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Abstract

We present a unified framework for the calibration of local volatility models that makes use of
recent tools of convex regularization of ill-posed Inverse Problems.

The unique aspect of the present approach is that it address in a general and rigorous way the
key issue of convergence and sensitivity of the regularized solution when the noise level of the ob-
served prices goes to zero. In particular, we present convergence results that include convergence
rates with respect to noise level in fairly general contexts and go well beyond the classical quadratic
regularization.

Our approach directly relates to many of the different techniques that have been used in volatil-
ity surface estimation. In particular, it directly connects with the Statistical concept of exponential
families and entropy-based estimation. Finally, we also show that our framework connects with the
Financial concept of Convex Risk Measures.

1 Introduction

Good model selection is crucial for modern sound financial practice. In this context, a well accepted
class of models consists of the local-volatility ones that were pioneered by Dupire [Dup94]. Once one
agrees to work within the context of local-volatility models, a central problem in option pricing is the
determination of the local volatility surface from quoted prices. This question has been investigated by
a long list of authors and has been the subject of intense scrutiny. See, for example, [ABF+00, Ave98c,
Ave98b, Ave98a, AFHS97, BI97, Cré03a, DKZ96, EE05, HKPS07, HK05] and references therein. It is
well known that such calibration problem, as many important ones in Finance, is highly ill-posed. In
particular, small changes and noises in the data may lead to substantial changes in the results. Yet, good
volatility surface calibration is crucial in a plethora of applications, including risk management, hedging,
and the evaluation of exotic derivatives.

One is naturally tempted to ask: How could such given data change since it is composed by well
defined and fixed market prices? The answer is that the underlying set up of the calibration problem is
an infinite dimensional inverse problem which is intrinsically ill-posed. Although this is intuitively well
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known it will be confirmed under fairly general conditions in the sequel. Thus, any finite dimensional
observation set will naturally correspond to a (non-unique) element in a function space and such repre-
sentation alone is already a substantial source of noise. On a more mundane level, the simple fact that
one increases the data set by adding a few observation points might completely ruin the reconstruction.
The only practical way to deal with such instability issue is by assuming some a priori information and
regularizing the corresponding volatility surface.

The introduction of regularization techniques in order to the stabilize the problem leads to a crucial
question: If the noise in the data goes to zero, does the corresponding regularized solution converge to
the true volatility? If this is the case, it would be also natural to inquire about the rate of convergence. If
convergence is slow, the regularization is bound to be useless in practical applications.

In this work, we present a general theoretical framework based on Tikhonov regularization by means
of a convex penalizing functions. This is an extension of the quadratic regularization that has been previ-
ously studied in the Inverse Problem literature [Cré03a, Cré03b, EE05, BJ99]. On the theoretical side, the
strength is that this yields better convergence rates with respect to the noise level in the measurements.
Furthermore, it allows for convergence in spaces different from those in the quadratic regularization
setting. In fact, in some cases, the convergence of certain convex regularization expressions implies con-
vergence in the L1-norm. Besides those results, our approach connects with central topics in different
areas of current research. Such topics include exponential families of probability distributions, which
is an important subject in Statistics, and convex risk measures in Risk Management and Quantitative
Finance [ADEH99, Meu05, FS06].

We recall the concept of a regular exponential family of probability distributions. It consists of family
of probability distribution functions pψ,θ : R→ R+ defined by

pψ,θ (s) := exp(s ·θ −ψ(θ))p0(s)

where ψ : R→ R∪{+∞} is convex and p0 : R→ R+ is continuous. The Darmois-Koopman-Pitman
theorem states that under certain regularity conditions on the probability density, a necessary and suffi-
cient condition for the existence of a sufficient statistic of fixed dimension is that the probability density
belongs to the exponential family [And70]. From our perspective, it is particularly relevant that there
is an equivalence between exponential families and Bregman distances [BMDG05]. We stress that an
exponential family is a parametric family of probability functions. Fixing the element of the family ψ(θ)
corresponds to the expectation value.

The concept of exponential family arises naturally in order to answer the question: What is the maxi-
mum entropy distribution consistent with given constraints on expected values? Given the interpretation
of option prices as expected values, with respect to appropriate measures which depend on the local
volatility surface, a minute’s thought leads us to naturally associate the problem of volatility estimation
from observed option prices to exponential measures. Financially, it can be understood as follows: Each
volatility surface leads to a corresponding risk neutral measure whose expectation of the payoff are the
observed derivative prices. Thus, if we are given the problem of inferring the volatility surface from
market observed option prices, the use of Bregman distances leads to the choice of certain exponential
families of probability distributions. The latter, can be thought of as optimal (in an appropriate sense) a
posteriori distributions for the class of models under consideration. This hints to yet another connection
with the now classical work developed by Avellaneda et al. See [AFHS97] and references therein.

