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Abstract

The supersymmetric extension of the economical 3–3–1 model is presented. The constraint equations and
the gauge boson identification establish a relation between the vacuum expectation values (VEVs) at the top
and bottom elements of the Higgs triplet χ and its supersymmetric counterpart χ ′. Because of this relation,
the exact diagonalization of neutral gauge boson sector has been performed. The gauge bosons and their
associated Goldstone ones mix in the same way as in non-supersymmetric version. This is also correct in
the case of gauginos. The eigenvalues and eigenstates in the Higgs sector are derived. The model contains
a heavy neutral Higgs boson with mass equal to those of the neutral non-Hermitian gauge boson X0 and
a charged scalar with mass equal to those of the W boson in the Standard Model, i.e., m�1 = mW . This
result is in good agreement with the present estimation: mH± > 79.3 GeV, CL = 95%. We also show that
the boson sector and the fermion sector gain masses in the same way as in the non-supersymmetric case.
© 2007 Elsevier B.V. All rights reserved.

PACS: 12.60.Jv; 12.60.Fr; 14.80.Ly
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1. Introduction

Recent neutrino experimental results [1–3] establish the fact that neutrinos have masses and
the Standard Model (SM) must be extended. The generation of neutrino masses is an important
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issue in any realistic extension of the SM. In general, the values of these masses (of the order of,
or less than, 1 eV) that are needed to explain all neutrino oscillation data are not enough to put
strong constraints on model building. It means that several models can induce neutrino masses
and mixing compatible with experimental data. So, instead of proposing models built just to
explain the neutrino properties, it is more useful to consider what are the neutrino masses that
are predicted in any particular model which has motivation other than the explanation of neutrino
physics.

The SM is exceedingly successful in describing leptons, quarks and their interactions. Never-
theless, the SM is not considered as the ultimate theory since neither the fundamental parameters,
masses and couplings, nor the symmetry pattern are predicted. These elements are merely built
into the model. Likewise, the spontaneous electroweak symmetry breaking is simply parame-
trized by a single Higgs doublet field.

Even though many aspects of the SM are experimentally supported to a very accuracy, the em-
bedding of the model into a more general framework is to be expected. The argument is closely
connected to the mechanism of the electroweak symmetry breaking. If the Higgs boson is light,
the SM can naturally be embedded in a grand unified theory, the so-called GUT. The large energy
gap between the low electroweak scale and the high GUT scale can be stabilized by supersymme-
try. Supersymmetry actually provides the link between the experimentally explored interactions
at electroweak energy scales and physics at scales close to the Planck scale Mpl ≈ 1019 GeV
where gravity is important.

On the other hand, the possibility of a gauge symmetry based on the following symmetry
SU(3)C ⊗ SU(3)L ⊗ U(1)X (3–3–1) [4–6] is particularly interesting, because it explains some
fundamental questions that are eluded in the SM. The main motivations to study this kind of
model are:

(1) The family number must be multiple of three;
(2) It explains why sin2 θW < 1

4 is observed;
(3) It solves the strong CP problem;
(4) It is the simplest model that includes bileptons of both types: scalar and vectors ones;
(5) The model has several sources of CP violation.

In one of the 3–3–1 models [6] which is anomaly free, the particle content is given by1

LaL = (
νa, la, ν

c
a

)T
L

∼ (3,−1/3), laR ∼ (1,−1), a = 1,2,3,

Q1L = (u1, d1, u
′)TL ∼ (3,1/3), QαL = (dα,−uα, d ′

α)TL ∼ (3∗,0), α = 2,3,

uiR ∼ (1,2/3), diR ∼ (1,−1/3), i = 1,2,3,

u′
R ∼ (1,2/3), d ′

αR ∼ (1,−1/3),

where the values in the parentheses denote quantum numbers based on the (SU(3)L,U(1)X)

symmetry. The exotic quarks u′ and d ′
α in this case take the same electric charges as of the

usual quarks, i.e., qu′ = 2/3, qd ′
α

= −1/3. The spontaneous symmetry breaking in this model is
achieved by two Higgs scalar triplets only

(1)χ = (
χ0

1 , χ−, χ0
2

)T ∼ (3,−1/3), ρ = (
ρ+

1 , ρ0, ρ+
2

)T ∼ (3,2/3)

1 In this article the notation is slightly different from those in Ref. [7].
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with all the neutral components χ0
1 , χ0

2 and ρ0 developing the vacuum expectation values.
Such a scalar sector is minimal, and therefore it has been called the economical 3–3–1 model

[8,9]. In a series of papers, we have developed and proved that this non-supersymmetric version
is consistent, realistic and very rich in physics. Let us remind some steps in the development:
The general Higgs sector is very simple (economical) and consists of three physical scalars (two
neutral and one charged) and eight Goldstone bosons—the needed number for massive gauge
ones [10]. In Refs. [11,12], we have shown that the model under the consideration is realistic, by
the mean that, at the one-loop level, all fermions gain consistent masses. In addition, the model
contains a majoron associated with χ0

1 responsible for the Majorana masses of neutrinos.
Supersymmetry (SUSY) that transforms fermions into bosons and vice versa is a leading

candidate for physics beyond the SM [13]. The existence of such a non-trivial extension is highly
constrained by theoretical principles. One of the motivations for supersymmetry is that it can help
to understand the hierarchy problem. The supersymmetric version of the 3–3–1 model with right-
handed neutrinos [6] has already been constructed in Refs. [7,14]. The neutrino masses in this
case were studied in Ref. [15], and the proton instability was considered in Ref. [16].

It was shown that [17], the 3–3–1 models are the first gauge ones containing the candidates for
self-interaction dark matter (SIDM) [18] with the condition given by Spergel and Steinhardt [19].
It was shown that [10] the economical 3–3–1 model does not furnish any candidate for SIDM.
This directly relates to the scalar sector in which a significant number of fields and couplings is
reduced (to compare, see Ref. [14]). With the larger field content, the supersymmetric version of
the model is expected to provide candidates for dark matter, particularly for the SIDM.

The aim of this work is to study the supersymmetric version of the economical 3–3–1 model.
The outline of this paper is as follows. In Section 2 we present a fermion and scalar content

in the supersymmetric economical 3–3–1 model. The supersymmetric Lagrangian and breaking
are given in Section 3. In Sections 4, 5 and 6 we deal with the gauge boson, fermion and Higgs
sectors of the model. Finally, we summarize our results and make conclusions in Section 7.

2. Particle content of supersymmetric economical 3–3–1 model

To proceed further, the necessary features of the supersymmetric economical 3–3–1 model [9]
will be presented. The superfield content in this paper is defined in a standard way as follows

(2)F̂ = (F̃ ,F ), Ŝ = (S, S̃), V̂ = (λ,V ),

where the components F , S and V stand for the fermion, scalar and vector fields of the econom-
ical 3–3–1 model while their superpartners are denoted as F̃ , S̃ and λ, respectively [7,13].

The superfields for the leptons under the 3–3–1 gauge group transform as

(3)L̂aL = (
ν̂a, l̂a, ν̂

c
a

)T
L

∼ (1,3,−1/3), l̂caL ∼ (1,1,1),

where ν̂c
L = (ν̂R)c and a = 1,2,3 is a generation index.

It is worth mentioning that, in the economical version the first generation of quarks should be
different from others [11]. The superfields for the left-handed quarks of the first generation are
in triplets

(4)Q̂1L = (û1, d̂1, û
′)TL ∼ (3,3,1/3),

where the right-handed singlet counterparts are given by

(5)ûc
1L, û′c

L ∼ (3∗,1,−2/3), d̂c
1L ∼ (3∗,1,1/3).
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Conversely, the superfields for the last two generations transform as antitriplets

(6)Q̂αL = (d̂α,−ûα, d̂ ′
α)TL ∼ (3,3∗,0), α = 2,3,

where the right-handed counterparts are in singlets

(7)ûc
αL ∼ (3∗,1,−2/3), d̂c

αL, d̂ ′c
αL ∼ (3∗,1,1/3).

The primes superscript on usual quark types (u′ with the electric charge qu′ = 2/3 and d ′ with
qd ′ = −1/3) indicate that those quarks are exotic ones. The mentioned fermion content, which
belongs to that of the 3–3–1 model with right-handed neutrinos [6,9] is, of course, free from
anomaly.

The two superfields χ̂ and ρ̂ are at least introduced to span the scalar sector of the economical
3–3–1 model [10]:

(8)χ̂ = (
χ̂0

1 , χ̂−, χ̂0
2

)T ∼ (1,3,−1/3),

(9)ρ̂ = (
ρ̂+

1 , ρ̂0, ρ̂+
2

)T ∼ (1,3,2/3).

