1A2

3

hDNv
1

f v
S Lx

mv
D 2

, ~118!

An important consideration when analyzing the impact
aD

CT(VMD) is the overall sign, which is set in large part b
the relative phase betweenhDNr

i and thef V . The same issue
arises for the overall sign ofaN

CT(VMD), which depends on
the PV NNV couplingshV

i and f V . In Ref. @12# we deter-
mined the relative phase betweenf r andhr

i using the sign of

the measured PVpW p elastic asymmetry@41–44# and the
VMD contribution to nucleon charge radii@45#. The resulting
phase ishr

i / f r.0. The authors of Ref.@40# obtain ‘‘best
values’’ for hDNr

0 ,hDNr
1 ,hDNv

1 having opposite sign from the
hr

i while hDNr81 is very close to zero. Within the context o
this model, then, we obtainhDNr

i / f r,0, hDNv
1 / f r,0. From

Eq. ~45!, we obtain apositivecontribution toRA
anapolefrom

the short-distance part of the anapole transition form fac

FIG. 6. Vector meson contribution toaD . Shaded circle indi-
cates PV hadronic coupling. The wavy line is the photon fi
which transforms into the vector mesons denoted by the do
line.
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Siegert operator

A straightforward application of power counting show
that t-channel exchange of vector mesons cannot contrib
to dD

CT . To obtain estimates for the latter, we consider co
tributions fromJp5 1

2
2 and 3

2
2 baryon resonances, as ind

cated in Fig. 7. Here, the pseudoscalar, nonleptonic w
interactionH W

PV mixes states of the same spin and oppos
parity into the initial and final baryon states, while theg*
vertex brings about theDJ51 transition. A similar approach
was used in Refs.@23,24# in analyzing theDS51 nonlep-
tonic and radiative decays of octet baryons. A particula
interesting application of baryon resonance saturation
volves the electric dipole transitions for the decaysS1

→pg andJ2→S2g. As noted earlier, Hara’s theorem im
plies that these amplitudes vanish when SU~3! symmetry is
exact, leading to vanishing asymmetry parametersaBB8 for
the decays. Naively, one would expect the measured as
metries to be of the typical order for SU~3!-breaking correc-
tions: aBB8;ms /MB;0.15, wherems is the strange quark
mass. Experimentally, however, one finds@27,46#

aS1p520.7660.08 ~119!

aJ0S0
520.6360.09. ~120!

The theoretical challenge has been to account for th
enhanced values ofaBB8 in a manner consistent with th
corresponding nonleptonic decay rates. While a numbe
approaches have been attempted, the inclusion of1

2
2 reso-

nances as in Fig. 7~a! appears to go the farthest in enhanci
the theoretical predictions for the asymmetries while sim
taneously helping to resolve theS-wave/P-wave problem in
the nonleptonicB→B8p channel. If1

2
2 resonance saturatio

is indeed the correct explanation for the enhancedDS
51 PV radiative asymmetries, then one would naturally e
pect a similar mechanism to play an important role in t
DS50 PV electric dipole transition.

In employing baryon resonance saturation to estim
dD

CT , a number of considerations should be kept in mind:
~i! In contrast to the purely charged current~CC! DS51

nonleptonic weak interaction, the HamiltonianH W
PV(DS

50) of interest here receives both~CC! and neutral current
~NC! contributions. Moreover, the up- and down-quark C
component of H W

PV(DS50) is enhanced relative to
H W

PV(DS51) byVud /Vus'4.5. Naively, then, one might ex

pect the DS50 1
2

2↔ 1
2

1 and 3
2

2↔ 3
2

1 amplitudes to be

le

FIG. 7. Resonance saturation contributions todD
CT , where

shaded circles denote PV transition matrix element.
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larger than theDS51 1
2

2↔ 1
2

1 amplitudes by this factor
However, there exist situations where symmetry consid
ations imply a suppression of theDS50 CC nonleptonic
amplitudes relative to theDS51 channel. At leading order
for example, the CC contribution to the PVNNp coupling
hp contains aVus /Vud suppression relative to the scale
DS51 weak mesonic decays. Although we see noa priori

reason for such a suppression in the1
2

2↔ 1
2

1 and 3
2

2↔ 3
2

1

weak amplitudes, we cannot rule out the possibility in t
absence of a detailed calculation.

~ii ! At present, one has information on the1
2

2↔ 1
2

1 DS
51 amplitudes from fits to theS-waveDS51 mesonic de-

cays, yet no information exists on theDS50,1 3
2

2↔ 3
2

1 or

DS50 1
2

2↔ 1
2

1 amplitudes. Since we seek only to provid
an estimate fordD and not to perform a detailed treatment
the underlying quark dynamics, we use the results of R

@24# for the DS51 1
2

2↔ 1
2

1 amplitudes for guidance in se
ting the scale of theDS50 weak matrix elements.