Another component in this picture turns out to be the passage of the regularized volatility to the
market probability measures. Indeed, we exhibit procedures to produce convex risk measures which
depend on the regularization functional. This in turn, requires the use of Malliavin calculus results which
appear in the computation of the greeks [FLL+99a].

The first main contribution of this work consists in establishing existence, stability, and conver-
gence with respect to the noise level of the regularized solutions to the local volatility surface calibration
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problem under a fairly general class of convex penalizing functionals. We also present, under suitable
assumptions, convergence rates. This is the subject of Section 2.

The generality of the convex regularization allows the use of Bregman distances and permits a fairly
unified treatment of calibration techniques associated to exponential families of probability distributions.
This is presented in Section 3.

Finally the third main point of the present work is the connection of the convex regularization frame-
work. We show that it naturally yields convex coherent risk measures. On the theoretical side, such risk
measures can be used to interpret the so-called source-condition that appears often in the assumptions of
the regularization results. On the economic side, it underscores the role that model selection, which is
done by choosing the volatility surface, plays in defining risk aversion or indifference. This is the topic
of Section 4

2 Convex Regularization and Bregman Distances

We shall describe our framework on the setting of a single risky-asset market. In such market, besides
the risk-free bond we have an asset S = St satisfying the dynamics

dSt = St(ν(t,St)dt +σ(t,St)dWt) , t > 0 , , (1)

where Wt denotes the standard Wiener process. The price of, say, a vanilla European call is given by the
solution of by the solution to the Black-Scholes equation [BS73]

∂tU +
1
2

σ
2(t,S)S2

∂
2
S U +(r−q)S∂SU− rU = 0 , t < T , (2)

with final condition
U(t = T,S) = (S−K)+ . (3)

We note that the option price U depends also on the maturity T and strike K. It satisfies the, by now
classical, Dupire forward equation [Dup94]

−∂TU +
1
2

σ
2(T,K)K2

∂
2
KU− (r−q)K∂KU−qU = 0 , T > 0 , (4)

with the initial value
U(T = 0,K) = (S0−K)+, for K > 0 . (5)

Dupire’s equation 4 is the starting point of our inverse problem analysis. Here one might get tempted
to say that if we know U at sufficiently many points, then it is enough to compute (numerically) the
derivative in Equation 4. However, such computation is extremely ill-posed. In fact the financial literature
possesses a vast number of approaches to overcome such difficulties.

For simplicity and notational convenience we take q = r = 0. We stress that such choice is immaterial
in the upcoming results. We also perform the usual change of variables to the log-price and the time-to-
maturity variables. This corresponds to

K = S0ey , τ = T − t , b = q− r , u(τ,y) = eqτU t,S(T,K) (6)

and
a(τ,y) =

1
2

σ
2(T − τ;S0ey) , (7)

in (4) and (5). This yields the Dupire equation with forward variables (τ,y)

uτ = a(τ,y)(∂ 2
y u−∂yu) (8)
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and initial condition
u(0,y) = S0(1− ey)+ (9)

Existence and uniqueness results for the solution of the parabolic equation (8) and (9) in Sobolev spaces
can be found in [Cré03a, EE05, Isa06]. This defines the direct problem that associates the model to the
data through the map: F : a 7−→ u in appropriate spaces that will be specified below.

Volatility calibration in extended Black - Scholes models has been investigated by many authors.
See [ABF+00, ABF+01, AFHS97, BI97, Cré03a, EE05, HKPS07, HK05] as some references. The
stable identification of local volatility surfaces in the Black-Scholes equation from market prices using
standard Tikhonov regularization with ‖·‖2

H1(Ω) penalization was investigated by Crépey [Cré03a] and
later by Egger & Engl [EE05]. In [HK05] the inverse problem of identification of a time-dependent
volatility function of a European call option with a fixed strike K > 0 was considered. In [HKPS07],
Hofmann et al. analyzed the same financial problem of [HK05] with general source conditions for the
regularization functional f (·) = ‖·‖2

L2(0,T ). In [Cré03a, EE05, HKPS07, HK05], the ill-posedness of the
inverse problem is proved, convergence and convergence rates of a regularized solution are derived.

We now define the admissible convex class of calibration parameters. For 0 ≤ ε fixed, take U :=
H1+ε(Ω) with the standard H1+ε–inner product 〈·, ·〉 and let a > a > 0. Fix the a priori model a0 as
a function defined on Ω = (0,T )×R that satisfies a ≤ a0 ≤ a with ∇a0 ∈ (L2(Ω))2. We define the
admissible parameter class by

Definition 1.
D(F) := {a ∈ a0 +U : a≤ a≤ a}. (10)

We consider convex regularization as discussed in [BO04, HKPS07, RS06] to solve the ill-posed
operator equation

F(a) = u(a), (11)

where F : D(F) ⊂ U → V is the parameter-to-solution operator between Hilbert spaces U and V :=
L2(Ω). Here u(a) is the solution of (8) and (9).

