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Abstract. The aim of this work is to introduce the concepts of interval D-
implications and automorphisms, analyzing their main properties and establishing
the relation between them. Also, interval D-implications are related with punctual
D-implications and automorphisms.
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1. Introduction

Fuzzy set theory [37] is the oldest and most widely reported component of present-
day soft computing, which deals with the design of flexible information processing
systems [25], with applications in control systems [14], decision making [13], expert
systems [35], pattern recognition [25], etc. On the other hand, Interval Mathemat-
ics [26] is a mathematical theory that aims at the representation of uncertain input
data and parameters, and the automatic and rigorous control of the errors which
arise in numerical computations.

The interval-valued fuzzy set theory, which aims at the integration of Fuzzy
Theory and Interval Mathematics, has been studied from different viewpoints (see,
e.g., [15, 17, 18, 27, 29, 38]). One of these approaches uses membership functions
with interval values, in order to model the uncertainty in the process of determining
exact membership grades with the usual fuzzy membership functions. Then, to
each element of the universe a closed subinterval of the unit interval is assigned,
approximating the membership degree.

This work adopts the approach introduced in [8, 9], where interval extensions
of fuzzy connectives are constructed as their interval representations [34], consid-
ering both correctness (accuracy) and optimality aspects as required in [20]. This
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approach was also considered in our previous works [5, 6, 7, 31, 32]. In fuzzy set
theory, implication functions are usually derived from t-norms and t-conorms in sev-
eral ways, e.g, S-implications, R-implications, QL-implications and D-implications.5

The importance of implications is not only because they are used in representing
“If ... then” rules in fuzzy systems, but also because they are use in performing
inferences in approximate reasoning and fuzzy control. This is the main reason
for searching many different models to perform this kind of fuzzy connectives. In
particular, D-implications were studied only recently (see, e.g., [23, 24]).

The aim of this work is to introduce interval D-implications and to study their
relationship with interval automorphisms, and also with punctual D-implications
and automorphisms. This paper is organized as follows. In Sect. 2., we review
the main concepts related to interval representations. Interval fuzzy t-conorms (t-
norms) and negations are presented in sections 3. and 4., respectively. Interval fuzzy
implications and D-implications are discussed in Sect. 5.. Interval automorphisms
are presented in Sect. 6., and their relationship with interval D-implications in
Sect. 7.. Section 8. is the Conclusion.

2. Interval Representations

Let U = {[a, b] | 0 ≤ a ≤ b ≤ 1} be the set of subintervals of U = [0, 1] ⊆ R. For
X = [X,X] ∈ U, the projections l, r : U → U are defined by

l(X) = X and r(X) = X. (2.1)

Among the partial orders that may be defined on U [12], in this work we consider:

- Product order : X ≤ Y ⇔ X ≤ Y and X ≤ Y .

- Inclusion order : X ⊆ Y ⇔ X ≥ Y and X ≤ Y .

Definition 2.1. F : Un −→ U is an interval representation of a function f :
Un −→ U if, for each ~X ∈ Un and ~x ∈ ~X, f(~x) ∈ F ( ~X). [34]

F : Un −→ U is a better interval representation of f : Un −→ U than G :
Un −→ U, denoted by G ⊑ F , if, for each ~X ∈ Un, F ( ~X) ⊆ G( ~X).

Definition 2.2. [34] The best interval representation of a real function f, f : Un −→

U , is the interval function f̂ : Un −→ U, defined by

f̂( ~X) = [inf{f(~x) | ~x ∈ ~X}, sup{f(~x) | ~x ∈ ~X}] (2.2)

The interval function f̂ is well defined and for any other interval representa-
tion F of f , it holds that F ⊑ f̂ , that is, f̂ returns a narrower interval than any
other interval representation of f . Thus, f̂ has the optimality property of interval
algorithms [20], when it is seen as an algorithm to compute a real function f .

5There are also some other methods of generating fuzzy implications (see, e.g, [36]).
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3. Interval t-norms and t-conorms

A t-conorm (t-norm) is a function S(T ) : U2 → U that is commutative, associative,
monotonic and has 0 (1) as neutral element.

