
IV Congresso Brasileiro de Computação – CBComp 2004 Engenharia de Software

 95

Abstract--The emergence of the design patterns movement has
gone a long way toward codifying a concise terminology for
conveying sophisticated computer-science thinking. A design
pattern is a reusable implementation model or architecture that
can be applied to solve a particular recurring class of problem. In
generally, it is hard to recognize pattern use in real-world ware
systems, unless you know what you are looking for then carefully
and methodically search for the pattern. The purpose of this
research has been to demonstrate the feasibility of building
programs to detect the use of software design patterns in Java
programs. To this end this paper examines the structure of
design patterns, determines the nature of what makes a design
pattern detectable by automated means. The development of
these examples allows patterns comparison, showing advantages
and tendencies in using one or another kind of communication
between classes and objects.

Index Terms -- Software Engineering, Object Oriented
Programming, Pattern Recognition.

I. INTRODUCTION
hile object-oriented design methodologies and
languages are in ever-increasing use, it is becoming

recognized that it is harder to become an expert object-
oriented programmer than it is to become an expert in
traditional structured techniques. This is partly due to the fact
that object-oriented builds upon structured techniques, and
adds additional programming language and design features
that must be comprehended, and large libraries that must be
learned. However, the problem goes deeper than this.

 The inherent activities to the software design are
activities which use the personal experience and human
intelligence. Therefore, the use of models must help to solve
problems from any object-oriented design, no matter what the
area of the application. A pattern matches up to a sketch of an
architecture where the involved classes, their responsibilities
and help are defined. To use a pattern in a design consists of
including the classes of the sketch in the structure of classes of
application or making the former classes become responsible
for the classes of the sketch in order to put into the system the
functions wanted [4].

 For maintenance, reuse, and re-implementation, software
developers frequently need to examine source code to
understand object-oriented software systems. The ability to
learn and understand software systems from source code is

This work was supported in part by the FAPERGS – Fundação de Amparo
a Pesquisa do Estado do Rio Grande do Sul.

A. L. Freitas is with the Department of Mathematical, Fundação
Universidade Federal do Rio Grande, Rio Grande, RS (e-mail:
dmtalcf@super.furg.br).

greatly enhanced by visualizing the software systems at higher
levels of abstraction, rather than seeing them nebulous
collections of classes and methods implementations [1].

 Visualizing object-oriented programs as a system of
patterns interacting requires detecting, identifying and
classifying groups of relate classes in program code. These
visualizations represent either known patterns that perform an
abstract task and are not necessarily a known pattern solution.
Aiming to formalize the development process of object-
oriented software, this work proposes to identify the design
patterns essence. Heuristics are created for identify and apply
design pattern in object-oriented programs. This heuristics are
applied in a tool implemented in Java that automates
identification of design patterns in object-oriented
applications.

 This paper is organized like this: section 2 presents a
study on patterns identification tools. The section 3 presents
the characteristics about relationships and collaborations in
design patterns and a study about Composite is carried out.
The Section 4 shows the design patterns automatic
identification tool. These tool aggregates the characteristics
described in Section 3. In the finish we have the conclusion
emphasizing the contribution.

II. RELATED WORKS
A lot of work is currently being done in both scientific

contexts towards identifying design patterns, building support
tools, etc.

The Krämer approach [8] presents a tool whose objective is
the investigation of structural patterns starting from the code
source. The denominated tool Pat System executes the
extraction of pertinent information of a file source in C++ and
it stores them in a repository of data. The patterns are
expressed as Prolog rules and the extracted information as
facts. Therefore, through consultations the information, the
author proposes the research of the patterns.

The Bansiya work [1] proposes a tool that automates the
discovery, identification and classification of design patterns
starting from applications source in C++. The approach uses
heuristic, derived empiric information of the design and metric
of source code for identification of patterns. That approach for
the discovery of patterns focalizes the fundamental structural
relationships of interest for the identification of: inheritance,
aggregation and use.

Seeman [9] presents as recovering design information
starting from applications source in the language Java. That
work characterizes an approach process based on several

The Essence of Design Patterns
In Automatic Identification Tool

A. L. Freitas, FURG – Fundação Universidade Federal do Rio Grande

W

IV Congresso Brasileiro de Computação – CBComp 2004 Engenharia de Software

 96

growing layers of abstraction. The compiler collects
information on inheritance mechanisms, collaborations and
calls to methods. The result of this phase is a graph on which a
grammar is applied, the one which together with some criteria,
it seeks to propose the identification process.