For given convex f the proposed methods consists in minimizing the Tikhonov functional

F
β ,uδ (a) := ||F(a)−uδ ||2L2(Ω) +β f (a) (12)

over D(F), where, β > 0 is the regularization parameter. Remark that f incorporates the a priori info
on a.

The idea of convex regularization for inverse problems has been suggested by different authors. An
early reference on Bregman distance regularization is [CARN00]. See also [BO04, HKPS07, RS06] and
references therein.

In order to exemplify the power of the theory, we shall now present a number of assumptions that will
specify the class of admissible functionals. Needless to say that one can conceive various alternatives to
such assumptions as well as generalizations thereof.

Assumption 2. Let ε ≥ 0 be fixed. f : D( f )⊂U −→ [0,∞] is a convex, proper and sequentially weakly
lower semi-continuous functional with domain D( f ) containing D(F).

As alluded in the Introduction, in practice the price U t,S(T,K) is only known for a discrete set of
maturities and strikes. Since we are interested in continuous observations of the price U t,S(T,K), this
leads to an interpolation or an approximation that introduces noisy data uδ . The level δ is assumed to be
known a priori and satisfies the inequality

||ū−uδ ||L2(Ω) ≤ δ , (13)
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where ū is the data associated to the actual value â ∈D(F).
An important tool in the studies of Tikhonov type regularization [BO04, HKPS07, Res05, RS06] is

the Bregman distance with respect to f .

Definition 3. Let f as in Assumption 2. For given a ∈D( f ), let ∂ f (a)⊂U denote the subdifferential of
the functional f at a. We denote by

D(∂ f ) = {ã : ∂ f (ã) 6= /0}

the domain of the subdifferential [Cla83]. The Bregman distance with respect to ζ ∈ ∂ f (a1) is defined
on D( f )×D(∂ f ) by

Dζ (a2,a1) = f (a2)− f (a1)−〈ζ ,a2−a1〉 .

An important issue, both from the theoretical as well as from the practical point of view if the domain
of definition where we the volatility is defined. In this work we will let I ⊂ R denote an open (possibly
unbounded) interval. We assume that T > 0 and use the notation Ω := (0,T )× I.

As usual, for 1≤ p < ∞, W 1,2
p (Ω) denotes the space of functions u(·, ·) satisfying

||u||W 1,2
p (Ω) := ||u||Lp(Ω) + ||ut ||Lp(Ω) + ||uy||Lp(Ω) + ||uyy||Lp(Ω) < ∞ .

The next assumption is motivated by recent abstract convergence results for Tikhonov regularization [SGG+08].

Assumption 4.

1. The Banach spaces U and V are endowed with topologies τU and τV that are weaker than the norm
topologies.

2. The norm ‖·‖V is sequentially lower semi-continuous with respect to τV .

3. The functional f : D( f ) ⊆U → [0,∞] is convex and sequentially lower semi-continuous with re-
spect to τU and D := D(F)∩D( f ) 6= /0. In the context of this paper we have D(F) 6= /0 and
D(F)⊆D( f ) and thus the assumption is satisfied.

4. Let Fβ ,ū the Tikhonov functional defined in (12). Then,

Mβ (M) := levelM(Fβ ,ū) = {a : Fβ ,ū(a)≤M}

is sequentially pre-compact and closed with respect to τU . The restrictions of F to Mβ (M) are
sequentially continuous with respect to the topologies τU and τV .

The first three conditions of Assumption 4 are satisfied for our particular problem. In Section A.1
we shall analyze the last condition of Assumption 4. The general result of [SGG+08] then implies well-
posedness, stability, convergence. These results are summarized below.

Theorem 5 (Existence, Stability, Convergence). Suppose that F, f , D , U, and V satisfy Assumption 4.
Furthermore, assume that β > 0 and uδ ∈V . Then, we have that

• There exists a minimizer of F
β ,uδ .

• If (uk) is a sequence converging to u in V with respect to the norm topology, then every sequence
(ak) with

ak ∈ argmin
{
Fβ ,uk(a) : a ∈D

}
has a subsequence which converges with respect to τU . The limit of every τU -convergent subse-
quence (ak′) of (ak) is a minimizer ã of Fβ ,u, and

(
f (ak′)

)
converges to f (ã).
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• If there exists a solution of (11) in D , then there exists an f -minimizing solution of (11).

• Assume that (11) has a solution in D (which implies the existence of an f -minimizing solution)
and that β : (0,∞)→ (0,∞) satisfies

β (δ )→ 0 and
δ 2

β (δ )
→ 0 , as δ → 0 . (14)

Moreover, assume that the sequence (δk) converges to 0, and that uk := uδk satisfies ‖ū−uk‖ ≤ δk.