Example 1. Typical examples of t-norms and t-conorms, respectively, are the fol-
lowing:
1. TM (x, y) = min{x, y} and SM (x, y) = max{x, y};
2. TP (x, y) = xy and SP (x, y) = x + y − xy;
3. TL(x, x) = max(x + y − 1, 0) and SL(x, y) = min(x + y, 1);

In the following, we present the interval generalizations of t-conorms (t-norms),
and also two results provided in [8, 10].

Definition 3.1. S :U2→U is an interval t-conorm (t-norm) if it is commutative,
associative, monotonic w.r.t. the product and inclusion order and [0, 0] ([1, 1]) is
the neutral element.

Proposition 3.1. If S (T ) is a t-conorm (t-norm) then Ŝ : U2 → U (T̂ : U2 → U) is

an interval t-conorm (t-norm). Characterizations of Ŝ and T̂ are given, respectively,
by

Ŝ(X,Y ) = [S(X,Y ), S(X,Y )], (3.1)

T̂ (X,Y ) = [T (X,Y ), T (X,Y )]. (3.2)

Considering F : Un → U, we define the functions F ,F : Un → U , respectively
by

F (x1, . . . , xn) = l(F ([x1, x1], . . . , [xn, xn])) (3.3)

F (x1, . . . , xn) = r(F ([x1, x1], . . . , [xn, xn])). (3.4)

Proposition 3.2. Let S be an interval t-conorm, T an interval t-norm and the
functions S, S and T, T t-conorms and t-norms, respectively. Then, for all X,Y ∈ U,
it holds that:

S(X,Y ) = [S(X,Y ), S(X,Y )], (3.5)

T(X,Y ) = [T(X,Y )T(X,Y )], (3.6)

Example 2. Based on Propositons 3.1 and 3.2, some interval t-norms and interval
t-conorms are now considered:
1. T̂M (X,Y ) = [min(X,Y ),min(X,Y )] = inf{X,Y } = TM (X,Y ); and

ŜM (X,Y ) = [max(X,Y ),max(X,Y )] = sup{X,Y } = SM (X,Y ).

2. T̂P (X,Y ) = [XY ,XY ] = TP (X,Y ), and

ŜP (X,Y ) = [X + Y − XY ,X + Y − XY ] = SP (X,Y );

3. T̂L(X,Y )=[max(X+Y−1, 0),max(X+Y−1, 0)]=sup(X+Y −[1; 1], [0; 0])=TL(X,Y ),

ŜL(X,Y ) = [min(X + Y , 1),min(X + Y , 1)] = sup(X + Y, [1; 1]) = SL(X,Y ).
Thus,

T̂L(X,Y ) =





[X + Y − 1,X + Y − 1], if X + Y ≥ 1,

[0, 0], if X + Y ≤ 1,

[0,X + Y − 1], otherwise;
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ŜL(X,Y ) =





[X + Y ,X + Y ], if X + Y ≤ 1,

[1, 1] if ,X + Y ≥ 1,

TL(X,Y ) = [X + Y , 1], otherwise.

4. Interval Fuzzy Negation

A function N : U → U is a fuzzy negation if

N1 : N(0) = 1 and N(1) = 0;

N2 : If x ≥ y then N(x) ≤ N(y), ∀x, y ∈ I.

Fuzzy negations satisfying the involutive property are called strong fuzzy negations
[21]:

N3 : N(N(x)) = x, ∀x ∈ U .

Definition 4.1. An interval function N : U −→ U is an interval fuzzy negation if,
for any X, Y in U, the following properties hold:

N1 : N([0, 0]) = [1, 1] and N([1, 1]) = [0, 0];

N2 : If X ≥ Y then N(X) ≤ N(Y );

N3 : If X ⊆ Y then N(X) ⊆ N(Y ).

If N also meets the involutive property, it is said to be a strong interval fuzzy nega-
tion:

N4 : N(N(X)) = X, ∀X ∈ U.

Let N : U −→ U be a fuzzy negation. A characterization of N̂ is given by:

N̂(X) = [N(X), N(X)]. (4.1)

Proposition 4.1. N : U −→ U is an interval strong fuzzy negation if and only if
there exists a strong fuzzy negation N such that N = N̂ [2].

Clearly, in this case, it holds that N = N = N.

Example 3. The interval extension of the standard fuzzy negation NC(x) = 1 − x

is characterized by the expression N(X) = [1, 1] − X = [1 − X, 1 − X] = N̂C(X).