The Guéhéneuc [7] approach shows that design patterns
describe micro-architectures that solve recurrent architectural
problems in object-oriented programming languages. It is
important to identify these micro-architectures during the
maintenance of object-oriented programs. But these micro-
architectures often appear distorted in the source code. He
presents an application of explanation based constraint
programming for identifying these distorted micro-
architectures.

The works of Krämer, Bansiya, Seeman and Guéhéneuc
shows the focus on the static model of the application, in other
words, on a source code an inspection of the entities is
accomplished to determine possible identifications. The
authors emphasize the need of adaptations in if treating that
the model doesn't supply necessary semantic information to
the identification of several patterns. The experiment here
described it demonstrates the investigation process starting
from applications in runtime.

III. DESIGN PATTERNS
A pattern is a way to provide information in the form of a

problem statement, some constraints on the problem, a
presentation of a widely accepted solution to the problem, and
then a discussion of the consequences of that solution. We are
particularly interested in are software design patterns, which
specifically deal with common problems in object-oriented
design. Design patterns can be thought of as micro-
architectures for solving particular design problems.

 The pattern describe how methods in a single or sub-
hierarchy of classes work together, more often, it shows how
multiple classes and their instances collaborates. The proposal
described by Gamma [3] presents a catalogue of patterns. The
aim of this catalogue is to connect the problems of project
more commonly found in the building of frameworks with
how these problems can be solved.

A. Composite Pattern
The Composite Pattern allows you to build complex objects

by recursively composing similar objects in a treelike manner.
The pattern also allows the objects in the tree to be
manipulated in a consistent manner, by requiring all of the
objects in the tree to have a common super class or interface
[4].

The key to use the pattern are two classes: one that
represents simple (or Leaf) objects and one that represents an
objects group. The objects group or Composite, acts like a
Leaf by delegating its behavior to the objects in the group.
Both classes support the same core interface, allowing clients
to collaborate with the interchangeably. The Composite itself
takes advantage of the common interface because its group
members can include both Leaf objects and Composites. A

Composite can contain other Composites and so on until the
final Composites contain nothing but Leaves. The result is a
tree of Composite and Leaf objects.

Fig. 1. Composite Abstract Structure

In generally the Composite class defines the behavior of

the Composite object, such as addChild, removeChild
methods etc.

B. Recursive Connection 1:N Metapattern

The Composite pattern shows a structure called

metapattern with essence. In the paper described in Pree [5]
some metapattens are made. In most cases the metapatterns
offer a good level of flexibility considering changes of
behavior because when the template and hook methods are in
different classes the creation of references between the
classes is needed. This reference can appear in a constant or
variable way through mechanisms of association. The
mechanisms of association in the metapatterns can be
implemented by using attributes in the template and hook
classes.

The recursive connection metapattern presents a
relationship where the hook class is a super class in the
hierarchy. It implies that the subclass calls the same definite
methods in the super class. The recursive connection 1:N
metapattern is also characterized due to the template class
keeps reference to more than one object of the hook class.

Fig. 2. Recursive Connection 1:N Metapattern and Pattern Essence

IV Congresso Brasileiro de Computação – CBComp 2004 Engenharia de Software

 97

IV. THE ANALYZING TOOL
This section presents a tool which automates the detection,

identification and classification of design patterns in Java
programs. This identification is made through the processes of
reverse engineering and computational reflection.

The reverse engineering has as objectives to extract
information of the software specification for subsequent
analysis in the intention of identifying the components of the
application and your relationships. Starting from the Java
source code is made the identification of the application
components through a cross-reference generator. The cross-
reference generator was implemented using the ANTLR tool.
ANTLR, ANother Tool for Language Recognition, it is a tool
that provides a framework for construction of recognizer,
compilers, and translators starting from grammars containing
descriptions for applications C++ or Java [6].

After the construction of the cross-reference report the
attributes will be her appraised and selected for sending of
information for the tool in the subsequent execution process.
The application designer becomes a package of the tool and as
such it should be compiled. After the compilation the tool
executes the application and in a united process with the
execution the reflection computational is characterized.