Set βk := β (δk). Then, every sequence (ak) of elements minimizing Fβk,uk , has a subsequence
(ak′) that converges with respect to τU . The limit a† of any τU convergent subsequence (ak′) is an
f -minimizing solution of (11), and f (ak)→ f (a†). In addition, if the f -minimizing solution a† is
unique, then ak→ a† with respect to τU .

The proof can be found in [CSZ10]. In order to obtain convergence rate results will we require a
further assumption. Namely,

Assumption 6. Besides Assumption 4, we assume that

1. There exists an f -minimizing solution a† of (11), which is an element of the Bregman domain
DB( f ).

2. There exist β1 ∈ [0,1), β2 ≥ 0, and ζ † ∈ ∂ f (a†) such that

〈ζ †,a†−a〉 ≤ β1Dζ †(a,a†)+β2
∥∥F(a)−F(a†)

∥∥
V , (15)

for a ∈Mβmax(ρ), where βmax, ρ > 0 satisfy the relation ρ > βmax f (a†).

Under this assumption we have the following:

Theorem 7 (Convergence rates [SGG+08]). Let F, f , D , U, and V satisfy Assumption 6. Moreover, let
β : (0,∞)→ (0,∞) satisfy β (δ )∼ δ . Then

Dζ †(aδ

β
,a†) = O(δ ) ,

∥∥∥F(aδ

β
)−uδ

∥∥∥
V

= O(δ ) ,

and there exists c > 0, such that f (aδ

β
)≤ f (a†)+δ/c for every δ with β (δ )≤ βmax.

Although Assumption 4 may seem too restrictive, the next result reveals that it can be obtained from
rather classical ones:

Proposition 8. Let F, f , D , U, and V satisfy Assumption 4. Assume that there exists an f -minimizing
solution a† of (11), and that F is Gâteaux differentiable at a†.

Moreover, assume that there exist γ ≥ 0 and ω† ∈V ∗ with γ
∥∥ω†

∥∥ < 1, such that

ζ
† := F ′(a†)∗ω† ∈ ∂ f (a†) (16)

and there exists βmax > 0 satisfying ρ > βmax f (a†) such that∥∥F(a)−F(a†)−F ′(a†)(a−a†)
∥∥ ≤ γ Dζ †(a,a†) , for a ∈Mβmax(ρ) . (17)

Then, Assumption 6 holds.

Once again, for the the application of Proposition 8 to the local volatility problem see [CSZ10]. Some
of the results are outlined in the Technical Appendix at the end of the paper. We note that in [CSZ10]
U = H1+ε(Ω), with ε > 0 and V = L2(Ω) have been used. Since both spaces are Hilbert spaces we
can use the inner product on U and the adjoint operator F ′(a†) instead of the duality pairing of F ′(a†),
F ′(a†)#, respectively, as in [SGG+08].
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3 Exponential Families and the Statistical Approach

We start by recalling the notion of Fenchel conjugate which plays an important role in convex analysis.
Let X be a normed space and X? be its dual endowed with the duality pairing 〈·, ··〉. Given a function
f : X → R∩+∞, the Fenchel dual f ∗X∗→ R∩+∞ is defined by

f ∗(x∗) := sup{〈x∗,x〉− f (x) | x ∈ X}

The following result connects, through Fenchel duality, the concept of Bregman distances with Expo-
nential Families of distributions.

Theorem 9 (Banerjee et al. [BMDG05]). Let ψ∗ denote the Fenchel transform of ψ , which we assume
to be differentiable. Then, the Bregman distance with respect to ψ∗ is given by

Dψ∗(â, ã) = ψ
∗(â)−ψ

∗(ã)−ψ
∗′(ã)(â− ã) .

If we assume that a(θ) ∈ int(dom(ψ∗)), then

pψ,θ (a) = exp
(
−Dψ∗ (a,a(θ))

)
exp
(
ψ
∗(a)

)
p0(a) . (18)

Example 10 (Exponential Families and their Fenchel conjugates). For a Gaussian distribution ψ(θ) =
ϖ2

2 θ 2, then ψ∗(a) = a2

2ϖ2 . For Poisson distribution ψ(θ) = exp(θ) we have ψ∗(a) = a log(a)−a.

In order to illustrate, the strength of the convex regularization theory in connection with Statistics,
we shall now motivate Bregman distance regularization as a log-maximum a-posteriori estimator for
an exponential family. We do this in a discrete statistical setting. As usual, we consider (X ,F ,P) a
probability space. We let~x := (xi)i be a sequence of elements in X and~a = (ai)i, where ai = a(xi) ∈R.
We assume that the conditional probability density for observable data uδ

i := uδ (xi) from ui := F(a)(xi)
are normally and identically distributed with mean zero and variance ϖ2. That is, the probability of
observing uδ

i given ui is given by

p(uδ
i |ui) =

1
ϖ
√

2π
exp

(
−|u

δ
i −ui|2

2ϖ2

)
.