~iii ! The lowest-lying four star resonances which m
contribute to the amplitudes of Fig. 7 are given in Table
In computing the amplitudes associated with Fig. 7, we

quire the electromagnetic~e.m.! R( 1
2

2)→D(1232) and

R( 3
2

2)→N(939) transition amplitudes. The e.m. decays
the 1

2
2 resonances to theD(1232) have not been observe

whereas the partial widths forR( 3
2

2)→pg have been seen a
the expected rates. For purposes of estimatingdD , then, we
consider only the contributions from Fig. 7~b! involving the
3
2

2 resonances.
~iv! The lowest order weak and e.m. Lagrangians nee

in evaluation of the amplitudes of Fig. 7~b! are

L EM
RN5

eCR

Lx
R̄mgnpFmn1H.c. ~121!

L PV
RD5 iWRR̄mDm1H.c., ~122!

where, for simplicity, we have omitted labels associated w
charge and isospin and denoted the spin-3/2 field byRm. The
constantsCR and WR are unknowna priori. Using Eqs.
~121!, ~122!, we obtain from the diagrams of Fig. 7~b!

TABLE III. Four star resonances which may contribute to t
amplitudes of Fig. 7. Final column gives branching fraction for t
radiative decayR→pg, whereR denotes the resonant state.

Resonance I (Jp) G tot ~MeV! Gpg /G tot

S11 N(1535) 1
2 ( 1

2
2) 150 0.15–0.35 %

S11 N(1650) 1
2 ( 1

2
2) 150 0.04–0.18 %

S31 D(1620) 3
2 ( 1

2
2) 150 0.004–0.044 %

D13 N(1520) 1
2 ( 3

2
2) 120 0.46–0.56 %

D33 D ~1700! 3
2 ( 3

2
2) 300 0.12–0.26 %
03300
r-

e

f.

.
-

f

d

h

dD
CT~res!5

CRWR

MR2MD
. ~123!

From the experimental EM decay widths given in Table I
we find

uC1520u'0.9860.05 ~124!

uC1700u'0.7060.13 ~125!

with the overall sign uncertain. For the weak amplitud
WR , we note that the analysis of Ref.@24# obtained
uWR(DS51)u;231027 GeV '5gpLx . Writing our esti-
mates fordD in terms of this quantity we have

dD
CT~res!;17gpF W1520

WR~DS51!G18gpF W1700

WR~DS51!G
(126)

with an uncertainty as to the overall phase.
To the extent thatuWR(DS50)u;uWR(DS51)u, we

would anticipateudD
CT(res)u;(10–25)gp . For comparison,

we obtainaD
CT(VMD) ;215gp using the ‘‘ best values’’ of

Ref. @40#. Thus, it is reasonable to expectudD /aDu;1 ~up to
chiral corrections!.

~v! Based on NDA, one would might have expect
uWR(DS50)u;gpLx ~see, e.g. Refs.@30,38# for generic ar-
guments! and, thus,dD;gp . However, the results of Ref
@24# give uWR(DS51)u;5gpLx , while the energy denomi-
nators in Eq.~123! suggest additional enhancement factors
2 to 3. Since theDS50 amplitudes are generally furthe
enhanced byVud /Vus as well as neutral current contribu
tions, our estimate ofdD

CT(res) could be four to five times
larger than given in Eq. ~126! with uWR(DS50)u
;uWR(DS51)u. Hence, we quote in Table IV a ‘‘ reasonab
range’’ based on this possible factor of 4 enhancement.
‘‘ best values’’ are given by takinguWR(DS50)u;uWR(DS
51)u. Given that the relative phase between theCR andWR
is undetermined by the foregoing arguments, we quote a
value and reasonable range for theudD

CT(res)u only.

PV N D p d-wave coupling

One may also apply the12
2, 3

2
2 resonance model in orde

to estimate thed-wave coupling f NDp . The relevant dia-
grams are similar to those of Fig. 7 with theg replaced by a
p. For the 1

2
2 contributions, we require the partial width

G( 1
2

2→Dp). However, for the resonances listed in Table I
only theS31(1620) has an appreciableDp partial width. In
the case of the32

2 states, we need theNp partial widths. In
this case, large contributions arise from theD13(1520) and

TABLE IV. Best values and reasonable ranges fordD
CT, aD

CT.

Coupling Best value Reasonable range

udD
CT(res)u 25gp 0→100gp

aD
CT(VMD) 15gp (215→70)gp

u f NDpu 4gp 0→16gp
1-17
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D33(1700). While a complete calculation would include
sum over all resonances, we focus for our estimate only
the latter two states for simplicity. The corresponding stro
decay Lagrangians are

L I 51/2
D13Np

5 igD13NpR̄mAmg5N1H.c. ~127!

L I 53/2
D33Np

5 igD33NpN̄v i
mg5Rm

i 1H.c.,
~128!

whereRm andRm
i denote theI (Jp)5 1

2 ( 3
2

2) and 3
2 ( 3

2
2) reso-

nance states, respectively, and from the experimental pa
waves, we obtain

ugD13Npu51.0560.08 ~129!

ugD33Npu50.6360.14. ~130!