To cancel the chiral anomalies of higgsino sector, the two extra superfields χ̂ ′ and ρ̂′ must be
added as follows

(10)χ̂ ′ = (
χ̂ ′0

1 , χ̂ ′+, χ̂ ′0
2

)T ∼ (1,3∗,1/3),

(11)ρ̂′ = (
ρ̂′−

1 , ρ̂′0, ρ̂′−
2

)T ∼ (1,3∗,−2/3).

In this model, the SU(3)L ⊗ U(1)X gauge group is broken via two steps:

(12)SU(3)L ⊗ U(1)X
w,w′−→ SU(2)L ⊗ U(1)Y

v,v′,u,u′−→ U(1)Q,

where the VEVs are defined by

(13)
√

2〈χ〉T = (u,0,w),
√

2〈χ ′〉T = (u′,0,w′),
(14)

√
2〈ρ〉T = (0, v,0),

√
2〈ρ′〉T = (0, v′,0).

The VEVs w and w′ are responsible for the first step of the symmetry breaking while u, u′ and v,
v′ are for the second one. Therefore, they have to satisfy the constraints:

(15)u,u′, v, v′ � w,w′.

The vector superfields V̂c , V̂ and V̂ ′ containing the usual gauge bosons are, respectively,
associated with the SU(3)C , SU(3)L and U(1)X group factors. The colour and flavour vector su-
perfields have expansions in the Gell-Mann matrix bases T a = λa/2 (a = 1,2, . . . ,8) as follows

(16)V̂c = 1

2
λaV̂ca,

ˆ̄V c = −1

2
λa∗V̂ca, V̂ = 1

2
λaV̂a,

ˆ̄V = −1

2
λa∗V̂a,

where an overbar ¯ indicates complex conjugation. For the vector superfield associated with
U(1)X , we normalize as follows

(17)XV̂ ′ = (
XT 9)B̂, T 9 ≡ 1√

6
diag(1,1,1).

In the following, we are denoting the gluons by ga and their respective gluino partners by λa
c ,

with a = 1, . . . ,8. In the electroweak sector, V a and B stand for the SU(3)L and U(1)X gauge
bosons with their gaugino partners λa and λB , respectively.
V
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3. Lagrangian

With the superfields given above, we can now construct the supersymmetric economical
3–3–1 model containing the Lagrangians: Lsusy + Lsoft, where the first term is supersymmet-
ric part, whereas the last term breaks explicitly the supersymmetry.

3.1. Supersymmetric Lagrangian

The supersymmetric Lagrangian can be decomposed into four relevant parts

(18)Lsusy = Lgauge +Llepton +Lquark +Lscalar.

The first term has the form

Lgauge = 1

4

∫
d2θ WcaWca + 1

4

∫
d2θ WaWa + 1

4

∫
d2θ W ′W ′

(19)+ 1

4

∫
d2θ̄ W̄caW̄ca + 1

4

∫
d2θ̄ W̄aW̄a + 1

4

∫
d2θ̄ W̄ ′W̄ ′,

where the chiral superfields Wc, W and W ′ are defined by

Wcζ = − 1

8gs

D̄D̄e−2gs V̂cDζ e
2gs V̂c , Wζ = − 1

8g
D̄D̄e−2gV̂ Dζ e

2gV̂ ,

(20)W ′
ζ = −1

4
D̄D̄Dζ V̂

′, ζ = 1,2,

with the gauge couplings gs , g and g′ respective to SU(3)C , SU(3)L and U(1)X . The Dζ and D̄ζ̇

are the chiral covariant derivatives of SUSY algebra as presented in [13].
The second and third terms are given by

(21)Llepton =
∫

d4θ
[ ˆ̄LaLe2(gV̂ − g′

3 V̂ ′)L̂aL + ˆ̄lcaLe2g′V̂ ′
l̂caL

]
,

and

Lquark =
∫

d4θ
[ ˆ̄Q1Le2(gs V̂c+gV̂ + g′

3 V̂ ′)Q̂1L + ˆ̄QαLe2(gs V̂c+g ˆ̄V )Q̂αL

+ ˆ̄uc
iLe2(gs

ˆ̄V c− 2g′
3 V̂ ′)ûc

iL + ˆ̄dc
iLe2(gs

ˆ̄V c+ g′
3 V̂ ′)d̂c

iL

(22)+ ˆ̄u′c
Le2(gs

ˆ̄V c− 2g′
3 V̂ ′)û′c

L + ˆ̄d ′c
αLe2(gs

ˆ̄V c+ g′
3 V̂ ′)d̂ ′c

αL

]
.

Finally, the last term can be written as

Lscalar =
∫

d4θ
{ ˆ̄χe2[gV̂ +g′(− 1

3 )V̂ ′]χ̂ + ˆ̄ρe2[gV̂ +g′( 2
3 )V̂ ′]ρ̂ + ˆ̄χ ′e2[g ˆ̄V +g′( 1

3 )V̂ ′]χ̂ ′

(23)+ ˆ̄ρ′e2[g ˆ̄V +g′(− 2
3 )V̂ ′]ρ̂′}+

(∫
d2θW + H.c.

)
with

(24)W = W2

2
+ W3

3
,
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where

(25)W2 = μ0aL̂aLχ̂ ′ + μχχ̂χ̂ ′ + μρρ̂ρ̂′,
and

W3 = λ1abL̂aLρ̂′ l̂cbL + λ2aεL̂aLχ̂ ρ̂ + λ3abεL̂aLL̂bLρ̂ + κ1iQ̂1Lχ̂ ′ûc
iL

+ κ ′
1Q̂1Lχ̂ ′û′c

L + κ2iQ̂1Lρ̂′d̂c
iL + κ ′

2αQ̂1Lρ̂′d̂ ′c
αL + κ3αiQ̂αLρ̂ûc

iL

+ κ ′
3αQ̂αLρ̂û′c

L + κ4αiQ̂αLχ̂ d̂c
iL + κ ′

4αβQ̂αLχ̂ d̂ ′c
βL + εf1αβγ Q̂αLQ̂βLQ̂γL

+ ξ1iβj d̂
c
iLd̂ ′c

βLûc
jL + ξ2iβ d̂c

iLd̂ ′c
βLû′c

L + ξ3ijkd̂
c
iLd̂c

jLûc
kL + ξ4ij d̂

c
iLd̂c

jLû′c
L

(26)
+ ξ5αβi d̂

′c
αLd̂ ′c

βLûc
iL + ξ6αβ d̂ ′c

αLd̂ ′c
βLû′c

L + ξ7aαj L̂aLQ̂αLd̂c
jL + ξ8aαβL̂aLQ̂αLd̂ ′c

βL.

The coefficients μ0a , μρ and μχ have mass dimension, while all coefficients in W3 are dimen-
sionless.

To find interactions contained in the supersymmetric Lagrangian, we first obtain all the kinetic
terms [13]:

Lkinetic = (
Dμχ

)+
Dμχ + (

Dμρ
)+

Dμρ + (
D̄μQ̃αL

)+
D̄μQ̃αL

+ (
D̄μχ ′)+D̄μχ ′ + (

D̄μρ′)+D̄μρ′ + (
DμQ̃1L

)+
DμQ̃1L

+ (
DμL̃aL

)+
DμL̃aL + (

D
μ
1 d̃c

iL

)+
D1μd̃c

iL + (
D

μ
1 ũc

iL

)+
D1μũc

iL

+ (
D

μ
1 ũ′c

L

)+
D1μũ′c

L + (
D

μ
1 d̃ ′c

αL

)+
D1μd̃ ′c

αL + iL̄aLσ̄μDμLaL

+ iQ̄1Lσ̄μDμQ1L + iQ̄αLσ̄μD̄μQαL + il̄caLσ̄ μD1μlcaL

+ iūc
iLσ̄ μD1μuc

iL + id̄c
iLσ̄ μD1μdc

iL + iū′c
Lσ̄ μD1μu′c

L + id̄ ′c
αLσ̄μD1μd ′c

αL

(27)− 1

4
Fμν

ca Fcaμν − 1

4
Fμν

a Faμν − 1

4
FμνFμν +Lgaugino +LHiggsinos,

where

Lgaugino = iλ̄a
c σ̄

μDc
μλa

c + iλ̄a
V σ̄ μDL

μλa
V + iλ̄B σ̄ μ∂μλB,

(28)LHiggsinos = i ¯̃ρσ̄μDμρ̃ + i ¯̃χσ̄μDμχ̃ + i ¯̃ρ ′σ̄ μD̄μρ̃′ + i ¯̃χ ′σ̄ μD̄μχ̃ ′.
Here, the covariant derivatives are defined by

Dμ = ∂μ + igT aVaμ + ig′XT 9Bμ, D̄μ = ∂μ − igT a∗Vaμ + ig′XT 9Bμ,

D1μ = ∂μ + ig′XT 9Bμ, Dc
μλa

c = ∂μλa
c − gsf

abcgb
μλc

c,

(29)DL
μλa

V = ∂μλa
V − gf abcV b

μλc
V .

