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Derivative Contracts

European Call Option: a forward contract that gives the holder the
right, but not the obligation, to buy one unit of an underlying asset for
an agreed strike price K on the maturity date T .

Its payoff is given by

h(XT ) =
{

XT −K if XT > K ,
0 if XT ≤ K .

Fundamental Question How to price such an obligation given today’s
information?
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Black-Scholes Market Model

We consider the Black-Scholes equation (see Black-Scholes-1973):

Ut +
1
2

σ
2(t,X)X 2UXX +(r −q)XUX = rU , (1)

U t,S(t = T ,X) = max(X −K ,0) European Call (2)

Here, X = X(t) denotes the spot price, K is called strike, T the
maturity, r is the interesting rate, q the dividends and σ(t,X) is the
local volatility.

Note 1 U = U(t,x ;σ, r) for t ≤ T .
Note 2 Final Value Problem
Remark Constant volatility model - Nobel Prize: Robert Merton and
Myron Scholes
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Smile effect: Empirical remark that calls having different strikes, but
otherwise identical, have different implied volatilities.

Before the 1987
crash the graph of I(K ) (fix t ,X ,T ) had a U shape with a minimum
close to K = X .
Since 1987 it is a decreasing function in the range
95% < K/X < 105% then (for K >> X ) it bends upwards.
Limitations ...
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Local Volatility Models

Idea Assume that the volatility is given by

σ = σ(t,x)

i.e.: it depends on time and the asset price.
The Direct Problem
Given σ = σ(t,x) and the payoff information, determine
U = U(t,x ,T ,K ;σ)
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The Inverse Problem

Given a set of observed prices

{U = U(t,x ,T ,K ;σ)}(T ,K )∈S

find the volatility σ = σ(t,x).
The set S is taken typically as [T1,T2]× [K1,K2].
In Practice Very limited and scarce data
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The Smile Curve and Dupire’s Equation

Assuming that there exists a local volatility function σ = σ(S, t)
Dupire(1994) showed that the call price satisfies{

∂T U− 1
2 σ2(K ,T )K 2∂2

K U + rS∂K U = 0 , S > 0 , t < T
U(K ,T = 0) = (S−K )+ ,

(3)

Theoretical way of evaluating the local volatility

σ(K ,T ) =

√
2

(
∂T U + rK ∂K U

K 2∂2
K U

)
(4)

In practice To estimate σ from (3), limited amount of discrete data and
thus interpolate. Numerical instabilities! Even to keep the argument
positive is hard.
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Early Results
Bouchoev-Isakov Uniqueness and “Stability”

Consider the case of time-independent volatility and working with
y = log(K/S(0)) τ = T − t . Suppose U(y ,τ) and a(y) = σ(K )
satisfies (3) with

U(y ,0) = S(0)(1−ey)+,y ∈ R (5)

U(y ,τ∗) = U∗(y),y ∈ I (6)

where I is a sub-interval of R. Then, we have
Uniqueness of the volatility
Stability of the volatility in the Hölder λ-norm w.r.t. to variations of
the data on the 2+λ-norm. (i.e., one needs TWO extra
derivatives of the data).
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Early Results
More precisely

Theorem (Bouchouev & Isakov)

Let U1 and U2 be solutions of (3-6) with a = a1 and a = a2, resp., and
the corresponding final data in Eq. (6) given by U∗

1 and U∗
2 . Let I0 be

an open interval with I ⊃ I0 6= /0. Then,

1 If U∗
1 = U∗

2 on I and a1(y) = a2(y) on I0 then a1(y) = a2(y) on I.

2 If, in addition, a1(y) = a2(y) on I0∪ (R\ I) and I is bounded, then
∃C = C(|a1|λ(I), |a2|λ(I), I, I0,τ∗) s.t.

|a1−a2|λ(I)≤ |U∗
1 −U∗

2 |2+λ(I)

Remark The assumption that a is known on I0 ⊂ I makes the problem
overdetermined.
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Joint work with J.P. Zubelli & O. Scherzer

Start from

−Ut +
1
2

σ
2(T ,K )K 2UKK − (r −q)KUK −qU = 0 (7)

U t,X (T = t,K ) = (X −K )+, for K > 0, (8)

Setting K = Xey , τ = T − t , u(τ,y) = exp(
TR
t

q(s)ds)U(.,T ,K ),

b(τ) = q(τ)− r(τ) and

a(τ,y) =
1
2

σ
2(τ;K ) (9)

yields
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−uτ +a(τ,y)(uyy −uy)+b(τ)uy = 0 (10)

u(0,y) = X(1−ey)+. (11)

The parameter-to-solution map F is defined by

F(a) = u(a), (12)

where u(a) is the solution of (10) for a ∈ D(F) .
We assume noise data uδ satisfies the inequality

||u∗−uδ||L2(Ω) ≤ δ. (13)
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Properties of F and ill-posedness of the inverse problem

i) There exists a p∗ > 2 such that F : D(F)→ W 2,1
p (Ω) is

continuous and compact for 2 ≤ p < p∗. Moreover, F is weakly
(sequentially) continuous and thus weakly closed.

ii) F is Gateaux differentiable w.r.t. a ∈ D(F) in directions h such
that a+h ∈ D(F), and the derivative F ′(a) extends as a linear
operator to H1(Ω).

iii) F ′(a) is injective and compact. Moreover R (F ′(a)∗) = H1(Ω).