The computational reflection defines architecture in levels,
denominated reflexive architecture. In a reflexive architecture,
a computational system is seen as incorporating two
components: one representing the object, and other the
reflexive part. The object located in the base level, it has for
objective to solve problems and to come back information on
the application domain, while the reflexive level, located in
the goal-level, it solves the problems and it comes back
information about the object computations, could add extra
functionality to this object.

A. The Tool Processing
The tool presents eight different processes, represented

starting from the figure 3, and described to proceed:
• 1. Generation of the cross-reference report: starting from the
configuration file (java.g), which represents a translator's
grammatical description, the referring files are generated to
the processor of cross-reference, with the aid of the tool
ANTLR. Of ownership of those files already compiled, the
source application designer will be, then, submitted to the
cross-reference process. As final product of this phase, a
report is characterized which is used as entrance for the
following process;
• 2. Generation of the new source code: this process uses as
entrances the cross-reference report and the original source
file. Modifications, as directing of control, they are proposed
in the original application so that this application can supply,
later, information for the inspection tool;
• 3. Compiler: it is made an external call to the standard
compiler, in the intention of compiling the modified
application, for the generation of the byte-code;

Fig. 3. Tool Processing

• 4. Runtime: the modified application behaves as a package
of the inspection tool and, therefore, a call to the main method
(runprocessing) it places it in execution;
• 5. Information extraction: due to the application in execution
a line of execution of the tool worries about the extraction of
the information of the objects used in the application. For each
object used in the user's application a copy of your
characteristics it will be generated;
• 6. Computational reflection: in this process they are
appraised all the states for the which the objects have been
represented during the execution of the application, as well as
your attributes, methods, etc;
• 7. Collaborations identification: all the collaborations are
verified between classes and objects. In this process, in
runtime, all the associations and aggregations are verified that
link to a class or object;
• 8. Design Patterns identification: finally, of ownership of the
classes and objects, involved, your states, your collaborations,
in a static and dynamic way, identify some design patterns
used in the literature.

import java.text.*;
import java.util.Vector;

abstract class Ativo {

abstract public

Java Source Code

package Classe;
import java.util.*;
import java.io.*;

import Inspecao.*;

// Aplicacao do Usuario
import java.text.*;
import java.util.Vector;

abstract class Ativo extends
SerialCloneable{

b t t bli fl t tV l ()

New Java Source Code

1. Generation
Cross-reference

2. Generation New
Source Code

3 Compiler

4.RunTime

5. Information
Extraction

6.Computational
Reflection

7.Collaborations
Identification

8. Design Patterns
Identification

Relatorio de Referencia Cruzada
Pacote: java.text
 Referenciada(o): 1(sem definicoes de
compilacao)
Pacote: ~default~
 Classe AtivoComposite 22
Referenciada(o): 47 47
 Superclasse: Ativo 4

Cross -Reference Report

Byte Code

RunTime Application
Objects

States

Collaborations

IV Congresso Brasileiro de Computação – CBComp 2004 Engenharia de Software

 98

B. Runtime Tool
The following example in figure 4 represents a class

hierarchy which shows a financial control called Ativo
(Component class). Ativo allows the client to make his
account. A client often wants to know about the value of his
business which is determined by summing the value of all his
property. A client can also want to know if he has a specific
property (Garantia). This is determined by searching a
Garantia object in the Ativo hierarchy.

In the first moment an AtivoComposite objects is created
called listaMonetario which initializes the ativos attribute
(Vector class) through new message. It is sent adicionaAtivos:
message to listaMonetario which achieves the insertion of the
leaf object (Garantia) in a list in order. The four objects:
aplicacoes, conta corrente, poupanca e acoes are inserted in
the list.

Fig. 4. Java Application

The mechanism of insertion in AtivoComposite allows us to

insert the listaMonetario as an element of listaBens collection.
The structure bellow shows an object tree.

Fig. 5. Message Diagram

At the end the test message is sent to listaBens. This
message activates the tool where it is possible to check the
objects structure. The last line of the code researches in the
tree using getValor() method which makes a comparison of
the Leafs objects in the structure in a recursive way.

Fig. 6. Objects Diagram

The getValor() method sends a getValor() message to each

Leaf object or this method recursively researches in another
list in the case of Composite objects. The result is a add of
values of valor attribute.