The weak PV3
2

1-3
2

2 interaction is given in Eq.~122!.
The resulting PVd-wave couplings involving theD1 are

u f NDpu;4gpU WR~1700!

W~DS51!
U. ~131!

The contributions fromD13(1520) to thenp1 andpp0 am-
plitudes cancel due to isospin symmetry, leaving only
D33(1700) contribution in this approximation. As befor
taking WR;WR(DS51) yields weak couplings notabl
larger thangp . The corresponding best values and reas
able ranges are given in Table IV.

VIII. THE SCALE OF RADIATIVE CORRECTIONS

In the absence of target-dependent QCD effects,
O(aGF) contributions toDp

(3) are determined entirely by th
one-quark correctionsRA

ewk as defined in Eq.~30!. As noted
above,RA

ewk incorporates the effects of both theO(a) cor-
rections to the definition of the weak mixing angle in E
~27! as well as theO(aGF) contributions to the elementar
e-q neutral current amplitudes. The precise value ofRA

ewk is
renormalization scheme dependent, due to the truncatio
the perturbation series atO(aGF). In Table V, we give the
values of sin2uW, 22(C2u2C2d), andRA

ewk in the OSR and
MS schemes. We note that the impact of theO(a) one-quark
corrections to the tree-level amplitude is already significa
decreasing its value by;50%. As noted in Sec. I, this siz
able suppression results from the absence in various loop
the 124 sin2uW factor appearing at the tree level, the appe
ance of large logarithms of the type lnmq /MZ , and the shift

TABLE V. Weak mixing angle and one-quarkO(aGF) contri-
butions to isovector axial transition current.

Scheme sin2uW 22(C2u2C2d) RA
ewk

Tree level 0.2121560.00002 0.3028 0
OSR 0.2228860.00034 0.1404 20.536

MS 0.2311760.00016 0.1246 20.589
03300
n
g

ial

e
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e
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-

in sin2uW from its tree-level value.4

In discussing the impact of many-quark corrections, it
useful to consider a number of perspectives. First, we co
pare the relative importance of the one- and many-quark
rections by studying the ratiosRA

( i ) . Using the results of
Secs. V–VII, we derive numerical expressions for these
tios in terms of the various low-energy constants. For
relevant input parameters we usegA51.26760.004 @27#,
gpND51.05 @31#, Gm51.16631025 GeV22, d50.3 GeV,
m5Lx51.16 GeV, f r55.26, f v517 @47#, gp53.8
31028, C5

A50.87 andC3
V51.39 @7#. It is worth mentioning

that 2C5
A is normalized such that this factor becomesgA for

polarizedep scattering. We find then

RA
anapole50.013

1.74

2C5
A 3$20.04hp20.07hV10.006hD

20.18hV
D10.17hA

NDpp10.09uhDNr
0 1hDNr

1 2hDNr81 u

10.025uhDNv
1 u% ~132!

RA
Siegert50.013

1.74

2C5
A 3@0.83dD

CT20.09hp

20.03hD#
0.1GeV2

uq2u

q01W2M

0.6 GeV
~133!

RA
d wave50.001053 f NDp3~C3

V/C5
A!3H~Q2,s!

~134!

where

hV5hV
01

4

3
hV

2 ~135!

hV
D5

hV
D1D0

A3
1hV

D11D1
~136!

hA
NDpp5hA

pD1p1p2
2hA

pD1p2p1
~137!

and where all PV couplings are in units ofgp and
uH(Q2,s)u,0.1.

The expressions in Eqs.~132! illustrate the sensitivity of
the radiative corrections to the various PV hadronic co
plings. As expected on general grounds, the overall size
the RA

( i ) is about 1% when the PV couplings assume th
‘‘natural’’ scale ~NDA!. The relative importance of the Sieg
ert’s term correction, however, grows rapidly whenQ2 falls
below ;0.1 (GeV/c)2. The hadron resonance models
Sec. VII may yield significant enhancements of theRA

( i ) be-
yond the NDA scale. To obtain a range of values for t
corrections, we list in Table VI the available theoretical es

4At this order, the scheme dependence introduces a 10% varia
in the amplitude, owing to the omission of higher-order~two-loop
and beyond! effects.
1-18



te

on
at
i-

s

se
ha
nifi

e
e

ic

p
%
nc

the
of

e
ot

t im-
the
-

ts, it

s

pper
tri-
er

ine
PV
the
ent
.

V

ELECTROWEAK RADIATIVE CORRECTIONS TO . . . PHYSICAL REVIEW D65 033001
mates for the PV constants, including both the estima
given above as well as those appearing in Refs.@40,29#. We
observe that the couplingshA

i , hV
i , dD and hDNr

i are
weighted heavily in the expressions of Eqs.~132!. At
present, these couplings are unconstrained by conventi
analyses of hadronic PV and there exist no model estim
for hA

i and hV
i . Consequently, we allow the various comb

nations of these constants appearing in Eq.~132! to range
between 10gp and210gp , usinggp as a reasonable gues
for their best values.