5. Interval D-Implications

Several definitions for fuzzy implications together with related properties have been
given (see, e.g., [1, 11, 16, 33, 36]), where a binary function I : U2 −→ U is a
fuzzy implication if, at least, I satisfies the minimal boundary conditions: I(1, 1) =
I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0. However, other different properties may be
required. This paper also considers the following three properties of fuzzy implica-
tions:
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I1a : If x ≤ z then I(x, y) ≥ I(z, y);

I1b : If y ≤ z then I(x, y) ≤ I(x, z);

I2 : I(1, x) = x.

Let S be a t-conorm, N be a strong fuzzy negation and T be a t-norm. A
Dishkant Implication (D-implication, for short) is a fuzzy implication defined, for
all x, y ∈ [0, 1], by [23, 24]:

IS,T,N (x, y) = S(T (N(x), N(y)), y). (5.1)

Example 4. In the following, basic fuzzy D-implications are considered:
1. ISL,TM ,NC

(x, y) = min(1 − x + y, 1) (called  Lukaziewski implication).
2. ITP ,SP ,NC

(x, y) = y + (1 − x)(1 − y)2.
3. ISL,TL,NC

(x, y) = max(1 − x, y) (called Kleene-Dienes implication).

Definition 5.1. I : U2 −→ U is an interval fuzzy implication if the next conditions
hold:

I([1, 1], [1, 1]) = I([0, 0], [0, 0]) = I([0, 0], [1, 1]) = [1, 1] and I([1, 1], [0, 0]) = [0, 0].

The properties I1a, I1b and I2 of fuzzy implications can be naturally extended:

I1a : If X ≤ Z then I(X,Y ) ≥ I(Z, Y );

I1b : If Y ≤ Z then I(X,Y ) ≤ I(X,Z);

I2 : I([1, 1],X) = X.

The proofs of the three following propositions follow directly from the definition
of Î. From a fuzzy implication, it is possible to obtain an interval fuzzy implication
canonically:

Proposition 5.1. If I is a fuzzy implication then Î is an interval fuzzy implication.

We can recover the original fuzzy implication from its best interval representa-
tion:

Proposition 5.2. If I is a fuzzy implication then, for each x, y ∈ U , it holds that
I(x, y) = l(Î([x, x], [y, y])) = r(Î([x, x], [y, y])).

In the following proposition, the best interval representation of a fuzzy implica-
tion is shown to be an inclusion-monotonic function.

Proposition 5.3. Let I be a fuzzy implication. For each X1,X2, Y1, Y2 ∈ U, if
X1 ⊆ X2 and Y1 ⊆ Y2 then it holds that Î(X1, Y1) ⊆ Î(X2, Y2).

Theorem 5.1. If I : U2 → U is an inclusion monotonic interval fuzzy implica-
tion satisfying I1a and I1b, then I and I are fuzzy implications, which satisfy the
properties I1a, I1b and such that I(X,Y ) = [I(X,Y ), I(X,Y )].
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Proof. See [4].

Given an interval t-conorm S, an interval t-norm T and a strong interval negation
N the function

IS,T,N(X,Y ) = S(T(N(X), N(Y )), Y ). (5.2)

is said an interval D-implication.

Theorem 5.2. Let S be a t-conorm, T be a t-norm and N be a fuzzy negation. If
S, T and N are continuous then

IbS,bT , bN = ÎS,T,N . (5.3)

Proof. Considering X,Y ∈ U, one has that

IbS,bT , bN (X,Y ) = Ŝ(T̂ ((N̂(X), N̂(Y )), Y )) by Eq. (5.2)

= Ŝ(T̂ ([N(X), N(X)], [N(Y ), N(Y )]), Y ) by Eq. (4.1)

= Ŝ([T (N(X), N(Y )), T (N(X), N(Y ))], Y ) by Eq. (3.2)

= [S(T (N(X), N(Y )), Y ), S(T (N(X), N(Y )), Y )] by Eq. (3.1)