Now, for a ∈R>0 assume that θ := θ(a). With this notation, for some prior â, the a priori distribution is
defined by

p(a) := pψ,θ (â) = exp(âθ −ψ(θ))p0(â) .

In order to clarify this formula, recall that θ depends on a and this is the only a dependence, which shows
up on the right hand side. This in turn, according to Theorem 9, can be rewritten as

p(a) = exp(−Dψ∗(â,a))exp(ψ∗(â))p0(â) .

The advantage of this representation is that it does not involve any parametrization of the exponential
family (that is, with respect to θ ). In this context the Log-maximum estimation then consists in minimiz-
ing the functional

~a 7−→∑
i

(
− log(p(uδ

i |ui))− log(p(ai))
)

,

which is equivalent to minimizing the functional

~a 7−→∑
i
(ui−uδ

i )2 +β ∑
i

Dψ∗(âi,ai) ,
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where β = 2ϖ2. Note that the Bregman distance is in general not symmetric, and we minimize with
respect to the second component of the Bregman distance.

Summing up, we have shown that Bregman distance regularization can be considered a log maximum
a-posteriori estimator for the expectation number.

In this model, we shall introduce some regularization techniques. For notational simplicity we for-
mulate them in an infinite dimensional framework. Hereafter, we shall assume again that Ω is a bounded
subdomain of R2. With this framework, we remark that D(F)⊂U ∩L∞

>0(Ω)⊂ L1(Ω), where L∞
>0(Ω) is

the set of functions that are (essentially) bounded from below and above by some positive constants.

Example 11. According to Example 10, if we use the exponential family associated to Poisson distribu-
tions, we obtain Kullback-Leibler regularization, consisting in minimization of

a 7−→F
β ,uδ (a) :=

∥∥∥F(a)−uδ

∥∥∥2

L2(Ω)
+βKL(â,a) , (19)

where
KL(â,a) =

∫
Ω

a log(â/a)− (â−a)dx .

We note that the Kullback-Leibler distance is the Bregman distance associated to the Boltzmann-
Shannon entropy

G (a) :=
∫

Ω

a log(a)dx . (20)

We also note that the standard Kullback-Leibler regularization has been analyzed for instance in
[RA07]. Since the Bregman distance is not symmetric, the component, which one is optimizing for
makes a difference. Here, modelling with exponential families results in Bregman distances with respect
to the second component.

The domains of G , D(G ), and of the subgradient of G , D(∂G ), are L∞
≥0(Ω) (the set of bounded

non-negative functions) and L∞
>0(Ω), respectively.

The Kullback-Leibler distance, which is the Bregman distance of the Boltzmann-Shannon entropy, is
defined in the Bregman domain DB(G ), that is a subset of L∞

>0. Moreover, the Kullback-Leibler distance
is lower semi-continuous with respect to the L1-norm [RA07]. Based on this property we extend the
Kullback-Leibler distance, to take value +∞ if either a /∈D(G ) or b /∈DB(G ).

Note that there are exceptional cases, when the integral∫
Ω

a log(a/â)− (a− â)dx

is actually finite, but KL(a, â) = ∞. This can be seen by taking for instance a ∈ L1
>0(Ω) which is not in

L∞(Ω) and â =Ca, where C is a constant. The reason here, is that a is not an element of the subgradient of
the Boltzmann-Shannon entropy. This follows directly from the definition of the domains of the convex
functionals and subgradients.

To prove that minimization of F
β ,uδ in (19) is well–posed we have to choose appropriate spaces and

topologies first. We choose τŨ , τṼ the weak topologies on L1(Ω) and L2(Ω), respectively

Lemma 12. Let Ω be a bounded subset of R2 with Lipschitz boundary. Moreover, assume that F is
continuous with respect to the weak topologies on L1(Ω) and L2(Ω), respectively.

1. Let a,b ∈D(G ). Then

‖a−b‖2
L1(Ω) ≤

(
2
3
‖a‖L1(Ω) +

4
3
‖b‖L1(Ω)

)
KL(a,b) . (21)

Here, we set 0 · (+∞) = 0.
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2. With the generalization of the Kullback-Leibler distance. For sequences (ak)k and (bk)k in L1(Ω),
such that one of them is bounded: If KL(ak,bk)→ 0, then ‖ak−bk‖L1(Ω)→ 0.

3. Let 0 6= â ∈DB(G ), then the sets

M
β ,uδ (M) := {a ∈DB(G ) : F

β ,uδ (a)≤M}

are τŨ sequentially compact.