After the conclusion of the cross-reference it happens the
transformation of the designer application where the method
main() it is modified for a method runProcessing() because in
run-time the designer application will behave as a package
used by the inspection tool. All the identified objects in the
main application will be selected for capture of information in
subsequent run-time. Through the sending of these objects for
a control Thread, the tool can, in run-time, to characterize the
inspection of these elements.

Finished the modification process the compilation of the
designer application is begun. The compilation process
activates JDK compiler through an external call. Considering
the compilation concluded without problems the tool it passes
for the phase of package execution. During the execution of
the application control Thread receives, in intervals of time,
the extracted objects. The extraction is made for each object
that receives different messages in the designer application
and for so much the tool evaluates the states of these objects.
If in the evaluation, the object to show different state from the
stored previously this it will be considered, otherwise it will
be discarded.

After the conclusion of the designer package the tool will
present the interfaces of: cross-reference, objects found states
and identified objects classes, according to figure 7. In the
cross-reference the designer can precede the search in the
source application of the identified entities. In this case the
tool appears for the object listaBens of the class
AtivoComposite. This object is presented in a window for
verification of your states as well as a window for verification
of your class, super class and existent attributes in these.

In the states interface they are presented the states that the
object characterized in run-time. The designer can select what
judges more pertinent and to proceed the inspection of these
elements, through the option VerificaEstado.

IV Congresso Brasileiro de Computação – CBComp 2004 Engenharia de Software

 99

Fig. 7. First State Interface

In the case to follow the state 3 had been selected for the

object listaBens. Starting from the identification of the
collaborations of this with other objects/classes is made the
visual and textual presentation of your relationships. The tool
distinguishes the objects now and puts all the ones which are
not literal for the compiler as a reference. The ativos attribute
of AtivoComposite class presents a relationship with two
Garantia objects and another AtivoComposite object. The
second AtivoComposite presents a relationship with a four
Garantia objects (Figure 8).

Fig. 8. Objects Structure

The window of textual inspection, figure 9, presents the

content of the objects attributes identifying new objects
associated by the attributes. This window identifies all the
associations with other objects.

The window of the classes diagram shows the relationships
between classes and objects. The figure 10 shows the
AtivoComposite classes is related to Garantia and
AtivoComposite classes.

In window of detection the class diagram which represents
the pattern which was used in the evaluated application will be
also available if we respect the predefined rules. Figure 11
shows the Composite pattern where an AtivoComposite object
is related to objects of the Garantia type or AtivoComposite
objects. Therefore the relationships happen to the Ativo super
class. Therefore the evaluated object will have to present a
relationship of 1:N with the classes which have the same
hierarchical structure which is represented by the same
abstract super class.

Fig. 9. Textual Objects Structure

Fig. 10. Class Diagram

Fig. 11. Detection Class Diagram

To provide the identification of the pattern Composite the
tool it uses the rules to precede mentioned. Beginning for the
definition of the classes identifies the existence of two sub-
classes starting from the abstract class A: C that demonstrates
the objects Composite structure and L that it characterizes the
objects leaf structure (ConcretComponent).

The C class demonstrates, also, a reference to objects of the
abstract super class. This reference is established by an
attribute in list format identified by LISTATRIBS. Each
attribute of the list, denominated At (ATRIB), it represents an
object of the classes C or L.

The aggregation mechanism and multiple delegation is

IV Congresso Brasileiro de Computação – CBComp 2004 Engenharia de Software

 100

defined when it exists an association and a reference among
the object in evaluation (OC - object Composite) and the
objects of the list. Each association should translate a
relationship with objects of a similar class (other objects
Composite) or with objects that represent subclasses (objects
Leaf), all of the same class appraised root. For the objects
marked as composed it repeats the procedure, recursively, in
the verification of the existence of a hierarchy in tree. These
evidences, therefore, they characterize strong indications for
the existence of the Composite pattern.