The relevant interactions are therefore given by [13]:

Linteraction = LllV +L
l̃ l̃V

+L
ll̃Ṽ

+L
l̃ l̃V V

+LqqV +Lq̃q̃V +L
qq̃Ṽ

+Lq̃q̃V V +L
HH̃Ṽ

+LllH +L
ll̃H̃

+L
lH̃H

+L
l̃H̃ H̃

+LqqH +L
qq̃H̃

+Llqq̃ +Lqqq̃ +L
qql̃

+ Vscalar,

where

LllV = −g
L̄σ̄ μλaLV a

μ − g′
√

(
−1

)
L̄σ̄ μLBμ − g′

√ l̄cσ̄ μlcBμ,

2 6 3 6
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L
l̃ l̃V

= ig

2

[
∂μ ¯̃

LλaL̃ − ¯̃
Lλa∂μL̃

]
V a

μ

+ ig′
√

6

[
−1

3

(
∂μ ¯̃

LL̃ − ¯̃
L∂μL̃

)+ (
∂μ ¯̃

lcl̃c − ¯̃
lc∂μl̃c

)]
Bμ,

L
ll̃Ṽ

= − ig√
2

(
L̄λaL̃λ̄a

V − ¯̃
LλaLλa

V

)

− ig′
√

1

3

[
−1

3
(L̄L̃λ̄B − ¯̃

LLλB) + (
l̄c l̃cλ̄B − ¯̃

lclcλB

)]
,

L
l̃ l̃V V

= 1

4

[
g2V a

μV bμ ¯̃
LλaλbL̃ + 2

27
g′2V μVμ

¯̃
LL̃ − 2

3

√
2

3
gg′V a

μBμ ¯̃
LλaL̃

]

+ g′2

6
BμBμ

¯̃
lcl̃c,

LqqV = −gs

2

(
Q̄i σ̄

μλaQi − ūc
i σ̄

μλ∗auc
i − d̄c

i σ̄
μλ∗adc

i − ū′cσ̄ μλ∗au′c − d̄ ′c
β σ̄ μλ∗ad ′c

β

)
ga

μ

− g

2

(
Q̄1σ̄

μλaQ1 − Q̄ασ̄ μλ∗aQα

)
V a

μ

− g′
√

6

[
1

3
Q̄1σ̄

μQ1 − 2

3
ūc

i σ̄
μuc

i + 1

3
d̄c
i σ̄

μdc
i − 2

3
ū′cσ̄ μu′c + 1

3
d̄ ′c
β σ̄ μd ′c

β

]
Bμ,

Lq̃q̃V = igs

2

(
∂μ ¯̃

Qiλ
aQ̃i − ¯̃

Qiλ
a∂μQ̃i − ∂μ ¯̃uc

i λ
∗aũc

i + ¯̃uc
i λ

∗a∂μũc
i − ∂μ ¯̃

dc
i λ

∗ad̃c
i

+ ¯̃
dc

i λ
∗a∂μd̃c

i − ∂μ ¯̃u′cλ∗aũ′c + ¯̃u′cλ∗a∂μũ′c − ∂μ ¯̃
d ′c

β λ∗ad̃ ′c
β + ¯̃

d ′c
β λ∗a∂μd̃ ′c

β

)
ga

μ

+ ig

2

(
∂μ ¯̃

Q1λ
aQ̃1 − ¯̃

Q1λ
a∂μQ̃1 − ∂μ ¯̃

Qαλ∗aQ̃α + ¯̃
Qαλ∗a∂μQ̃α

)
V a

μ

+ ig′
√

6

[
1

3

(
∂μ ¯̃

Q1Q̃1 − ¯̃
Q1∂

μQ̃1
)− 2

3

(
∂μ ¯̃uc

i ũ
c
i − ¯̃uc

i ∂
μũc

i

)
− 2

3

(
∂μ ¯̃u′cũ′c − ¯̃u′c∂μũ′c)+ 1

3

(
∂μ ¯̃

dc
i d̃

c
i − ¯̃

dc
i ∂

μd̃c
i

)
+ 1

3

(
∂μ ¯̃

d ′c
β d̃ ′c

β − ¯̃
d ′c

β ∂μd̃ ′c
β

)]
Bμ,

L
qq̃Ṽ

= − igs√
2

[(
Q̄iλ

aQ̃i − ūc
i λ

∗aũc
i − d̄c

i λ
∗ad̃c

i − ū′cλ∗aũ′c − d̄ ′c
β λ∗ad̃ ′c

β

)
λ̄a

c

− ( ¯̃
Qiλ

aQi − ¯̃uc
i λ

∗auc
i − ¯̃

dc
i λ

∗adc
i − ¯̃u′cλ∗au′c − ¯̃

d ′c
β λ∗ad ′c

β

)
λa

c

]
− ig√

2

[(
Q̄1λ

aQ̃1 − Q̄αλ∗aQ̃α

)
λ̄a

V − ( ¯̃
Q1λ

aQ1 − ¯̃
Qαλ∗aQα

)
λa

V

]
− ig′

√
3

[(
1

3
Q̄1Q̃1 − 2

3
ūc

i ũ
c
i + 1

3
d̄c
i d̃

c
i − 2

3
ū′cũ′c + 1

3
d̄ ′c
β d̃ ′c

β

)
λ̄B

−
(

1

3
¯̃

Q1Q1 − 2

3
¯̃uc
i u

c
i + 1

3
¯̃
dc

i d
c
i − 2

3
¯̃u′cu′c + 1

3
¯̃
d ′c

β d ′c
β

)
λB

]
,
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Lq̃q̃V V = 1

4

{
g2

s

[ ¯̃
Qiλ

aλbQ̃i + ¯̃uc
i λ

∗aλ∗bũc
i + ¯̃

dc
i λ

∗aλ∗bd̃c
i + ¯̃u′cλ∗aλ∗bũ′c

+ ¯̃
d ′c

β λ∗aλ∗bd̃ ′c
β

]
ga

μgbμ + g2[ ¯̃
Qαλ∗aλ∗bQ̃α + ¯̃

Q1λ
aλbQ̃1

]
V a

μV bμ

+ 2

3
g′2

[(
1

3

)2 ¯̃
Q1Q̃1 +

(−2

3

)2 ¯̃uc
i ũ

c
i +

(
1

3

)2 ¯̃
dc

i d̃
c
i

+
(−2

3

)2 ¯̃u′cũ′c +
(

1

3

)2 ¯̃
d ′c

αd̃ ′c
α

]
BμBμ

+ 2gsg
[ ¯̃
Q1λ

aλbQ̃1 − ¯̃
Qαλaλ∗bQ̃α

]
ga

μV bμ + 2

3

√
2

3
gg′ ¯̃

Q1λ
aQ̃1V

a
μBμ

+ 2

√
2

3
gsg

′
[(

1

3

)
¯̃

Q1λ
aQ̃1 +

(−2

3

)
¯̃uc
i λ

aũc
i +

(
1

3

)
¯̃
dc

i λ
ad̃c

i

+
(−2

3

)
¯̃u′cλaũ′c +

(
1

3

)
¯̃
d ′c

α λad̃ ′c
α

]
ga

μBμ

}
,

L
HH̃Ṽ

= − ig√
2

[ ¯̃ρλaρλ̄a
V − ρ̄λaρ̃λa

V + ¯̃χλaχλ̄a
V − χ̄λaχ̃λa

V − ¯̃ρ′λ∗aρ′λ̄a
V

+ ρ̄′λ∗aρ̃′λa
V − ¯̃χ ′λ∗aχ ′λ̄a

V + χ̄ ′λ∗aχ̃ ′λa
A

]
− ig′

√
3

[
−1

3
( ¯̃χχλ̄B − χ̄ χ̃λB) + 1

3
( ¯̃χ ′χ ′λ̄B − χ̄ ′χ̃ ′λB)

+ 2

3
( ¯̃ρρλ̄B − ρ̄ρ̃λB) − 2

3
( ¯̃ρ′ρ′λ̄B − ρ̄′ρ̃′λB)