For a proof, see [CSZ10].
Using standard results on variational regularization (see for instance [SGG+08]), we have:

Theorem 13. There exists a minimizer of F
β ,uδ in (19). The minimizers are stable and convergent for

β (δ )→ 0 and δ 2/β (δ )→ 0. Stable means that argminF
β ,uδk → argminFβ ,u0 for δk → 0 and that

argminF
β (δk),uδk converges to a solution of (11) with minimal energy.

Remark 14. Note that since D(F) ⊂ U we have D(F) ⊂ DB(G ). Moreover, from Theorem 26, F :
D(F)⊂U→W 1,2

2 (Ω) is weakly continuous. If Ω is bounded, we have D(F)⊂U ⊂ L2(Ω)⊂ L1(Ω) and
W 1,2

2 (Ω) ⊂ L2(Ω), with continuous embedding. It follows that F : D(F) ⊂ L1(Ω)→ L2(Ω) is weakly
continuous, i.e., satisfies the assumptions on the Lemma 12.

An important consequence of (21) and Theorem 7 is that∥∥∥aδ

β
−a†

∥∥∥
L1(Ω)

= O(
√

δ ) . (22)

Now, let δk be a sequence converging to zero and ak = aδk
βk

the respective minimizers of the Tikhonov
functional (12). Take bk = a† for all k ∈ N. Then, from Lemma 12 Item 2 we have∥∥ak−a†∥∥

L1(Ω)→ 0 , as δk→ 0 .

4 Convex Risk Measures

In this section we connect the convex regularization framework described in the previous sections with
the so-called (coherent) convex risk measures. The latter have been the subject of intense attention for
the past few years. See [ADEH99, Fis03, FS02a, FS02b] and references therein.

We recall that a convex measure of risk consists of a map ρ : X −→ R satisfying the following
properties:

• Convexity.

• Non-increasing monotonicity, i.e., if the random variable ν2 is dominated by the random variable
ν1 a.e., then ρ(ν2)≥ ρ(ν1).

• Translation invariance, i.e., if m ∈ R is a deterministic variable in the sense that it takes the value
m a.e., then

ρ(ν +m) = ρ(ν)−m . (23)

9
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Throughout this section, for technical reasons, we assume that the domain Ω = [0,T ]× I where our
local volatility is unknown is bounded. Furthermore, we define the functional f (a) = +∞ if a /∈D(F).

Using the assumption of existence of a source function w† ∈ L2(Ω) that satisfies (16) and the defini-
tion of ∂ f (a†) we have that

f (a)−〈w†,F ′(a†)a〉 ≥ f (a†)−〈w†,F ′(a†)a†〉 , (24)

∀a ∈U and ∀w† s.t.F ′(a†)∗w† ∈ ∂ f (a†) .

Let us set g(−F ′(a†)a) := 〈w,−F ′(a†)a〉. The existence of w† satisfying (24) implies that it is the
Lagrangian multiplier of

L : D(F)×L2(Ω)−→ R
(a,w)→ f (a)+g(−F ′(a†)a) ,

i.e., it satisfies
L(a†,w)≤ L(a†,w†)≤ L(a,w†) .

However, it is not clear whether we have more than one w† ∈R(F ′(a†)) satisfying (24). Indeed, it
depends on the choice of f . For example, if f is differentiable on a†, then ∂ f (a†) is a single element.
Then, it can be shown [CSZ10] that w† satisfies Equation (16) and therefore it is unique.

We define a family of separately convex functions (meaning that for a fixed w it is convex in a and
vice versa) by

L2(Ω) 3 w 7−→ hw :D(F)−→ R∪{+∞}
a 7−→ L(a,w) = f (a)+g(−F ′(a†)a) . (25)

Observe that hw(a) is a family of functions of the variable a depending on the parameter w.
A few comments are in order.

Remark 15. A particular property of hw† is that

hw†(a)−hw†(a†) = L(a,w†)−L(a†,w†) = Dζ †(a,a†) .

However, this property holds only in the special case when w† satisfies (24).

Remark 16. Note, that the source condition (16) together with the existence of an f -minimum norm
solution for (11) is equivalent to the Karush-Kuhn-Tucker condition in convex optimization [ET76].

Now, from the theory of Fenchel conjugation [Roc74, Zăl02], we obtain a unique Fenchel conjugate
function of hw given by

ĥ∗w :L2(Ω)−→ R
v 7−→ g∗(v)+ f ∗(−F ′(a†)∗v) . (26)

If it happens that

g∗(v) =

{
0 if v = w
+∞ otherwise ,

then we would have difficulties in the above definition of ĥ∗w. Hence, we focus on the related function h∗w
defined as

h∗w : X⊂ L2(Ω)−→ R
v 7−→ h∗w(v) := f ∗(−F ′(a†)∗v) , (27)

where X := {v ∈ L2(Ω) : f ∗(−F ′(a†)∗v) is finite}.
We note that since {0}= N (F ′(a†)∗), then h∗w(0) = f ∗(0) = 0.