Proof: see DC & Scherzer & Zubelli (2009) and Egger & Engl (2005)
or Crepey (2003).
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Ill-posedness in more details

D(F) := {a ∈ a0 +H1 : a ≤ a,a0 ≤ a}.

ak ⇀ ã with uk = F(ak)→ ũ = F(ã)
similar prices uk and ũ linked with completely different volatilities

ask for regularization!!!!

Tikhonov regularization
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Standard Tikhonov regularization residual norm + β times
penalization penalization = || · ||2.

source wise condition equivalent what we assume know about
the inverse solution

convergence rates to Tikhonov for quadratic penalization
||aδ−a†||= O(

√
δ)

Our approach: convex regularization βf (·) with f convex, positive,
etc...
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State of the art from the literature

Let the standard choice of regularization parameter β = β(δ)∼ δ.
(i) If f (·) = || · ||2H1(Ω), then we have the convergence rate results

(Egger & Engl(2005))

||aδ

β
−a†||H1(Ω) = O(

√
δ) and ||F(aδ

β
)−uδ||L2(Ω) = O(δ), (14)

assuming the source-wise representation a∗−a† = F ′(a†)∗w .
(ii) In (Hoffman & Kramer (2005)), with

f (a(τ)) =
R

I{a(τ)ln a(τ)
ā(τ) + ā(τ)−a(τ)}dτ the convergence rate

results
||aδ

β
−a†||L1([0,T ]) = O(

√
δ) (15)

using a source-wise representation ln a†

a∗ = F ′(a†)∗w .
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iii) With f (·) = || · ||2L2([0,T ]), (Hoffman et al. (2006)) obtained the
same rates of (Hoffman & Kramer (2005) (volatility
time-dependent only) assuming the source wise representation

ξ
† = F ′(a†)∗w ∈ ∂f (a†) (16)

in terms of Bregman distances.
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Convergence
Convergence rates

Our approach

Minimize the functional

F
β,uδ(a) :=

1
2
||F(a)−uδ||2L2(Ω) +βf (a), (17)

where f : dom(f )⊂ B1 → [0,∞] is a convex, proper and lower
semi-continuous stabilization functional.
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Convergence
Convergence rates

Convergence

Theorem (Existence, Stability, Convergence)

Suppose that F , f , D(F) as above, β > 0 and (13) holds. Then

There exists a minimizer of F
β,uδ .

If (uk)→ u in L2(Ω), then every sequence (ak) with

ak ∈ argmin
{

Fβ,uk (a) : a ∈ D(F)
}

has a subsequence which weak converges. The limit of every
w-convergent subsequence (ak ′) of (ak) is a minimizer ã of Fβ,u,
and

(
f (ak ′)

)
converges to f (ã).
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Theorem (Semi-convergence)

If there exists a solution of (12) in D(F), then there exists an
f -minimizing solution of (12).

Assume that (12) has a solution in D(F) (which implies the
existence of an f -minimizing solution) and that β : (0,∞)→ (0,∞)
satisfies

β(δ)→ 0 and
δ2

β(δ)
→ 0 , as δ → 0 . (18)

Moreover, (δk)→ 0, and that uk := uδk satisfies ‖ū−uk‖ ≤ δk .
Set βk := β(δk). Then, every sequence (ak) of elements
minimizing Fβk ,uk , has a subsequence (ak ′) that is w-convergent.
The limit a† of any w-convergent subsequence (ak ′) is an
f -minimizing solution of (12), and f (ak)→ f (a†).

Proof: see DC & Scherzer & Zubelli (2009).
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Lemma

Let ζ† ∈ ∂f (a†). Then There exists a function w† ∈ L2(Ω) and a
function r ∈ H1(Ω) such that

ζ
† = F ′(a†)∗w† + r (19)

holds. Furthermore, ‖r‖H1(Ω) can to be taken arbitrarily small.
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Definition

Let 1 ≤ q < ∞. Moreover, let Ũ be a subset of H1. The Bregman
distance Dζ(·, ã) of f : H1 → R∪{+∞} at ã ∈ DB(f ) and ζ ∈ ∂f is
said to be q-coercive with constant c > 0 if

Dζ(a, ã)≥ c‖a− ã‖q
Ũ

∀a ∈ D(f ). (20)
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Convergence rates

Lemma

Let ζ† ∈ ∂f (a†) satisfy (19) with w† and r such that

c
(
C‖w†‖L1(Ω) +‖r‖L2(Ω)

)
:= β1 ∈ [0,1),

and the Bregman distance with respect to f is 1− coercive (as in the
Definition 6.1) with Ũ := H1(Ω). Then,

〈ζ†,a†−a〉 ≤ β1Dζ†(a,a†)+β2‖F(a)−F(a†)‖L2(Ω) , (21)

for a ∈ Mβmax(ρ), where βmax, ρ > 0 satisfy the relation ρ > βmaxf (a†).
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Theorem (Convergence rates)

Let β : (0,∞)→ (0,∞) satisfy β(δ)∼ δ and (21) satisfied. Then,

Dζ†(aδ

β
,a†) = O(δ) , and ‖F(aδ

β
)−uδ‖L2(Ω) = O(δ) ,

and there exists c > 0, such that f (aδ

β
)≤ f (a†)+δ/c for every δ with

β(δ)≤ βmax.