Since, for each x ∈ X and y ∈ Y , S(T (N(X), N(Y )), Y ) ≤ S(T (N(x, y)), y) ≤

S(T (N(X), N(Y )), Y ), then it holds that ÎS,T,N (X,Y ) ⊆ IbS,bT , bN (X,Y ). On the

other hand, if z ∈ Ŝ(T̂ (N(X), N(Y )), Y ), then, by the continuity of S, there exist

z1 ∈ T̂ (N(X), N(Y )) and z2 ∈ Y such that S(z1, z2) = z. Thus, by the continuity of
N and T , there exist z1a ∈ X, z1b ∈ Y such that T (N(z1a), N(z1b)) = z1 and, thus,
it holds that S(T (N(z1a), N(z1b)), z2) = z. If z2 ≤ z1a, then S(T (N(z2), N(z1b)), z2), )
≥ z, and by the commutativity of T , it holds that S(T (N(z1b), N(z2)), z2), ) ≥ z.
In addition, if z1b ≤ z2, then it is valid that S(T (N(z1a), N(z1b)), z1b), ) ≤ z. So,
one has that z ∈ [IS,T,N (z1a, z1b), IS,T,N (z1b, z2)] ⊆ {IS,N,T (x, y) | x ∈ X, y ∈ Y },

and {IS,T,N (x, y) | x ∈ X, y ∈ Y } ⊆ ÎS,T,N (X,Y ). Therefore, it follows that

IbS,bT , bN (X,Y ) = Ŝ(T̂ (N̂(X), N̂(Y )), Y ) ⊆ ÎS,T,N (X,Y ).

Corollary 5.1. If I is a continuous D-Implication then Î is an interval D-implication.

Proof. It is straightforward, following from Theorem 5.2.

Example 5. Based on Theorem 5.2, interval extensions of implications in Exam-
ple 4 can be given by the following expressions:

1.IdSL,dTM ,dNC
(X, Y ) = [min(min(1−X, 1−Y )+Y , 1), min(min(1−X, 1−Y )+Y , 1)], that means

̂ISL,TM ,NC
(X, Y ) = IdSL,dTM ,dNC

(X, Y ) =

8<: [1 − Y + Y , 1], if X ≤ Y ;

[1 − X + Y , 1], if X ≤ Y ≤ X;

[1 − X + Y , 1 − X + Y ], otherwise.

2.IdSP ,dTP ,dNC
(X, Y ) = [(1−X)(1−Y )(1−Y )+Y , (1−X)(1−Y )(1−Y )+Y ] = ̂ISP ,TP ,NC

(X, Y ).

3.IdSL,TL,dNC
(X, Y ) = [min(max(1−X−Y , 0)+Y , 1), min(max(1−X−Y )+Y , 1)].
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Thus, IdSL,TL,dNC
(X, Y ) = ̂ISL,TL,NC

(X, Y ), and

IdSL,TL,dNC
(X, Y ) =

8>><>>: [1 − X − Y + Y , 1 − X − Y + Y ], if Y ≤ X + Y ≤ X + Y ≤ 1;

[1 − X − Y + Y , 1], if X + Y ≤ Y ≤ X + Y ≤ 1;

[Y , 1 − X − Y + Y ], if X + Y ≤ Y ≤ 1 ≤ X + Y ;

[Y , Y ], otherwise .

Proposition 5.4. If I is an interval D-implication then the properties I1a and I2
hold.

Proof. Consider I as an interval D-implication and X,Y,Z ∈ U.
I1a: Based on the monotonicity of the interval t-norm T, the interval t-conorm S and
interval negation N, if X ≤ Z then S(T(N(X), N(Y )), Y ) ≥ S(T(N(Z), N(Y )), Y ).
Therefore, it holds that IS,T,N(X,Y ) ≥ IS,T,N(Z, Y ).
I2: One has that IS,T,N([1, 1], Y ) = S(T(N([1, 1]), N(Y )), Y ) = S(T([0, 0], N(Y )), Y ). By
the monotonicity of T, it holds that S(T([0, 0], N(Y )), Y ) = S([0, 0], Y ) = Y . Then,
it follows that IS,T,N([1, 1], Y ) = Y .

Denote by C(S), C(T ), C(I) and C(N) the classes of continuous t-conorms, t-
norms and D-implications, and strong fuzzy negations, respectively. The related
interval extensions are indicated by C(S), C(T), C(I) and C(N), respectively. The
results presented in sections 3. and 5., and Theorem 5.2, state the commutativity
of the diagram in Fig. 1.