10
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Lemma 17. The functional h∗w satisfies the convexity and monotonicity axioms.

Proof. The convexity follows directly from the properties of the Fenchel conjugate function [Zăl02,
Theorem 2.3.1]. To prove the monotonicity: let v1,v2 ∈ X satisfy v1 ≥ v2. From the definition of the
Fenchel conjugate we have h∗w(v) = f ∗(−F ′(a†)∗v)≥ 〈a,−F ′(a†)∗v〉− f (a). Positivity of F ′(a†)a (see
[Cré03a, Theorem 4.2]) implies that

0≤ 〈F ′(a†)a,v1− v2〉= 〈F ′(a†)a,v1〉+ f (a)− (〈F ′(a†)a,v2〉+ f (a))
≤−h∗w(v1)+h∗w(v2) .

In the sequel we give a construction of a convex risk measure ρ in the present context. This will be
achieved using the properties of h∗w and an interesting probabilistic representation of v ∈ X coming from
Malliavin Calculus [FLL+99a].

We start by relating our notation with that of [FLL+99a]. Equation (8) is associated to the diffusion
process {yt : 0≤ t ≤ T} that satisfies the dynamics

dyt =
(

r−q− σ(t,yt)2

2

)
dt +σ(t,yt)dWt , yt0 = y0 , (28)

in the risk neutral probability measure Q.
We recall that the process (28) is the diffusion (1) in a logarithmic variables where is defined by (7).
As before, for the sake of simplicity, we assume that the process (28) has no dividend and interest

rates, i.e., b = 0.
Following [FLL+99a], denote by {Yt : 0≤ t ≤ T} the first variation process associated to {yt : 0≤

t ≤ T} and defined by the stochastic differential equation

dYt = (σ2(Yt))′Ytdt +σ
′(Yt)dWt Yt0 = 1 .

Remark 18. We now identify σ† 7−→
√

2a† and σ̃ 7−→
√

2ã given by (7) with a†, ã ∈ D(F). Then, for
sufficiently small ε > 0, the diffusion coefficient σ† + εσ̃ satisfies the uniform ellipticity condition

∃η > 0 : ζ
T (σ† + εσ̃)T (x)(σ† + εσ̃)(x)ζ ≥ η |ζ |2,

for all ζ ∈ R2 and for all x ∈Ω.

We introduce the auxiliary set

Γ :=
{

Θ ∈ L2[0,T ] |
∫ T

0
Θ(t)dt = 1

}
,

which contains for example the constant function Θ(t) = 1/T .
Our first result is a representation lemma.

Lemma 19. Let v ∈R(F ′(a†)). Then, there exists a random variable πa† such that

v = Ey0
Q [Φ(yt)πa† ] , (29)

where Q is the risk neutral probability measure.

11
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Proof. Let
β̃Θ = Θ(t)(β (T )−β (0))χ0≤t≤T

where {β (t) : 0≤ t ≤ T} is the process given in [FLL+99a, Lemma 3.1].
Since σ† + εσ̃ satisfies the uniform ellipticity condition (see Remark 18) we have from [FLL+99a,

Proposition 3.3] that the Gâteaux derivative at σ† in the direction σ̃ is given by

Ey0
Q [Φ(yt)D∗t ((σ

†)−1(yt)Yt β̃Θ(T ))]

where D∗t ((σ
†)−1(yt)Yt β̃Θ(T )) is the Skorohod integral [Nua95] of the possibly anticipative process

{(σ†)−1(yt)Yt β̃Θ(T ) : 0≤ t ≤ T} ,

for any Θ ∈ Γ.

We remark that the linearity of D∗t with respect to σ̃ arises through the process βt . See Proposition
3.3 of [FLL+99a].

Lemma 20. The constants do not belong to R(F ′(a†)).

Proof. If 1 ∈R(F ′(a†)), then there exist h ∈D(F ′(a†)) such that F ′(a†)h = 1. Thus, 1 would satisfy

0 = 1τ +a†(1yy−1y) = h(uyy−uy) .

However, (uyy−uy) is the Green’s function of a parabolic well-posed problem [CSZ10] and thus cannot
vanish in a set of positive measure. Thus h = 0 a.e. This is a contradiction with the fact that F ′(a†)h = 1
since F ′(a†) is linear.

At this point, we have two interesting sets of random variables for our convex risk measure construc-
tion. Firstly,

X := {ν +m : ν = Φ(yt) and m ∈ C }

and secondly,

X1 := {πa† +m : πa† = D∗t ((σ
†)−1(yt)Yt β̃Θ(T )) and m ∈ C } ,

where C is the set of all constants.