Extending the notation used in the Seeman [9] work it can
be deduced the following formalism:

CLASS(C) = {C | C extends A ^ C references A}
CLASS(L) = {L | L extends A}
LISTATRIBS(LAs) = {LAs | LAs attrib C ^ LAs = LIST}

Label_Composite(OC)
 ATRIB(At) = {At = LAs[n] | ∃At ∈ C v ∃At ∈ L}
 ∃OC ∈ C: ∀At: OC aggreg(multiple) At ^ OC delegates At
 ∀OC ∈ C: OC agreg At ⇔ OC assoc At(C) ^ OC references At(C) v
 OC assoc At(L) ^ OC references At(L)
 ∀OC ∈ C: OC delegates At ⇔ ∀m1 ∈ OC: m1 calls m2 ^

 OC owns m1 ^ At owns m2

 ⇒ φ(m(OC))1 = φ(m(At))1

 ∀At ∈ C: Label_Composite(At)

The contribution presented in this formalism it is the

verification of the essence of the pattern starting from the
dynamic structure of the application and just not taking in
consideration the static structure as in the works of: Seeman
[9], Bansya [1] and Guéhéneuc [7]. Therefore, besides the
pattern identification, it can also be verified if this is well used
taking in consideration the entrance information and exit of
the application.

Finally the designer, after visualizing the diagram of
detected classes, he can select the name of the pattern
identified and to press the option Padrão which will show a
version of the original pattern considered in the literature to
make possible comparisons with your package.

Fig. 12. Composite Diagram

V. CONCLUSION
The approach of identifying design patterns relies on

reducing the knowledge of patterns to the minimum necessary
and identifiable structures required by the pattern solutions.
However, an approach based solely on pattern structures is not
complete because pattern structures are not sufficiently
unique. Several patterns tend to use similar basic structures.

Strategies for analyzing collaboration among classes are

still immature. The main contribution of this paper is a
prototype of tool for applications analyzing on searching for
design patterns automatically. By developing examples we
have had a visualization of a few conceptual patterns.

This work also intends to give an example of how to use
the mechanisms for implementing design patterns. Heuristics
that comes with the design patterns helps the construction of
new projects because they are suitable to direct the
development of activities which needs designer’s personal
thinking. However the use of design patterns does not lead
designers to obtain definite answers for the problems at issue.
On the other hand it establishes some ideas to optimize the
construction of object oriented software.

The emphasis of the inspection tool ponders, therefore, in
supplying subsidies to the designer regarding the execution of
the application. The tool has mechanisms of visualization of
the information regarding the states of the appraised objects.
The tool has conditions of disposing the characteristics of the
objects along your life cycle.

The tool is still being built but it has already implemented
the identification of some patterns with Composite, Decorator,
Strategy and Observer. We intend to gradually increase the
tool with more case studies of patterns from real designs as
bigger the samplings then better to certify the tool.

To reduce erroneous identifications it’s necessary to extend
the approach to use design heuristics and empirical data in
resolving the presence of patterns and pattern-like solutions.
The heuristics and empirical data will be derived from design
and implementation metrics, which evaluate the structure and
functional characteristics of classes and relationships.

VI. ACKNOWLEDGMENT
The author gratefully acknowledge the contributions of

Terence Parr for their ANTLR software.

VII. REFERENCES
Periodicals:

[1] J. Bansiya, “Automating Design-Pattern Identification”, Dr.Dobb’s
Journal. New York, v.23, n. 6, pp.20-26, Jun. 1998.

Books:
[2] S. Alpert, “The Design Patterns - Smalltalk Companion”. Reading:

Addison-Wesley, 1998.
[3] E. Gamma, et al, “Design Patterns: Reusable Elements of Object

Oriented Design”, Reading: Addison-Wesley, 1994.
[4] M. Grand, “Patterns in Java: A Catalog of Reusable Design Patterns

with UML”, [S.l.]: John Wiley & Sons, 1998.
[5] W. Pree, “Design Patterns for Object-Oriented Development” Reading:

Addison-Wesley, 1995.
Technical Reports:

[6] T. Parr, “What's An ANTLR ?”, Available: http://www.antlr.org.
Papers from Conference Proceedings (Published):

[7] Y. Guéhéneuc and N. Jussien, “Using Explanations for Design Patterns
Identification” in Proc. 2001 Workshop on Modelling and Solving
Problems with Constraints, pp. 296-303.

[8] C. Krämer and L.Prechelt, L. “Design Recovery by Automated Search
for Structural Design Patterns in Object-Oriented Software” in Proc.
1996 Working Conference on Reverse Engineering, pp. 208-215.

[9] R. Seemann and J. Wolff von Gudenberg, J, “Pattern-Based Design
Recovery of Java Software” in Proc. 1998 Symposium on Foundations
of Software Engineering, pp. 10-16