]
,

L
ll̃H̃

= −λ1

3

(
Lρ̃′ l̃c + L̃ρ̃′lc

)− λ4

3
(Lρ̃L̃ + L̃ρ̃L),

LllH = −λ1

3
Llcρ′ − λ4

3
LLρ,

L
lH̃H

= −λ2

3
(Lχ̃ρ + ρ̃Lχ); L

l̃H̃ H̃
= −λ2

3
χ̃ ρ̃L̃,

LqqH = −1

3

[
κ3u

cQαρ + κ ′
3u

′cQαρ + κ4αid
c
i Qαχ + κ ′

4αβd ′c
β Qαχ + κ1iu

c
i Q1χ

′

+ κ ′
1u

′cQ1χ
′ + κ2id

c
i Q1ρ

′ + κ ′
2βd ′c

β Q1ρ
′],

L
qq̃H̃

= −1

3

[
κ3αi

(
Qαρ̃ũc

i + ρ̃uc
i Q̃α

)+ κ ′
3α

(
Qαρ̃ũ′c + ρ̃u′cQ̃α

)
+ κ4αi

(
Qαχ̃d̃c

i + χ̃dc
i Q̃α

)+ κ ′
4αβ

(
Qαχ̃d̃ ′c

β + χ̃d ′c
β Q̃α

)
+ κ1i

(
Q1χ̃

′ũc
i + χ̃ ′uc

i Q̃1
)+ κ ′

1

(
Q1χ̃

′ũ′c + χ̃ ′u′cQ̃1
)

+ κ2i

(
Q1ρ̃

′d̃c
i + ρ̃′dc

i Q̃1
)+ κ ′

2β

(
Q1ρ̃

′d̃ ′c
β + ρ̃′d ′c

β Q̃1
)]

,

Llqq̃ = −ξ7

3

(
LQαd̃c + dcLQ̃α

)− ξ8

3

(
LQαd̃ ′c + d ′cLQ̃α

)
,

L
l̃qq

= −ξ7

3
QαdcL̃ − ξ8

3
Qαd ′cL̃,
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Lqqq̃ = −1

3

[
f1QQQ̃ + ξ1

(
dcd ′cũc + d̃cd ′cuc + dcd̃ ′cuc

)
+ ξ2

(
dcd ′cũ′c + d̃cd ′cu′c + dcd̃ ′cu′c)+ ξ3

(
dcdcũc + d̃cdcuc + dcd̃cuc

)
+ ξ4

(
dcdcũ′c + d̃cdcu′c + dcd̃cu′c)+ ξ5

(
d ′cd ′cũc + d̃ ′cd ′cuc + d ′cd̃ ′cuc

)
(30)+ ξ6

(
d ′cd ′cũ′c + d̃ ′cd ′cu′c + d ′cd̃ ′cu′c)].

The scalar potential Vscalar has a form

(31)Vscalar = VF + VD.

To find VF and VD , using firstly the Euler–Lagrangian equations for the auxiliary fields, we
obtain

(32)Fρ = −μρ

2
ρ′†, Fχ = −μχ

2
χ ′†, Fρ′ = −μρ

2
ρ†, Fχ ′ = −μχ

2
χ†,

and

Da = −g

2

[
ρ†λaρ + χ†λaχ − ρ′†λ∗aρ′ − χ ′†λ∗aχ ′],

(33)D = − g′
√

6

[
−1

3
χ†χ + 1

3
χ ′†χ ′ + 2

3
ρ†ρ − 2

3
ρ′†ρ′

]
.

The scalar potential is therefore given by

(34)Vscalar = 1

2

(
DaDa + DD

)+ |Fχ |2 + |Fρ |2 + |F ′
χ |2 + |F ′

ρ |2.

3.2. The soft term

With the help of [20], the most general soft supersymmetry-breaking terms, which do not
induce quadratic divergences can be obtained. Such terms, in general, can be categorized as
follows:

(i) A scalar field A with the mass term

(35)−m2A†A;
(ii) A gaugino λ with the mass terms

(36)−1

2

(
Mλλ

aλa + H.c.
);

(iii) Finally, trilinear scalar couplings have the forms

(37)εijkAiAjAk + H.c.

In this model, the soft terms are given by

(38)Lsoft = LGMT +Lsoft
scalar +LSMT,

where

(39)Lsoft
scalar = −m2

ρρ†ρ − m2
χχ†χ − m2

ρ′ρ′†ρ′ − m2
χ ′χ ′†χ ′,
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and

−LSMT = m2
aLL̃

†
aLL̃aL + m2

la l̃
c†
aLl̃caL + m2

Q1LQ̃
†
1LQ̃1L + m2

QαLQ̃
†
αLQ̃αL

+ m2
ui

ũ
c†
iLũc

iL + m2
di

d̃
c†
iLd̃c

iL + m2
u′ ũ

′c†
L ũ′c

L + m2
d ′ d̃

′c†
L d̃ ′c

L + M ′2
a χ†L̃aL

+ ε1abL̃aLρ′ l̃cLb + ε2aεL̃aLχ� + ε3abεL̃aLL̃bLρ + �1iQ̃1Lχ ′ũc
iL

+ �′
1Q̃1Lχ ′ũ′c

iL + �2αiQ̃αLρ′ũc
iL + �2αQ̃αLρ′ũ′c

L + �3iQ̃1Lρ′d̃c
iL

+ �′
3iQ̃1Lρ′d̃ ′c

L + �4αiQ̃αLχd̃c
iL + �′

4αβQ̃αLχd̃ ′c
βL

+ �5αβγ Q̃αLQ̃βLQ̃γL + κ1iβj d̃
c
iLd̃ ′c

βLũc
jL + κ2iβ d̃c

iLd̃ ′c
βLũ′c

L

+ κ3ijkd̃
c
iLd̃c

jLũc
kL + κ4ik d̃

c
iLd̃c

jLũ′c
L + κ5αβi d̃

′c
αLd̃ ′c

βLũc
iL

+ κ6αβ d̃ ′c
αLd̃ ′c

βLũ′c
L + κ7aαj L̃aLQ̃αLd̃c

jL + κ8aαβL̃aLQ̃αLd̃ ′c
βL

(40)+ H.c.

in order to give appropriate masses to the sfermions.
Finally, the Lagrangian LGMT has the same form given in [7]

(41)LGMT = −1

2

[
mλc

8∑
b=1

(
λb

cλ
b
c

)+ mλ

8∑
b=1

(
λb

V λb
V

)+ m′λBλB + H.c.

]
.

This part gives masses for the superpartners of gauge bosons.

4. Gauge bosons

In Section 6, we will prove that in order to eliminate linear terms in the Higgs potential, one
obtains a matching condition u/w = u′/w′. In the following the notation,

(42)tθ ≡ u

w
= u′

w′ ,

is therefore used, where sθ ≡ sin θ , tθ ≡ tan θ , and so forth.
The mass Lagrangian for the gauge bosons can be obtained by

2Lgauge
mass = (u,0,w)

(
g

2
λaV μ

a − 1

3

g′

2

√
2

3
Bμ

)2

(u,0,w)T

+ (0, v,0)

(
g

2
λaV μ

a + 2

3

g′

2

√
2

3
Bμ

)2

(0, v,0)T

+ (u′,0,w′)
(

−g

2
λa∗V μ

a + 1

3

g′

2

√
2

3
Bμ

)2

(u′,0,w′)T

(43)+ (0, v′,0)

(
−g

2
λa∗V μ

a − 2

3

g′

2

√
2

3
Bμ

)2

(0, v′,0)T .

Let us define the charged gauge bosons as follows

(44)W ′±
μ ≡ 1√

2
(V1μ ∓ iV2μ), Y ′±

μ ≡ 1√
2
(V6μ ± V7μ).
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The mass matrix of the W ′
μ and Y ′

μ is obtained then

(45)M2
charged = g2

4

(
V 2 + U2 K

K W 2 + V 2

)
,

where

V 2 ≡ v2 + v′2, W 2 ≡ w2 + w′2, U2 ≡ u2 + u′2 = t2
θ W 2,

(46)K ≡ uw + u′w′ = tθW
2, t ≡ g′/g.

This matrix gives the eigenstates which are, respectively, the SM-like W± and new gauge bo-
son Y±:

(47)Wμ = cθW
′
μ − sθY

′
μ, Yμ = sθW

′
μ + cθY

′
μ,

with the respective eigenvalues:

(48)m2
W = g2

4
V 2, m2

Y = g2

4

(
V 2 + U2 + W 2).

Therefore, the θ is the mixing angle of W ′–Y ′, which is the same as in the case of non-
supersymmetric model [9]. Because of the constraint (15), the mass of W boson is identified
with those of the SM, that is

(49)
√

v2 + v′2 ≡ vweak = 246 GeV.

For the remaining gauge vectors (V3,V8,B,V4,V5), the mass matrix in this basis is given by

(50)M2
neutral =

(
M2

mixing 0

0 M2
V5

)
,

where V5 is decoupled with the mass

(51)M2
V5

≡ g2

4

(
W 2 + U2),

while the mixing part M2
mixing of (V3,V8,B,V4) is equal to

(52)
g2

4

⎛
⎜⎜⎜⎜⎜⎝

U2 + V 2 1√
3
(U2 − V 2) − 2t

3
√

6
(U2 + 2V 2) K

1
3 (V 2 + U2 + 4W 2)

√
2t
9 (2V 2 + 2W 2 − U2) − 1√

3
K

2t2

27 (4V 2 + U2 + W 2) − 4t

3
√

6
K

U2 + W 2

⎞
⎟⎟⎟⎟⎟⎠ .