C(S) × C(N) × C(T )
Eq.(5.1)

- C(I)

C(S) × C(N) × C(T)

Eq.(3.1), Eq.(4.1), Eq.(3.2)

? Eq.(5.2)
- C(I)

Eq.(5.3)

?

Figure 1: Classes of interval D-implications

Theorem 5.3. If I is an interval fuzzy D-implication, then the functions I, I : U2 →
U , defined as in Eq. (3.3) and Eq. (3.4), respectively, are D-implications.

Proof. We prove the first case. Considering x, y ∈ U :

I(x, y) = l(I([x, x], [y, y])) = l(S(T(N([x, x]), N([y, y])), [y, y])) by Eq. (3.3)

= l(S(T([N(x), N(x)], [N(y), N(y)]), [y, y])) by Eq. (4.1) and Prop. 4.1

= l[S(T(N(x), N(y)), y), S(T(N(x), N(y)), y)] by Eq. (3.5), Eq. (3.6)

= S(T(N(x), N(y)), y) = IS,T,N (x, y) by Eq. (2.1), Eq. (5.1)

The second case is analogous.

The reconstruction of an interval fuzzy D-implication (i.e., the converse of The-
orem 5.3) is not possible considering just the fuzzy implications I and I. Observe
Example 6.
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Example 6. Consider ISL,TM ,NC
(X,Y ) presented in Example 5(1) and the subin-

tervals of the unit interval [0, 1], X = [0.2; 0.3], Y = [0.3; 0.5] ≤ Z = [0.4; 0.8].
Thus, ISL,TM ,NC

(X,Y ) = [0.5; 1.0] ≥ [0.4; 1.0] = ISL,TM ,NC
(X,Z). That means,

ISL,TM ,NC
(X, Y )6=[ISL,TM ,NC

(X, Y ), ISL,TM ,NC
(X, Y )]=[max(1−X, Y ), max(1−X, Y )].

We introduce the following proposition in order to get the converse of Theo-
rem 5.3.

Proposition 5.5. Let I be an interval D-implication satisfying the property I1b.
Then it holds that I(X,Y ) = [I(X,Y ), I(X,Y )].

Proof. Since S, T and N are inclusion monotonic, IS,T,N also is inclusion monotonic.
Thus, since I satisfies the property I1b, then from Prop. 5.4 and Theorem 5.1, it
follows that IS,T,N(X,Y ) = [IS,T,N(X,Y ), IS,T,N(X,Y )].

6. Interval Automorphism

Definition 6.1. A mapping ρ : U −→ U is an automorphism if it is bijective and
monotonic, that is, x ≤ y ⇒ ρ(x) ≤ ρ(y) [22, 28].

The inverse of an automorphism is also an automorphism. Based on [11, 21], the
action of an automorphism ρ on a function f : Un → U , denoted by fρ, is defined
as

fρ(x1, . . . , xn) = ρ−1(f(ρ(x1), . . . , ρ(xn))). (6.1)

As it is well known, the action of ρ preserves fuzzy connectives [30, 11], i.e.,
Sρ,T ρ, Nρ and Iρ are fuzzy t-conorm, t-norm, (strong) negation and implication,
respectively.

Proposition 6.1. Let S be a t-conorm, T be a t-norm and N be a strong negation.
Then it holds that ISρ,T ρ,Nρ = I

ρ
S,T,N .

Proof. Considering x, y ∈ U , one has that

ISρ,T ρ,Nρ = S
ρ(T ρ(Nρ(x), Nρ(y)), y) by Eq. (5.1)

= ρ
−1(S((T (N(ρ(x)), N(ρ(y)))), ρ(y)) by by Eq. (6.1)

= ρ
−1(IS,T,N (ρ(x), ρ(y))) = I

ρ
S,T,N (x, y) by Eq. (5.1), Def. 6.1

Corollary 6.2. If I is an D-implication then Iρ is also an D-implication.

Proof. It follows from the definition of D-implication and Prop. 6.1.

A mapping ̺ : U −→ U is an interval automorphism if it is bijective and
monotonic w.r.t. the product order, that is, X≤Y ⇒̺(X)≤̺(Y ) [18, 19].

Theorem 6.1. ̺ : U −→ U is an interval automorphism if and only if there is an
automorphism ρ : U → U , such that ̺ = ρ̂ and

ρ̂(X) = [ρ(X), ρ(X)]. (6.2)
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Proof. See [18, Theorem 2], [8, Theorem 5.2].