The resulting values for theRA
( i ) are shown in Table VII

and Fig. 8. For the ratioRA
Siegert, we quote results for two

overall signs (6) for dD , since at present the overall pha
is uncertain. From both Table VII and Fig. 8 we observe t
the importance of the many-quark corrections can be sig
cant in comparison to the one-quark effectsRA

ewk. Moreover,
the theoreticaluncertainty, resulting from the reasonabl
ranges for the PV parameters in Table VI, can be as larg
RA

ewk itself. It is conceivable that the total correctionRA
D

could be as much as61 near the lower end of the kinemat
range for the Jefferson LabN→D measurement. While this
result may seem surprising at first glance, one should kee
mind that theO(aGF) one-quark effects already yield a 50
reduction in the tree-level axial amplitude, while the abse
of the leading factor ofQ2 in the Siegert contribution toALR

TABLE VII. One-quark standard model~SM! and many-quark
anapole and Siegert’s contributions toV(A)3A(N) radiative cor-
rections. Values are computed in the on-shell scheme usingQ2

50.1 (GeV/c)2 and q01W2M50.6 GeV. The plus and minu
signs correspond to the positive and negative values fordD

CT .

Source RA
D(best) RA

D(range)

One-quark~SM! 20.54
Siegert (1) 0.21 0.02→0.85
Siegert (2) 20.21 20.85→20.02

Anapole 0.04 20.09→0.21
d wave 0.0006 20.003→0.003

Total (1) 20.29 20.61→0.52
Total (2) 20.71 21.48→20.35

TABLE VI. Range and the best values for the available P
coupling constants~in units of gp) from Refs. @40,42,12,37# and
this work.

Coupling constants Source Best values Range

hp @40# ~ @42#! 7 ~7! 0→17
hD @40# ~ @42#! 220 (220) 251→0

hDNv
1 @40# ~ @42#! 11 ~10! 5→17

hDNr
0 @40# ~ @42#! 20 ~30! 254→152

hDNr
1 @40# ~ @42#! 20 ~20! 17→26

hDNr81 @40# ~ @42#! 0 ~0! 20.5→2
hV @12# 1 210→10
hV

D this work 1 210→10
hA

NDpp @37# 1 210→10
03300
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enhances the effect of the unknown constantdD for low mo-
mentum transfer. If the Siegert operator is enhanced by
same mechanism proposed to account for the violation
Hara’s theorem inDS51 hyperon radiative decays, then th
magnitude of the effects shown in Table VII and Fig. 8 is n
unreasonable. Conversely, should a future measuremen
ply RA

D;RA
ewk, then one may have reason to question

resonance saturation model for bothdD and the hyperon de
cays.

For the purpose of analyzing prospective measuremen

FIG. 8. Contributions to the electroweak radiative correctionRA
D

at beam energy 0.424 GeV. The short-dashed lines show the u
and lower bounds of the ‘‘reasonable range’’ for the anapole con
bution. The solid line is the one-quark contribution. The upp
~lower! long-dashed line is the Siegert term withdD525gp

(225gp). The dotted line is thed-wave contribution.

FIG. 9. Ratio of asymmetry componentsr i5ALR
i /ALRtot

NC , where
ALRtot

NC denotes the total neutral current contribution. The dotted l
gives the Siegert contribution; the long-dashed line is for the
d-wave; the short dashed lines give our ‘‘reasonable range’’ for
anapole effect; and the solid line is for axial vector neutral curr
contribution. All the other parameters are the same as in Fig. 8
1-19
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is also useful to consider the contributions to the total asy
metry generated by the variousO(aGF) effects. In Figs. 9,
10, we plot the ratios

r i5
ALR@D (3)

p ~ i !#

ALR~NC tot!
, ~138!

whereALR(NC tot) is the total neutral current contribution
the asymmetry andi denotes the Siegert, anapole, a
d-wave contributions. In Fig. 9, we show the band genera
by the anapole term, where the limits are determined by
ranges in Table VII. For simplicity, we show the Siegert co
tribution for only the single case:dD525gp , where the ef-
fective couplingdD contains both the counterterm and loo

FIG. 10. Same as Fig. 9 but omitting the anapole and PVd-wave
curves and showing Siegert contribution for several values of
coupling dD . The dotted, dashed and dashed-dotted lines are
dD51gp , 25gp and 100gp respectively. The solid line is for the
axial vector neutral current contribution. All the other paramet
are the same as in Fig. 9.
03300
-

d
e

-

effects, noting thatdD is dominated bydD
CT . In Fig. 10, we

give the variation of the Siegert contribution for a range
dD values, where this range is essentially determined by
range fordD

CT given in Table IV.
From the plots in Figs. 9 and 10, we observe that

uncertainty associated with the anapole andd-wave terms
can be as much as;25% of the nominal axial NC contribu
tion. The uncertainty associated with the Siegert contribut
is even more pronounced. ForQ2&0.1 (GeV/c)2, this un-
certainty is6100% of the axial NC contribution, decreasin
to &15% atQ250.5 (GeV/c)2. Evidently, in order to per-
form a meaningful determination ofCi

A(Q2), one must also
determine the size of the Siegert contribution. Since theQ2

variation of the latter can be as large as that associated
Ci

A(Q2) for 0.1&Q2&0.5 (GeV/c)2, one may not be able to
rely solely on theQ2 dependence of the asymmetry in th
regime in order to disentangle the various effects.