As in the non-supersymmetric version, it can be checked that the matrix (52) contains two exact
eigenvalues, the photon Aμ and new V ′

4μ ∼ V4μ, such as

(53)M2
γ = 0, M2

V ′
4
= g2

4

(
U2 + W 2).

Due to the fact that V ′
4 and V5 gain the same mass [cf. (53) and (51)], it is worth noting that these

boson vectors have to be combined to produce the following physical state [9]

(54)X0
μ ≡ 1√ (V ′

4μ − iV5μ),

2
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with the mass

(55)m2
X = g2

4

(
U2 + W 2).

To look for eigenstates corresponding to eigenvalues in (53), we will separate the square mass
matrix (52) into two parts such as

(56)M2
mixing = M2

1 + M2
2 ,

with

(57)M2
1 = g2

4

⎛
⎜⎜⎜⎜⎜⎝

u2 + v2 1√
3
(u2 − v2) − 2t

3
√

6
(u2 + 2v2) uw

1
3 (v2 + u2 + 4w2)

√
2t
9 (2v2 + 2w2 − u2) − 1√

3
uw

2t2

27 (4v2 + u2 + w2) − 4t

3
√

6
uw

u2 + w2

⎞
⎟⎟⎟⎟⎟⎠

and M2
2 equal to

(58)
g2

4

⎛
⎜⎜⎜⎜⎜⎝

u′2 + v′2 1√
3
(u′2 − v′2) − 2t

3
√

6
(u′2 + 2v2 ′) u′w′

1
3 (v2 ′ + u2 ′ + 4w2 ′)

√
2t
9 (2v′2 + 2w2 ′ − u2 ′) − 1√

3
u′w′

2t2

27 (4v2 ′ + u2 ′ + w2 ′) − 4t

3
√

6
u′w′

u2 ′ + w2 ′

⎞
⎟⎟⎟⎟⎟⎠ .

It is easy to realize that M2
1 and M2

2 have the same form as in non-supersymmetric version in
Ref. [9]. Therefore M2

1 and M2
2 , respectively, contain the two eigenvalues as follows

(59)λ1 = 0, λ2 = g2

4

(
u2 + w2), λ′

1 = 0, λ′
2 = g2

4

(
u′2 + w′2).

This means also that the matrix M2
mixing contains a massless eigenstate corresponding to the

photon [21]

(60)AT
μ = 1√

18 + 4t2

(√
3t, −t, 3

√
2, 0

)
.

Before seeking the eigenstate of M2
V ′

4
, we note that the eigenstates according to eigenvalues

λ2 and λ′
2 are, respectively, given by

V ′T
4μλ2

= 1√
1 + 4Λ2

(
Λ,

√
3Λ, 0, 1

)
, Λ ≡ 2uw

w2 − u2
,

(61)V ′T
4μλ′

2
= 1√

1 + 4Λ′2

(
Λ′,

√
3Λ′, 0, 1

)
, Λ′ ≡ 2u′w′

w′2 − u′2
.

Because of the condition (42), we get a beautiful result

V ′T
4μ = V ′T

4μλ2
= V ′T

4μλ′
2
= 1√

1 + 4t2
2θ

(
t2θ ,

√
3t2θ , 0, 1

)
.

These results are the same as in Ref. [9] of the non-supersymmetric version.
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The eigenvectors Aμ and V ′
4μ can be rewritten as follows

Aμ = sWV3μ + cW

(
− tW√

3
V8μ +

√
1 − t2

W

3

)
Bμ,

(62)V ′
4μ = t2θ√

1 + 4t2
2θ

V3μ +
√

3t2θ√
1 + 4t2

2θ

V8μ + 1√
1 + 4t2

2θ

V4μ,

where sW ≡ sin θW = √
3t2/(18 + 4t2) [21]. Further, let us define two gauge vectors

Zμ = cWV3μ − sW

(
− tW√

3
V8μ +

√
1 − t2

W

3

)
Bμ,

(63)Z′
μ = tW√

3
Bμ +

√
1 − t2

W

3
V8μ,

which are orthogonal to Aμ. To look for two last eigenstates, we will use the argument in [9] to
define

Z1μ = cθ ′Zμ − sθ ′
[
tθ ′

√
4c2

W − 1Z′
μ +

√
1 − t2

θ ′
(
4c2

W − 1
)
V4μ

]
,

(64)Z′
1μ =

√
1 − t2

θ ′
(
4c2

W − 1
)
Z′

μ − tθ ′
√

4c2
W − 1V4μ,

where sθ ′ ≡ t2θ /cW/

√
1 + 4t2

2θ . Then, in the base of (Aμ,Z1μ,Z′
1μ,V ′

4μ), the squared-mass ma-

trix M2
neutral becomes

(65)M ′2
neutral =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 m2
Z1

m2
Z1Z

′
1

0

0 m2
Z1Z

′
1

m2
Z′

1
0

0 0 0 g2

4 (W 2 + U2)

⎞
⎟⎟⎟⎟⎟⎠

with

m2
Z1

= g2[(1 + 3t2
2θ

)
U2 + (

1 + 4t2
2θ

)
V 2 − t2

2θW
2]{4

[
c2
W + (

3 − 4s2
W

)
t2
2θ

]}−1
,

m2
Z1Z

′
1
= g2{√1 + 4t2

2θ

[
c2W + (

3 − 4s2
W

)
t2
2θ

]
U2 − V 2 − (

3 − 4s2
W

)
t2
2θW

2}
× {

4
√

3 − 4s2
W

[
c2
W + (

3 − 4s2
W

)
t2
2θ

]}−1
,

m2
Z′

1
= g2{[c2

2W + (
3 − 4s2

2W

)
t2
2θ

]
U2 + V 2

(66)

+ [
4c2

W + (
1 + 4c2

W

)(
3 − 4s2

W

)
t2
2θ

]
W 2}{4

(
3 − 4s2

W

)[
c2
W + (

3 − 4s2
W

)
t2
2θ

]}−1
.

The elements of this matrix have the same form as of non-supersymmetric version [9], where
the results are obtained with replacement of u, v, w by U , V , W . The last two eigenstates and
masses of the neutral gauge bosons are given as in [9].



P.V. Dong et al. / Nuclear Physics B 772 (2007) 150–174 163
To finish this section, we mention again that the matrix of neutral gauge boson mixing is
separated into two terms and one of them is the same as in the non-supersymmetric version.
Because of the relation among the VEVs ω, ω′ and u, u′, the exact diagonalization was easily
performed. Here, the gauge boson identification is the same as in non-supersymmetric case. This
means that the imaginary part of the non-Hermitian bilepton X0 is decoupled, while its real part
has the mixing among the neutral Hermitian gauge bosons such as, the photon, the neutral Z and
the extra Z′.

5. Lepton and quark sectors

As in Ref. [15], the R-charge is chosen as follows

nL = nl = nρ = nρ′ = 0, nQ1 = nu = nu′ = 1

2
, nQα = nd = nd ′ = −1

2
,

(67)nχ = 1, nχ ′ = −1.

The terms of the superpotential with respect to this R-parity are given by

W = μχ

2
χ̂ χ̂ ′ + μρ

2
ρ̂ρ̂′ + 1

3

[
λ1abL̂aLρ̂′ l̂cbL + λ3abεL̂aLL̂bLρ̂

+ κ1iQ̂1Lχ̂ ′ûc
iL + κ ′

1Q̂1Lχ̂ ′û′c
L + κ2iQ̂1Lρ̂′d̂c

iL + κ ′
2αQ̂1Lρ̂′d̂ ′c

αL

(68)+ κ3αiQ̂αLρ̂ûc
iL + κ ′

3αQ̂αLρ̂û′c
L + κ4αiQ̂αLχ̂ d̂c

iL + κ ′
4αβQ̂αLχ̂ d̂ ′c

βL

]
.

5.1. Charged lepton masses

From the superpotential given in Eq. (68), it is easy to see that the charged leptons gain mass
only from the term

(69)−λ1ab

3
LaLρ′lcbL + H.c.

We therefore get mass terms

(70)−λ1ab

3

(
laLlcbL + l̄aLl̄cbL

) v′
√

2
.

This mass term can now be rewritten in terms of a 3 × 3 matrix Xl as follows. Defining the
following two column vectors

(71)
(
ψ+

l

)T = (
lc1Llc2Llc3L

)
,

(
ψ−

l

)T = (l1Ll2Ll3L),

we can rewrite our mass term as

(72)−L= (
ψ−

l

)T
Xlψ

+
l + H.c.

with

(73)Xl = v′
√

2

⎛
⎝

λ111
3

λ112
3

λ113
3

λ121
3

λ122
3

λ123
3

λ131
3

λ132
3

λ133
3

⎞
⎠ .