Thus, the interval automorphism ρ̂ is the best interval representation of the
automorphism ρ. The action of an interval automorphism ̺ on an interval function
F : Un → U, defined as

F ̺(X1,X2, . . . ,Xn) = ̺−1(F (̺(X1), ̺(X2), . . . , ̺(Xn))). (6.3)

preserves interval fuzzy connectives, i.e., S̺,T̺, N̺ and I̺ are also interval fuzzy
t-conorm, t-norm, (strong) negation and implication, respectively [4, 8, 10]. In
the following, we apply the results concerned with the generation of new interval
D-implications based on the actions of interval automorphisms.

7. Interval Automorphisms and Interval D-impli-

cations

Firstly, the action of an interval automorphism preserving interval D-implications
is shown.

Theorem 7.1. Let ̺ : U −→ U be an interval automorphism and I : U2 −→ U be
an interval D-implication. Then I̺ : U2 −→ U is also an interval D-implication.

Proof. It is sufficient to prove that the following equation holds:

I
̺
S,T,N(X,Y ) = S

̺(T̺(N̺(X), N̺(Y )), Y ). (7.1)

Considering X,Y ∈ U, we have that

I
̺
S,T,N(X,Y ) = ̺−1(IS,T,N(̺(X), ̺(Y ))) by Eq.(6.3)

= ̺−1(S(T(N(̺(X)), N(̺(Y ))), ̺(Y )) by Eq.(5.2)

= ̺−1(S(T(̺(̺−1(N(̺(X)))), ̺(̺−1(N(̺(Y ))))), ̺(Y )) by bijectivity of ̺

= ̺−1(S(̺(̺−1(T(̺(N̺(X)), ̺(N̺(Y ))))), ̺(Y )) by Eq. (6.3)

= S
̺(T̺(N̺(X), N̺(Y )), Y ) by Eq. (6.3)

According to Theorems 6.1 and 7.1, the commutative diagram pictured in Fig. 2
holds. Based on Proposition 6.1 and Theorem 7.1, (interval) D-implications and
(interval) automorphisms can be seen as objects and morphisms of the category
C(C(I), Aut(I)) (C(C(I), Aut(I))), respectively. In a categorical approach, the action
of an interval automorphism on an interval D-implication can be conceived as a
covariant functor whose application over the D-implications and automorphisms in
C(C(I), Aut(I)) returns the related best interval representation in C(C(I), Aut(I)).
Therefore, interval automorphisms can be used to deal with optimality of interval
fuzzy algorithms.
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8. Conclusion and Final Remarks

Considering the importance of fuzzy implications studies to perform inferences in
approximate reasoning and fuzzy control, the results presented in this paper con-
tribute firstly for the general study on D-implications, whose main features have only
recently appeared as subject of some important works (see, e.g., [23, 24]). However,
our main interest was on the definition of interval-valued D-implications, continuing
our previous works [5, 6, 7, 31, 32] on the study of the the various interval-valued
implication functions deriving from interval t-norms, interval t-conorms and inter-
val negations. In this context, we proved many important properties of interval
D-implications. Finally, the paper establishes the relationship between (interval)
D-implications and (interval) automorphisms, showing that the action of (interval)
automorphisms preserves (interval) D-implications.

C(I)
Eq.(6.1)

- C(I)

C(I)

Eq.(5.3)

? Eq.(7.1)
- C(I)

Eq.(5.3)

?

Figure 2: Commutative classes of interval D-implications and automorphisms
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Resumo. Este artigo introduz os conceitos de D-implicações intervalares, anal-
isando suas principais propriedades e correspondente relacionamento com os auto-
morfismos intervalares.

References

[1] J. Balasubramaniam, Yager’s new class of implications Jf and some classical
tautologies, Information Sciences, 177, No. 3 (2007), 930–946

[2] B.C. Bedregal, On interval fuzzy negations, Fuzzy Sets and Systems (2010) (to
appear)

[3] B.C. Bedregal, G.P. Dimuro, R.H.S. Reiser, An Approach to Interval-Valued
R-Implications and Automorphisms, in: “2009 IFSA World Congress/2009
EUSFLAT Conference´´, pp. 1–6, Lisboa: Instituto Superior Técnico, 2009.
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