Rather, in order to separate the Siegert contribution fr
the other axial terms, one would ideally measureALR in a
regime where the Siegert term dominates the asymmetry
shown in Fig. 11, the Siegert contribution can become
large as the leading, D (1)

p contribution for Q2

&0.05 (GeV/c)2. To estimate the experimental kinemati
optimal for a determination ofdD in this regime, we plot in
Fig. 12 the total asymmetry for lowQ2. To set the scale, we
use the benchmark feasibility estimates of Ref.@5#, based on
the experimental conditions in Table VIII.

From the figure of merit computed in Ref.@5#, one obtains
a prospective statistical accuracy of;27% at E
5400 MeV, u5180° andQ250.054 (GeV/c)2. A measure-
ment with such precision would barely resolve the effect
dD56100gp . Doubling the beam energy and going to mo
forward angles~e.g.,u520°!, while keepingQ2 essentially
the same, would reduce the statistical uncertainty to roug
5% . At this level, one would be able to resolve the effect
dD having roughly the size of our ‘‘best value.’’ More gen
erally, a forward angle (u&20°) measurement forE
;1 GeV appears to offer the most promising possibility f

e
or

s

c-
pt
n-
d

are
FIG. 11. Asymmetry components as a fun
tion of uq2u and beam energy 0.424 GeV. Exce
for dD , all the parameters are taken from the ce
tral values of Table VI. The bold long-dashe
~dashed! line is for ALR(D (1)

p ) @ALR(D (2)
p )#. The

solid, dashed-dotted, dotted and dashed lines
for ALR(D (3)

p ) at dD50, 25gp , 50gp, 75gp , and
100gp .
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determiningdD . Such a measurement would have two be
efits:~a! providing a test in theDS50 channel of the mecha
nism proposed to explain the violation of Hara’s theorem
the DS51 hyperon radiative decays, and~b! helping con-
strain the dD-related uncertainty in an extraction of th
Ci

A(Q2) for Q2*0.1 (GeV/c)2.
Finally, we comment on theQ2 dependence of the variou

O(aGF) effects analyzed here. The scale of theQ2 depen-
dence of the one-quark corrections is determined essent
by MZ , making the impact of this variation negligible ove
the range of kinematics considered. The leadingQ2 depen-
dence of the Siegert, anapole, and PVd-wave effects is de-
termined by the operator structure of Eqs.~5!, ~6!, ~77!. The
subleadingQ2 behavior arises from the loops considered
Sec. V as well as higher-order operators in the effective
grangian. At present, the latter are completely undetermin
In principle, one could extend the resonance saturation m
els of Sec. V in order to generate the subleadingQ2 behavior.
The reliability of such a model extrapolation is largely u
tested in the baryon sector, however, and we do not incl
any subleadingQ2 behavior in our analysis. One should be
in mind, however, that forQ2*0.5(GeV/c)2—a scale where
the chiral expansion becomes unreliable—our lack of kno
edge of the subleadingQ2 behavior of theO(aGF) correc-
tions introduces additional uncertainty.

TABLE VIII. Possible experimental conditions forALR mea-
surement.

Experimental parameter Benchmark value

Luminosity L 231038 cm22 s21

Running timeT 1000 h
Solid angleDV 20 msr

Electron polarizationPe 100%

FIG. 12. Total asymmetry at smalluq2u for severaldD . The
couplings are at central values of Table VI. The lines fordD

50, 25gp ,75gp, 50gp and 100gp are the solid, dashed, dashe
dotted, dotted and long-dashed lines.
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IX. CONCLUSIONS

Parity violation in the weak interaction has become
important tool for probing novel aspects of hadron a
nuclear structure. At present, an extensive program of
electron scattering experiments to determine the stran
quark vector form factors of the nucleon is underway at M
Bates, Jefferson Lab, and Mainz@48#. A measurement of the
neutron radius of208Pb is planned for the future at Jefferso
Lab @49#, and measurements of nonleptonic PV observab
are being developed at Los Alamos, NIST, and Jefferson
@50#. In the present study, we have discussed the applica
of PV electron scattering to study theN→D transition,
which holds significant interest for our understanding of t
low-lying qqq spectrum. We have argued the following.

~i! The O(aGF) contributions to the axial vectorN→D
response generate a significant contribution to the PV as
metry. One must, therefore, take these effects into consi
ation when interpreting any measurement of the asymme

~ii ! A substantial fraction of theO(aGF) contributions
arise from weak interactions among quarks. A particula
interesting ‘‘many-quark’’ contribution of this nature in
volves the PVgND electric dipole coupling,dD , whose
presence leads to a nonvanishing asymmetry at the ph
point.