Notice that only VEV of ρ′ is enough to give the charged leptons masses.
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In order to get the mass eigenstates we perform the following rotation

(74)l+i = V l
ij

(
ψ+

l

)
j
, l−i = Ul

ij

(
ψ−

l

)
j
, i, j = 1,2,3,

where V l , Ul are unitary matrices such that

(75)ψ−T
l

(
Ul

)T︸ ︷︷ ︸
l−T
i

(
Ul

)∗
Xl

(
V l

)†︸ ︷︷ ︸
(Ml )ij

V lψ+
l︸ ︷︷ ︸

l+j

.

Here Ml is a diagonal matrix with real non-negative entries

(76)(Ml )ij = [(
Ul

)∗
Xl

(
V l

)†]
ij

= mli δij .

The charged leptons li are defined such that their absolute masses increase with increasing i.
We have verified that all the charged leptons get mass which are the same as in the usual

cases [22].

5.2. Neutral lepton masses

Neutrinos get masses from the term

(77)−λ3ab

3
LaLLbLρ + H.c.,

which gives us

(78)−λ3ab

3

(
νc
aLνbL − νaLνc

bL + ν̄c
aLν̄bL − ν̄aLν̄c

bL

)
ρ0.

This mass term can now be rewritten in terms of a 6 × 6 matrix Xν by defining the following
column vector

(79)
(
ψ0

ν

)T = (
ν1L ν2L ν3L νc

1L νc
2L νc

3L

)
.

Now we can rewrite our mass term as

(80)−L= 1

2

[(
ψ0

ν

)T
Xνψ

0
ν + H.c.

]
,

with

(81)Xν = v√
2

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 G21 G31
0 0 0 G12 0 G32
0 0 0 G13 G23 0
0 G12 G13 0 0 0

G21 0 G23 0 0 0
G31 G32 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where

(82)Gab = 1

3
(λ3ab − λ3ba).

Due to the fact that the above matrix is symmetric, we need only one rotation

(83)νi = V ν
ij

(
ψ0

ν

)
j
, i, j = 1,2, . . . ,6,
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where V ν is an unitary matrix such that

(84)
1

2
ψ0T

ν

(
V ν

)T︸ ︷︷ ︸
νT
i

(
V ν

)∗
Xν

(
V ν

)†︸ ︷︷ ︸
(Mν )ij

V νψ0
ν︸ ︷︷ ︸

νj

.

Here Mν is a diagonal matrix with real non-negative entries

(85)(Mν)ij = [(
V ν

)∗
Xν

(
V ν

)†]
ij

= mνi
δij .

As before, the neutral leptons νi are defined such that their absolute masses increase with in-
creasing i. Due to the fact that Gab = −Gba , the mass pattern of this sector is 0, 0, mν , mν ,

mν , mν , where
√

2mν = v

√
G2

31 + G2
32 + G2

21. Noting that this mass spectrum is the same as of
the non-supersymmetric version. The quantum corrections at one loop level can be constructed
as in [12] (see also [23]). This provides a realistic mass spectrum for the neutrinos.

5.3. Masses of up quarks and down quarks

The Yukawa couplings responsible for the masses of the up quarks can be obtained by

(86)−1

3

[
κ1iQ1Luc

iLχ ′ + κ ′
1Q1Lu′c

Lχ ′ + κ3αiQαLuc
iLρ + κ ′

3αQαLu′c
Lρ

]+ H.c.

This mass term can now be rewritten in terms of a 4×4 matrix Xu as follows. Defining following
two column vectors

(87)
(
ψ+

u

)T = (u1L, u2L, u3L, u′
L),

(
ψ−

u

)T = (
uc

1L, uc
2L, uc

3L, u′c
L

)
,

we can rewrite our mass term as

(88)−L= (
ψ−

u

)T
Xuψ

+
u + H.c.,

with

(89)Xu = 1

3
√

2

⎛
⎜⎜⎜⎝

κ11u
′ κ12u

′ κ13u
′ κ ′

1u
′

−κ321v −κ322v −κ323v −κ ′
32v

−κ331v −κ332v −κ333v −κ ′
33v

κ11w
′ κ12w

′ κ13w
′ κ ′

1w
′

⎞
⎟⎟⎟⎠ .

It is easily to see that the first row and the last row in the mass matrix (89) are proportional. This
means that we obtain one massless particle in the mass spectrum of the up quarks. This problem
is the same as in the non-supersymmetric version [11].

Similarly, the Yukawa couplings for the down-quark masses are given by

(90)−1

3

[
κ2iQ1Ldc

iLρ′ + κ ′
2βQ1Ld ′c

βLρ′ + κ4αiQαLdc
iLχ + κ ′

4αβQαLd ′c
βLχ

] + H.c.

Defining the two column vectors

(91)
(
ψ+

d

)T = (
dc

1L, dc
2L, dc

3L, d ′c
2L, d ′c

3L

)
,

(
ψ−

d

)T = (d1L, d2L, d3L, d ′
2L, d ′

3L),

we can write mass term (90) in the form

(92)−L= (
ψ−

d

)T
Xdψ+

d + H.c.,
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with

(93)Xd = 1

3
√

2

⎛
⎜⎜⎜⎜⎜⎝

κ21v
′ κ22v

′ κ23v
′ κ ′

22v
′ κ ′

23v
′

κ421u κ422u κ423u κ ′
422u κ ′

423u

κ431u κ432u κ433u κ ′
432u κ ′

433u

κ421w κ422w κ423w κ ′
422w κ ′

423w

κ431w κ432w κ433w κ ′
432w κ ′

433w

⎞
⎟⎟⎟⎟⎟⎠ .

In the mass matrix (93), the second and the fourth rows are proportional; the third and the last
rows are proportional too. Therefore, this matrix contains two massless particles which are the
same as in Ref. [11].

The masslessness of one up-quark and two down-quarks calls for radiative corrections. One-
loop contributions can be obtained similarly to [11]. We can therefore check that the quarks get
consistent masses at this level.

6. Higgs sector

As mentioned above, in Eqs. (34) and (39), the supersymmetric Higgs potential can be written
as

Vsusy eco ≡ Vscalar + Vsoft

= μ2
χ

4

(|χ |2 + |χ ′|2)+ μ2
ρ

4

(|ρ|2 + |ρ′|2)
+ g′2

12

(
−1

3
χ†χ + 1

3
χ ′†χ ′ + 2

3
ρ†ρ − 2

3
ρ′†ρ′

)2

+ g2

8

(
χ

†
i λb

ijχj − χ
′†
i λ∗b

ij χ ′
j + ρ

†
i λb

ij ρj − ρ
′†
i λ∗b

ij ρ′
j

)2

(94)+ m2
ρρ†ρ + m2

χχ†χ + m2
ρ′ρ′†ρ′ + m2

χ ′χ ′†χ ′.

To look for mass spectrum of Higgs fields, we have to expand them around the VEVs as

χT = (
u+S1+iA1√

2
, χ−, w+S2+iA2√

2

)
, ρT = (

ρ+
1 ,

v+S5+iA5√
2

, ρ+
2

)
,

(95)χ ′T = (
u′+S3+iA3√

2
, χ ′+, w′+S4+iA4√

2

)
, ρ′T = (

ρ′−
1 ,

v′+S6+iA6√
2

, ρ′−
2

)
.

For the sake of simplicity, here we assume that the VEVs u, u′, v, v′, w and w′ are real. This
means that the CP violation through the scalar exchanges is not considered in this work.

Returning to Eq. (94), by requirement of vanishing the linear terms in fields, we get, at the
tree level approximation, the following constraint equations

μ2
χ + 2m2

χ = −g′2

54

[
w2 − w′2 + u2 − u′2 + 2

(
v′2 − v2)]

(96)− g2

6

[
2
(
u2 − u′2 + w2 − w′2)+ v′2 − v2],

(97)μ2
ρ + 2m2

ρ = −2g2 ′ + 9g2

54

[
2
(
v2 − v2 ′)+ w2 ′ − w2 + u′2 − u2],

(98)m2
χ + m2

χ ′ + μ2
χ = 0,
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(99)m2
ρ + m2

ρ′ + μ2
ρ = 0,

(100)
(
w2 − u2)u′w′ = (

w′2 − u′2)uw.

It is noteworthy that Eq. (100) implies the matching condition previously mentioned in (42).
Consequently, the model contains a pair of Higgs triplet χ and antitriplet χ ′ with the VEVs in
top and bottom elements governed by the relation: u/w = u′/w′.