Proof: See DC & Scherzer & Zubelli (2009).
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Example (q-coercive Bregman distance)

i) f (a) := q−1‖a−a†‖q
Ũ

.

ii) Let 1 < q ≤ 2. We consider the functional

f (a) =
∞

∑
n=1

|< a,φn > |q ,

where {φn} is an orthonormal basis in H1(Ω). The Bregman
distance of the functional f satisfies

f (a)− f (a†)−〈∂f (a†),a−a†〉≥C
∞

∑
n=1

|〈a−a†,φn〉|2 = C‖a−a†‖2
H1(Ω) .
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Exponential Families

Definition (Regular Exponential Family)

Let ψ : R→ R+ be convex and p0 : R→ R+ by continuous. The
family of functions pψ,θ : R→ R+ defined by

pψ,θ(s) := exp(s ·θ−ψ(θ))p0(s) (regular exponential family).
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Theorem (Banerjee et al. [?])
Let ψ∗ the Fenchel transform of ψ (differentiable) and
a(θ) ∈ int(dom(ψ∗)). Then,

pψ,θ(a) = exp
(
−Dψ∗ (a,a(θ))

)
exp
(
ψ
∗(a)

)
p0(a) . (22)

Adriano De Cezaro e-mail: decezaro@impa.br Convex Regularization of Local Volatility Models from Option Prices: Convergence Analysis and Rates



Outline
Asset Models and Option Pricing

The Formulation of the Inverse Problem
Properties of F and ill-posedness of the inverse problem

State of the art from the literature
Non-quadratic regularization of calibration problem

Exponential Families
Conclusions

Exponential Families and Fenchel conjugate

Example (Exponential Families and Fenchel conjugate)

Gaussian distribution ψ(θ) = ϖ2

2 θ2, then ψ∗(a) = a2

2ϖ2 . Poisson
distribution ψ(θ) = exp(θ) we have ψ∗(a) = a log(a)−a.
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Bregman distance regularization as a log-maximum
a-posteriori estimator for an exponential family.

The probability (normally and identically distributed) of observing
uδ

i := uδ(xi) given ui := F(a)(xi) is given by

p(uδ
i |ui) =

1

ϖ
√

2π
exp

(
−|u

δ
i −ui |2

2ϖ2

)
.

where ai = a(xi) ∈ R.
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According to Theorem 7

p(a) = exp(−Dψ∗(â,a))exp(ψ∗(â))p0(â) .

The Log-maximum estimation then consists in minimizing the
functional

~a 7−→∑
i

(
− log(p(uδ

i |ui))− log(p(ai))
)

,

which is equivalent to minimizing the functional

~a 7−→∑
i
(ui −uδ

i )
2 +β∑

i
Dψ∗(âi ,ai) ,

where β = 2ϖ2.
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Example

Exponential family associated to Poisson distributions, consisting in
minimization of

a 7−→ F
β,uδ(a) := ‖F(a)−uδ‖2

L2(Ω) +βKL(â,a) , (23)

where
KL(â,a) =

Z
Ω

a log(â/a)− (â−a)dx .
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Lemma

Ω ⊂ R2 bounded and F : L1(Ω)−→ L2(Ω) is continuous with respect
to the weak topologies, respectively.

1 Let a,b ∈ D(G). Then

‖a−b‖2
L1(Ω) ≤

(
2
3
‖a‖L1(Ω) +

4
3
‖b‖L1(Ω)

)
KL(a,b) . (24)

2 For sequences (ak)k and (bk)k in L1(Ω), such that one of them
is bounded: If KL(ak ,bk)→ 0, then ‖ak −bk‖L1(Ω) → 0.

3 Let 0 6= â ∈ DB(G), M
β,uδ(M) := {a ∈ DB(G) : F

β,uδ(a)≤ M}
are weak sequentially compact.
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Convergence analysis

Using standard results on variational regularization, we have:

Theorem

There exists a minimizer of F
β,uδ in (23). The minimizers are stable

and convergent for β(δ)→ 0 and δ2/β(δ)→ 0. Stable means that
argmin F

β,uδk → argmin Fβ,u0 for δk → 0 and that argmin F
β(δk ),uδk

converges to a solution of (12) with minimal energy.
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Conclusions

The main novelty

i f only requires convexity properties and weak
lower-semicontinuity.

ii we establish, for Bregman distances, better convergence rates
than those available in the literature to this problem,

iii Another advantage of the current approach is the requirement of
weaker conditions than those previously required in the literature.
Namely, we only require (20).

iv we prove (19),

v and we motivate Bregman distance regularization using
exponential families.
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Future research

Future research

i numerical implementation.

ii investigation of American Options.
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