~iii ! A determination ofdD via, e.g., a low-Q2 asymmetry
measurement, would both sharpen the interpretation o
planned Jefferson Lab PVD electroexcitation experimen
and shed light on the dynamics of mesonic and radia
hyperon weak decays. Indeed, one may conceivably disc
whether the anomalously large violation of QCD symmetr
observed in the latter is simply a peculiarity of theDS51
channel or a more general feature of low-energy hadro
weak interactions. At the same time, knowledge ofdD would
allow one to place new constraints on the axial transit
form factors Ci

A(Q2) from PV asymmetry measuremen
taken over a modest kinematic range.

~iv! Experimental results for theDS51 decays sugges
that the PVN→D asymmetry generated bydD could be
large, approaching a few31026 asQ2→0. Measurement of
an asymmetry having this magnitude using forward an
kinematics at existing medium energy facilities appears to
within the realm of feasibility.

More generally, the subject of hadronic effects in ele
troweak radiative corrections has taken on added interes
cently in light of new measurements of the muon anomal
magnetic moment@51# and backward angle PV elasticep
and quasielasticed scattering@15#. The results in both case
differ from standard model predictions, with implication
resting on the degree to which one can compute hadro
contributions to radiative processes. The interpretation of
ture precision measurements, including determination of
asymmetry parameter in neutronb decay and the rate fo
neutrinolessbb decay, will demand a similar degree of co
fidence in theoretical calculations of higher-order, hadro
electroweak effects. Thus, any insight that one might der
from studies in other contexts would represent a welco
contribution. To this end, a comparison of PV electroexci
tion of the D with the corresponding neutral curren
1-21
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n-inducedD excitation would be particularly interesting, a
the latter process is free from the largeO(aGF) hadronic
effects entering PV electroexcitation@13,25#.
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APPENDIX A: EFFECTIVE PC AND PV LAGRANGIANS

Defining the chiral vector and axial vector currents as

Dm5Dm1Vm

Am52
i

2
~jDmj†2j†Dmj!52

Dmp

Fp
1O~p3!

~A1!

Vm5
1

2
~jDmj†1j†Dmj! ~A2!

we quote the relativistic PC Lagrangian forp, N, D, andg
interactions needed here:

L PC5
Fp

2

4
Tr DmSDmS†1N̄~ iD mgm2mN!N

1gAN̄Amgmg5N1
e

Lx
N̄~cs1cvt3!smnFmn

1 N

2Ti
mF ~ iD a

i j ga2mDd i j !gmn2
1

4
gmgl~ iD a

i j ga

2mDd i j !glgn1
g1

2
gmnAa

i j gag51
g2

2
~gmAn

i j

1Am
i j gn!g51

g3

2
gmAa

i j gag5gnGTj
n1gpND

3@ T̄i
m~gmn1z0gmgn!v i

nN1N̄v i
n†

3~gmn1z0gngm!Ti
m#2 ie

cDqi

Lx
T̄i

mFmn
1 Ti

n

1F ie

Lx
T̄3

m~ds1dvt3!gng5Fmn
1 N1H.c.G ~A3!

whereDm and Dm are, respectively, chiral and electroma
netic covariant derivatives, andS, j, Fmn

6 etc. are defined in
Sec. IV above. The constantscs ,cv are determined in term
of the nucleon isoscalar and isovector magnetic momentscD

is theD magnetic moment,ds ,dv are the nucleon and delt
transition magnetic moments, andz0 is an off-shell param-
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eter which is not relevant in the present work@31#. Our con-
vention forg5 is that of Bjorken and Drell@52#.

The PV analogue of Eq.~A3! can be constructed using th
chiral fieldsXL,R

a defined in Eq.~63!. We find it convenient
to follow the convention in Ref.@36# and separate the PV
Lagrangian into its various isospin components. The h
ronic weak interaction has the form

HW5
Gm

A2
JlJl †1H.c., ~A4!

where Jl denotes either a charged or neutral weak qu
current. In the standard model, the strangeness conser
charged currents are pure isovector, whereas the neutral
rents contain both isovector and isoscalar components. C
sequently,HW containsDT50,1,2 pieces and these channe
must all be accounted for in any realistic hadronic effect
theory.

We quote the relativistic Lagrangians, but employ t
heavy baryon projections, as described above, in compu
loops. It is straightforward to obtain the corresponding hea
baryon Lagrangians from those listed below, so we do
list the specific PV heavy baryon forms below. For thepN
sector we have

L DT50
pN 5hV

0N̄AmgmN ~A5!

L DT51
pN 5

hV
1

2
N̄gmNTr~AmX1

3 !2
hA

1

2
N̄gmg5NTr~AmX2

3 !

2
hp

2A2
FpN̄X2

3 N ~A6!

L DT52
pN 5hV

2I abN̄@XR
aAmXR

b1XL
aAmXL

b#gmN

2
hA

2

2
I abN̄@XR

aAmXR
b2XL

aAmXL
b#gmg5N.