The squared-mass matrix derived from (94) can be divided into (6 × 6) matrices respective to
the charged, scalar and pseudoscalar bosons. Note that there is no mixing among the scalar and
pseudoscalar bosons. We consider, first, in the case of the pseudoscalar bosons. There are two
massless particles, namely, A5, A6. Four others are mixing in the base of (A1,A3,A2,A4), their
(4 × 4) squared-mass matrix takes the form:

(101)M2
4A = −g2

4

⎛
⎜⎝

−w′2 −w′w u′w′ u′w
−w2 uw′ uw

−u2 ′ −uu′
−u2

⎞
⎟⎠ .

To obtain eigenvalues and eigenstates, we change the basis to such (A′
1,A

′
2,A

′
3,A

′
4) as

A′
1 = sβA1 − cβA3, A′

3 = cβA1 + sβA3,

(102)A′
2 = sβA2 − cβA4, A′

4 = cβA2 + sβA4,

where

(103)tβ ≡ w

w′ .

Combining this with the relation (42), we have also

(104)tβ = w

w′ = u

u′ .

In the new basis (A′
1,A

′
3,A

′
2,A

′
4), the squared-mass matrix (101) can be rewritten as

(105)M2
4A′ = −g2

4

⎛
⎜⎝

0 0 0 0
0 −w2 − w′2 0 wu + w′u′
0 0 0 0
0 wu + w′u′ 0 −u2 − u′2

⎞
⎟⎠ .

We see that A′
1 and A′

2 are Goldstone bosons, whereas the remaining states A′
3 and A′

4 are mixing.
Diagonalizing the later, we obtain another Goldstone boson ϕA and one massive state φA

(106)ϕA = sθA
′
3 + cθA

′
4, φA = cθA

′
3 − sθA

′
4.

The mass of φA is given by

(107)m2
φA

= g2

4

(
1 + t2

θ

)(
w2 + w′2) = m2

X.

The above equation shows that the Higgs and gauge bosons have the same mass.
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Now we turn to the scalar sector. In this sector, six particles are mixing in terms of an 6 × 6
squared-mass matrix. In the base of (S1, S2, S3, S4, S5, S6), this matrix is given by

(108)M2
6S = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m2
S11 m2

S12 m2
S13 m2

S14 m2
S15 m2

S16

m2
S22 m2

S23 m2
S24 m2

S25 m2
S26

m2
S33 m2

S34 m2
S35 m2

S36

m2
S44 m2

S45 m2
S46

m2
S55 m2

S56

m2
S66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the matrix elements are given in Appendix A.
To study physical eigenvalues and eigenstates of (108), we change the basis to such

(S′
1, S

′
2, S

′
3, S

′
4, S

′
5, S

′
6) as

(109)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1

S2

S3

S4

S5

S6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sθ −cθ 0 0 0 0

cθ sθ 0 0 0 0

0 0 sθ −cθ 0 0

0 0 cθ sθ 0 0

0 0 0 0 v′√
v2+v′2

−v√
v2+v′2

0 0 0 0 v√
v2+v′2

v′√
v2+v′2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S′
1

S′
2

S′
3

S′
4

S′
5

S′
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the new basis (S′
1, S

′
3, S

′
6, S

′
2, S

′
4, S

′
5), the matrix (108) becomes

(110)M2
6S′ =

⎛
⎜⎝

M2
3S′ 0 0

0 M2
2S′ 0

0 0 0

⎞
⎟⎠ .

We see that the mass spectrum contains one massless particle S′
5. The submatrices of (S′

2, S
′
4)

and (S′
1, S

′
3, S

′
6) are decoupled and, respectively, given by

(111)M2
2S′ = g2

4

(
1 + t2

θ

)( w′2 −ww′
−ww′ w2

)
,

(112)M2
3S′ =

⎛
⎜⎜⎜⎝

18g2+g′2

54c2
θ

w2 − 18g2+g′2

54c2
θ

ww′ g2(9g2+2g′2)
54cθ

√
v2 + v′2w

18g2+g′2

54c2
θ

w′2 − g2(9g2+2g′2)
54cθ

√
v2 + v′2w′

9g2+2g′2

27 (v2 + v′2)

⎞
⎟⎟⎟⎠ .

The matrix (111) gives us one massless field

(113)ϕS24 = sβS′
2 + cβS′

4,

and another massive

(114)φS24 = cβS′
2 − sβS′

4

with the mass:

(115)m2
φS

= g2 (
1 + t2

θ

)(
w2 + w′2) = m2

X.

24 4
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Let us note that φA and φS24 have the same mass, which can be combined to become a phys-
ical neutral complex field H 0

X = (φS24 + iφA)/
√

2 with mass equal to mX of the neutral non-
Hermitian gauge boson X0.

To obtain the physical fields in M2
3S′ , we use the following transformation:

(116)

⎛
⎝S′

1a

S′
3a

S′
6a

⎞
⎠ =

⎛
⎝ cβ sβ 0

−sβ cβ 0

0 0 1

⎞
⎠

⎛
⎝S′

1

S′
3

S′
6

⎞
⎠ .

In the new basis (S′
1a, S

′
3a, S

′
6a), the matrix (112) becomes

(117)M2
a3S′ =

⎛
⎝0 0 0

0 m2
33a −m2

36a

0 −m2
36a m2

66a

⎞
⎠ ,

where

m2
33a = 18g2 + g′2

54c2
θ

(
w2 + w′2), m2

66a = 9g2 + 2g′2

27

(
v2 + v′2),

m2
36a = g2(9g2 + 2g′2)

√
(v2 + v′2)(w2 + w′2)

54cθ

.

The field S′
1a is physical and massless. The submatrix of (S′

3a, S
′
6a) is decoupled, and therefore

the diagonalization yields the eigenvalues

m2
ϕSa36

= 1

2

[
m2

33a + m2
66a −

√(
m2

33a − m2
66a

)2 + 4m4
36a

]
,

(118)m2
φSa36

= 1

2

[
m2

33a + m2
66a +

√(
m2

33a − m2
66a

)2 + 4m4
36a

]
,

with the respective eigenstates

(119)ϕSa36 = sαS′
3 + cαS′

6, φSa36 = cαS′
3 − sαS′

6,

where

(120)t2α ≡ −2m2
36a

m2
66a − m2

33a

.

Finally, we consider the mass spectrum of charged Higgs bosons. In the base of (χ+, χ+′,
ρ+

1 , ρ+
2 , ρ+′

1 , ρ+′
2 ), the squared-mass matrix can be written as

(121)M2
6 charged = g2

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m2
χ−χ+ m2

χ−χ+′ uv vw −uv′ −v′w

m2
χ−′χ+′ −vu′ −w′v v′u′ v′w′

m2
ρ−

1 ρ+
1

m2
ρ−

1 ρ+
2

−vv′ 0

−m2
ρ−

2 ρ+
2

0 −vv′

m2
ρ−′

1 ρ+′
1

m2
ρ−′

1 ρ+′
2

m2
ρ−′

2 ρ+′
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where

m2
χ−χ+ = w2 ′ + u2 ′ + (

v2 − v2 ′), m2
χ−χ+′ = −ww′ − uu′,

m2
ρ−

1 ρ+
2

= u2 − u2 ′ + v2 ′, m2
χ−′χ+′ = u2 + w2 − (

v2 − v2 ′),
m2

ρ−
1 ρ+

2
= uw − u′w′, m2

ρ′−
1 ρ′+

1
= u′2 − u2 + v2, m2

ρ−′
1 ρ+′

2
= −m2

ρ−
1 ρ+

2
,

(122)m2
ρ−

2 ρ+
2

= w2 − w2 ′ + v2 ′, m2
ρ−′

2 ρ+′
2

= w2 ′ − w2 + v2.

To diagonalize the matrix (121), we choose a new basis as follows(
χ+

a

χ ′+
a

)
= O

(
χ+

χ ′+

)
,

(
ρ+

1a

ρ+
2a

)
= O1

(
ρ+

1

ρ+
2

)
,

(
ρ′+

1a

ρ′+
2a

)
= O1

(
ρ′+

1

ρ′+
2

)
,

with

(123)O ≡
(

sβ −cβ

cβ sβ

)
, O1 ≡

(−cθ sθ
sθ cθ

)
.

In the base of (χ+
a ,χ ′+

a , ρ+
1a, ρ

+
2a, ρ

′+
1a , ρ′+

2a ), the matrix (121) becomes

(124)M2
a6 charged = g2

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m2
a11 m2

a12 0 m2
a14 0 m2

a16

m2
a22 0 0 0 0

v′2 0 −vv′ 0

m2
a44 0 −vv′

v2 0

m2
a66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

m2
a11 = −c2β

(
t2
γ − 1

)
v′2, m2

a12 = −s2β

(
t2
γ − 1

)
v′2,

m2
a22 = c2β

(
t2
γ − 1

)
v′2 + (

1 + t2
β

)(
1 + t2

θ

)
w′2,

m2
a14 =

√(
1 + t2

β

)(
1 + t2

θ

)
w′v, m2

a16 =
√(

1 + t2
β

)(
1 + t2

θ

)
w′v′,

m2
a44 = (

t2
β − 1

)(
t2
θ + 1

)
w′2 + v′2,

(125)m2
a66 = −(

t2
β − 1

)(
t2
θ + 1

)
w′2 + v2, tγ ≡ v

v′ .