~A7!

The above Lagrangian was first given by Kaplan and Sav
@36#. However, the coefficients used in our work are sligh
different from those of Ref.@36# since our definition ofAm
differs by an overall phase.

The term proportional tohp contains no derivatives and
at leading order in 1/Fp , yields the PVNNp Yukawa cou-
pling traditionally used in meson-exchange models for
PV NN interaction@29,43,44#. Unlike the PV Yukawa inter-
action, the vector and axial vector terms in Eqs.~A5!–~A7!
contain derivative couplings. The terms containinghA

1 ,hA
2

start off with NNpp interactions, while all the other term
start off asNNp. Such derivative couplings are not include
in conventional analyses of nuclear and hadronic PV exp
ments. Consequently, the experimental constraints on
low-energy constantshV

i , hA
i are unknown.

The corresponding PV Lagrangians involving aN→D
transition are somewhat more complicated. The analogue
Eqs.~A5!–~A7! are
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L DI 50
pDN 5 f 1eabcN̄ig5@XL

aAmXL
b1XR

aAmXR
b #Tc

m

1g1N̄@Am ,X2
a #1Ta

m1g2N̄@Am ,X2
a #2Ta

m1H.c.

~A8!

L DI 51
pDN 5 f 2eab3N̄ig5@Am ,X1

a #1Tb
m

1 f 3eab3N̄ig5@Am ,X1
a #2Tb

m1
g3

2
N̄@~XL

aAmXL
3

2XL
3AmXL

a!2~XR
aAmXR

32XR
3AmXR

a !#Ta
m

1
g4

2
$N̄@3XL

3Am~XL
1Tm

1 1XL
2Tm

2 !13~XL
1AmXL

3Tm
1

in
,

ay
nd
tw
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1XL
2AmXL

3Tm
2 !22~XL

1AmXL
11XL

2AmXL
2

22XL
3AmXL

3!Tm
3 #2~L↔R!%1H.c. ~A9!

L DI 52
pDN 5 f 4eabdI cdN̄ig5@XL

aAmXL
b1XR

aAmXR
b #Tc

m

1 f 5eab3N̄ig5@XL
aAmXL

31XL
3AmXL

a1~L↔R!#Tb
m

1g5I abN̄@Am ,X2
a #1Tb

m1g6I abN̄@Am ,X2
a #2Tb

m

1H.c., ~A10!

where the terms containingf i andgi start off with single and
two pion vertices, respectively.

For the PVpDD effective Lagrangians we have
L DI 50
pD 5 j 0T̄iAmgmTi , ~A11!

L DI 51
pD 5

j 1

2
T̄igmTiTr~AmX1

3 !2
k1

2
T̄igmg5TiTr~AmX2

3 !2
hpD

1

2A2
f pT̄iX2

3 Ti2
hpD

2

2A2
f p$3T3~X2

1 T11X2
2 T2!

13~ T̄1X2
1 1T̄2X2

2 !T322~ T̄1X2
3 T11T̄2X2

3 T222T̄3X2
3 T3!%1 j 2$3@~ T̄3gmT11T̄1gmT3!Tr~AmX1

1 !

1~ T̄3gmT21T̄2gmT3!Tr~AmX1
2 !#22~ T̄1gmT11T̄2gmT222T̄3gmT3!Tr~AmX1

3 !%1k2$3@~ T̄3gmg5T1

1T̄1gmg5T3!Tr~AmX2
1 !1~ T̄3gmg5T21T̄2gmg5T3!Tr~AmX2

2 !#22~ T̄1gmg5T11T̄2gmg5T2

22T̄3gmg5T3!Tr~AmX2
3 !%1 j 3$T̄

agm@Am ,X1
a #1T31T̄3gm@Am ,X1

a #1Ta%1 j 4$T̄
agm@Am ,X1

a #2T3

2T̄3gm@Am ,X1
a #2Ta%1k3$T̄

agmg5@Am ,X2
a #1T31T̄3gmg5@Am ,X1

a #1Ta%1k4$T̄
agmg5@Am ,X2

a #2T3

2T̄3gmg5@Am ,X1
a #2Ta%, ~A12!

L DI 52
pD 5 j 5I abT̄agmAmTb1 j 6I abT̄i@XR

aAmXR
b1XL

aAmXL
b#gmTi1k5I abT̄i@XR

aAmXR
b2XL

aAmXL
b#gmg5Ti

1k6eab3@ T̄3ig5X1
b Ta1T̄aig5X1

b T3#, ~A13!
ll
where we have suppressed the Lorentz indices of theD field,
i.e., T̄n

•••Tn . The vertices withki start off with two pions.
All other vertices have a single pion at leading order
1/Fp . ThehpD

i are the PVpDD Yukawa coupling constants
in terms of which

hD5hpD
1 1hpD

2 . ~A14!