Since the block intersected by the third, fifth rows and columns is decoupled, it can be diagonal-
ized and this yields two eigenvalues as follows

(126)m2
�+

1
= g2

4

(
v2 + v′2) = m2

W,

(127)m2
�+

2
= 0.

Here the Goldstone boson �+ and Higgs boson �+ are, respectively, defined by
2 1



P.V. Dong et al. / Nuclear Physics B 772 (2007) 150–174 171
(128)�+
1 = cγ ρ+

1a − sγ ρ′+
1a , �+

2 = sγ ρ+
1a + cγ ρ′+

1a .

Eq. (126) shows that one charged Higgs boson has the mass equal to those of W boson, i.e.
m�±

1
= mW± , this result is in agreement with the experimental current limit mH± > 79.3 GeV,

CL = 95% [24].
The remaining part of (χ+

a ,χ ′+
a , ρ+

2a, ρ
′+
2a ) is still mixing in terms of an 4 × 4 submatrix

of (124). Under the constraints (15) we will split this matrix into two terms,

(129)M2
a4 charged = M2

b4 charged + M2
c4 charged,

satisfying the condition: |M2
c4 charged| � |M2

b4 charged|. In this case, the first matrix chosen consists

of elements of the leading-order terms in w2 or w′2 of M2
a4 charged, while M2

c4 charged contains

the remaining terms. The matrix M2
a4 charged can therefore be diagonalized with the contribution

of M2
c4 charged considered as a perturbation. The eigenvalues and eigenstates are, respectively,

obtained up to the first order contributions as follows

m2
ζ+

1
= g2

4
m2

a11, ζ+
1 = χ+

a − m2
a12

m̃2
ζ+

2

χ ′+
a − m2

a14

m̃2
ζ+

3

ρ+
a2 − m2

a16

m̃2
ζ+

4

ρ′+
a2 ,

m2
ζ+

2
= g2

4
m2

a22, ζ+
2 = χ ′+

a + m2
a12

m̃2
ζ+

2

χ+
a ,

m2
ζ+

3
= g2

4
m2

a44, ζ+
3 = ρ+

2a + m2
a14

m̃2
ζ+

3

χ+
a − vv′

m̃2
ζ+

3
− m̃2

ζ+
4

ρ′+
a2 ,

(130)m2
ζ+

4
= g2

4
m2

a66, ζ+
4 = ρ′+

2a + m2
a16

m̃2
ζ+

3

χ+
a + vv′

m̃2
ζ+

3
− m̃2

ζ+
4

ρ+
a2.

Here we have denoted

(131)m̃2
ζ+

2
= (

1 + t2
β

)(
1 + t2

θ

)
w′2, m̃2

ζ+
3

= −m̃2
ζ+

4
= (

t2
β − 1

)(
t2
θ + 1

)
w′2.

If we control parameters by the condition below

(132)
v2

w′2
= (

t2
β − 1

)(
t2
θ + 1

)
then m2

ζ+
4

= 0. Therefore, in the mass spectrum of charged Higgs, we have two zero eigenvalues

which correspond to four Goldstone bosons, namely ζ±
4 , �±

2 .
Finally, let us summarize the physical fields of the scalar sector in the model. There are eight

neutral massless particles: five pseudoscalars A5, A6, A′
1, A′

2, ϕA, and three scalars S′
5, ϕS24 , S′

1a .
There are one complex neutral Higgs H 0

X with mass equal to the mass mX of the neutral non-
Hermitian gauge boson X, and two massive scalars ϕSa36 , φSa36 . There are two charged massless
scalar fields �±

2 and �±
4 , and four massive charged bosons �±

1 , ζ±
1 , ζ±

2 , ζ±
3 . The first charged

Higgs boson has a mass equal to those of W boson: m�± = mW .

1
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7. Conclusions

In this paper, we have constructed a supersymmetric version of the economical 3–3–1 model
of Refs. [8–10] which includes right-handed neutrinos with the minimal scalar sector. The Higgs
sector was in detail studied: the eigenvalues and physical states were derived. The constraint
equations and the gauge boson identification establish a relation between the vacuum expectation
values at the top and bottom elements of the Higgs triplet χ and its supersymmetric counter-
part χ ′. Because of this relation, the exact diagonalization of neutral gauge boson sector has
been performed. The gauge bosons and their associated Goldstone ones are mixing in the same
way as in non-supersymmetric version. The matrix of neutral gauge boson mixing is separated
into two parts and one of them is those in the non-supersymmetric version. There is similarity in
the gauge boson mixing in both supersymmetric and non-supersymmetric versions. This is also
correct in the case of gauginos.

The model contains a heavy neutral complex scalar with mass equal to those of the neutral
non-Hermitian gauge boson X0 and a charged scalar with mass equal to those of the W boson
in the Standard Model, i.e., mHX

= mX , m�+
1

= mW . This value is in good agreement with the
present bound [24] mH± > 79.3 GeV, CL = 95%. We have also shown that the boson sector and
the fermion sector get masses in the same way as in the non-supersymmetric case. We have shown
that the usual quarks have masses proportional to VEVs of the neutral scalars which belong to
doublets while the exotic quarks and new gauge bosons gain masses of order of VEVs of the
scalar of the singlets of the Standard Model group. The usual quarks have masses proportional
to VEVs of the neutral scalars which belong to doublets of the Standard Model—vρ , vχ1 , vρ′
and vχ ′

1
, while the exotic quarks and new gauge bosons gain masses of order of VEVs vχ2 and

vχ ′
2

of the scalars which break the 3–3–1 symmetry down to the Standard Model, in the other
words, the scalar of the singlets of the above group. As in non-supersymmetric version, at the
tree level, one up-quark and two down-quarks are massless. However, the one-loop correction
will give all of them consistent masses.

It is known that the economical (non-supersymmetric) 3–3–1 model does not furnish the
candidate for self-interacting dark matter. With a larger content of the scalar sector, the super-
symmetric version is expected to have the candidate for SIDM. The preliminary analysis leads
us to conclusion that one neutral scalar contains the properties of SIDM like stability, neutrality
and the Universe’s overpopulationless. Hence, in contrast with the non-supersymmetric version,
the considered model contains the scalar satisfying the properties of SIDM. We will return to this
topic in the future study.

Due to the minimal content of the scalar sector, the significant number of free parame-
ters is reduced. In this model, the lepton number violation exists in the neutrino and exotic
quark sectors. Certainly, the model contains very rich phenomenology and it deserves further
studies.
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Appendix A. The mass matrix elements for scalar neutral Higgs bosons

m2
S11 = g2

2
w′2 + 1

27

(
18g2 + g′2)u2, m2

S12 = −g2

2
u′w′ + 1

27

(
18g2 + g2 ′)uw,

m2
S13 = −g2

2
ww′ − 1

27

(
18g2 + g2 ′)uu′, m2

S14 = g2

2
u′w − 1

27

(
18g2 + g2 ′)uw′,

m2
S15 = −g2

27

(
2g2 ′ + 9g2)uv, m2

S16 = g2

27

(
2g2 ′ + 9g2)uv′,

m2
S22 = g2

2
u′2 + 1

27

(
18g2 + g2 ′)w2, m2

S23 = g2

2
u′w − 1

27

(
18g2 + g2 ′)u′w,

m2
S24 = −g2

2
uu′ − 1

27

(
18g2 + g2 ′)ww′, m2

S25 = −g2

27

(
9g2 + 2g2 ′)wv,

m2
S26 = g2

27

(
2g2 ′ + 9g2)wv′, m2

S33 = 1

27

(
g2 ′ + 18g2)u′2 + g2

2
w2,

m2
S34 = 1

27

(
g2 ′ + 18g2)u′w′ − g2

2
uw, m2

S35 = g2

27

(
2g2 ′ + 9g2)u′v,

m2
36 = −g2

27

(
2g2 ′ + 9g2)u′v′, m2

S44 = 1

27

(
g2 ′ + 18g2)w′2 + g2

2
u2,

m2
S45 = g2

27

(
2g2 ′ + 9g2)vw′, m2

46 = −g2

27

(
2g2 ′ + 9g2)w′v′,

m2
S55 = 2

27

(
2g2 ′ + 9g2)v2, m2

S56 = − 2

27

(
2g2 ′ + 9g2)vv′,

m2
S66 = 2

27

(
2g2 ′ + 9g2)v′2.
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