In addition to purely hadronic PV interactions, one m
also write down PV E.M. interactions involving baryons a
mesons.5 The Siegert and anapole interactions represent
examples, arising atO(p2) andO(p3), respectively, and in-
volving no pions. There also exist terms atO(p2) which
include at least onep @30#:

5Note that the hadronic derivative interactions of Eqs.~A5!–~A7!
also containg fields as required by gauge-invariance.
o

L gN
PV5

c1

Lx
N̄smn@Fmn

1 ,X2
3 #1N1

c2

Lx
N̄smnFmn

2 N

1
c3

Lx
N̄smn@Fmn

2 ,X1
3 #1N1•••. ~A15!

APPENDIX B: LOOP INTEGRALS

The functionsFi
N,D etc. are defined below. They are a

convergent.

G05E
0

1

dx ln
m2

mp
2 1x~12x!Q2 ~B1!

F0
D,N5E

0

1

dx~2x21!xE
0

` dy

C6~x,y!
mp ~B2!
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F1
D,N5E

0

1

dx~2x21!xE
0

` dyy

C6
2 ~x,y!

mp
2 ~B3!

F2
D,N5E

0

1

dx~122x!E
0

` dy

C6~x,y!
mp ~B4!

F3
D,N5E

0

1

dx~12x!xE
0

` dy

C6~x,y!
mp ~B5!

F4
D,N5E

0

1

dxxE
0

` dyy2

C6
2 ~x,y!

mp ~B6!

F5
D,N5E

0

1

dx~12x!E
0

` dy

C6~x,y!
mp ~B7!

where C6(x,y)5y262y(12x)d1mp
2 1x(12x)Q22 i e,

the ‘‘1 ’’ sign is for the D intermediate state and the ‘‘2 ’’
sign is for the nucleon intermediate state.

The functionsFi
D are well defined. However, forFi

N we
need to make an analytical continuation to the contour wh
runs from2` to ` and then counterclockwise in the upp
infinite half circle. Then we have

E
0

`

dy
yn

C2
m~x,y!

5~2 !n11E
0

`

dy
yn

C1
m~x,y!

1dm,13~residues!

~B8!

where the residue is imaginary form51. Hence we will
generate an imaginary component forF0,2,3,5

N . This is an ex-
pected result sincemD.(mN1mp). Note that we are inter-
ested only in the asymmetryALR , which can be written as

ALR;
2ReM PCM PV*

uM PCu2
. ~B9!

SinceM PC is purely real, the imaginary part ofFi
N does not

contribute to this asymmetry, and henceforth we keep o
the real part ofFi

N .
Numerically, at Q250 with mp50.14 GeV and d

50.3 GeV we have

FIG. 13. Loop corrections to the PVd-wave pND vertex in-
volving nucleon intermediate states.
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F0
D50.243 Re~F0

N!520.243

F1
D50.067 Re~F1

N!50.067

F2
D520.127 Re~F2

N!50.127

F3
D50.168 Re~F3

N!520.168

F4
D50.226 Re~F4

N!50.226

F5
D50.451 Re~F5

N!520.451

G054.23.

APPENDIX C: LOOP CORRECTIONS TO PV pND

VERTEX

All possible one-loop corrections to the PVpND vertex
are shown in Figs. 13 and 14 with nucleon and delta in
mediate states, respectively. Some of them are nomin
O(p2), e.g., Figs. 13~a! and 13~c!. The amplitude of the dia-
gram Fig. 13~a! is

iM 13a;hp

gpNDgA

Fp
2 E dDl

~2p!D

S• l l a

~v• l !@v•~k1 l !#~ l 22mp
2 1 i e!

;2hp

gpNDgA

Fp
2

i

~4p!D/2

3E
0

x

dxE
0

`

dyy
G~e!

~y21mp
2 22xyv•k2 i e!e Sa ~C1!

which is clearlyO(p2) and appears to represent a PVS-wave
contribution. However we note that the indexa is contracted
with theD field, and from Eq.~72! we see that this amplitude
vanishes. In the case of Fig. 13~c!, we find

FIG. 14. Same as Fig. 13 but withD intermediate states.
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iM 13c;hp

gpNDgA

Fp
2 E dDl

~2p!D

S•kla

~v• l !@v•~k1 l !#~ l 22mp
2 1 i e!

;hp

gpNDgA

Fp
2

i

~4p!D/2

3E
0

x

dxE
0

`

dyy
G~11e!

~y21mp
2 22xyv•k2 i e!11e

S•kva

~C2!
D

ys

. C

er

in

y

tt.

e
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which seems to yield a PVP-wave correction. However
with the constraintvaTa

i 50 we see that Fig. 13~c! also does
not contribute to the loop correction to the PVpND vertex.
The underlying physics is clear: there exist no PVS- and
P-wave PVpND couplings due to angular momentum co
servation. Similarly, the diagrams Figs. 14~a! and 14~c! with
PV pDD Yukawa insertion do not contribute. The reasoni
is the same. All other possible insertions of the PV vertex
Figs. 13 and 14 lead toO(p3) or higher corrections, which
can be readily seen with the help of Table II.
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