Remark 21. It follows from Lemma 19 that we have a representation of X by X and X1 given by the
weighted expectation Ey0

Q [·] with weight factor D∗t ((σ
†)−1(yt)Yt β̃Θ(T )) and Φ(yt) respectively.

We now bring in the following useful result:

Lemma 22. If ν ≡ 1, then
Ey0

Q [νD∗t ((σ
†)−1(yt)Yt β̃Θ(T ))] = 0 .

Proof. This follows directly by the duality between the Skorohod integral and the Malliavin derivative
[Nua95], and the fact that Dt1 = 0.

This allows us to construct convex risk measures. More precisely, we have:

Proposition 23. [First alternative for a convex risk measure] The functional

ρ :X −→ R ν 7−→ ρ(ν) := h∗w(Ey0
Q [ν ·πa† ])−Ey0

Q [ν ] (30)

satisfies the convex risk measure axioms.
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Proof. By the linearity of the expectation operator and the properties of the functional h∗w in Lemma 17,
the convexity and monotonicity axioms follows.

In order to prove the translation axiom, we write

ρ̃ :X −→ R ν 7−→ ρ̃(ν) := h∗w(Ey0
Q [(ν−Ey0

Q [ν ]) ·πa† ])−Ey0
Q [ν ] .

Let ν +m ∈X . By the linearity of the expected value

ρ̃(ν +m) = h∗w(Ey0
Q [(ν +m−Ey0

Q [ν +m]) ·πa† ])−Ey0
Q [ν +m]

= h∗w(Ey0
Q [(ν−Ey0

Q [ν ]) ·πa† ])−Ey0
Q [ν ]−m = ρ̃(ν)−m .

Hence ρ̃ satisfies the translation axiom.
Now we show that ρ̃ = ρ . Indeed, by definition, X = D(ρ̃) = D(ρ). Let us take now ν ∈X . Then,

by definition of expectation Ey0
Q [ν ] = c where c is a constant. It follows from Lemma 22 that

ρ̃(ν) = h∗w(Ey0
Q [(ν−Ey0

Q [ν ]) ·πa† ])−Ey0
Q [ν ]

= h∗w(Ey0
Q [ν ·πa† ]−Ey0

Q [c ·πa† ])−Ey0
Q [ν ] = ρ(ν) for all ν ∈X .

Thus ρ̃ = ρ .

Proposition 24. [Second alternative for a convex measure of risk] The functional

ρ1 :X1 −→ R π 7−→ ρ1(π) := h∗w(Ey0
Q [ν ·π]) , (31)

satisfies the convex risk measure axioms.

Proof. Using the same argument of Proposition 23, the convexity and monotonicity axioms follow. In
order to prove the translation axiom, we write

ρ̃1 :X1 −→ R π 7−→ ρ̃1(π) := h∗w(Ey0
Q [ν · (π−Ey0

Q [π])])−Ey0
Q [π] .

Then, for π +m ∈X1, by the linearity of the expectation operator we have that

ρ̃1(π +m) = h∗w(Ey0
Q [ν · (π +m−Ey0

Q [π +m])])−Ey0
Q [π +m]

= h∗w(Ey0
Q [ν · (π−Ey0

Q [π])])−Ey0
Q [π]−m = ρ̃1(π)−m .

Hence, ρ̃1 satisfies the translation axiom.
By definition, X1 = D(ρ̃1) = D(ρ1). Let us take π ∈ X1. From Lemma 22 we conclude that

Ey0
Q [π] = Ey0

Q [1 ·π] = 0. Thus, ρ̃1(π) = ρ(π) for all π ∈X1 .

We note that the choice of σ† enters in a crucial and nonlinear way in the convex risk measure.
Furthermore, the source condition (16) allows us to construct convex risk measures in the spaces of
random variables associated to the diffusion process (28).

We now illustrate the construction of the convex risk measure by considering the process (28) (and
as before under constant volatility with vanishing interest and dividend rates). For this particular case,
the representation (29) (or the vega in financial terms) is given by the formula (see [FLL+99a])

Ey0
Q

[
Φ

(
yexp

(
σ

†Wτ −
(σ†)2

2
τ

))
·
(

W 2
τ

σ†τ
−Wτ −

1
σ†

)]
=
∫

Ω

dzdτ p(z,τ)Φ
(

yexp
(

σ
†z− (σ†)2

2
τ

))
·
(

z2

σ†τ
− z− 1

σ†

)
, (32)
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where p(z,τ) = e−
z2
2τ /
√

2πτ is the Gaussian probability density function. Let us take v ∈X and compute
F ′(a†)∗v. By Fubini’s Theorem,

〈F ′(a†)a,v〉

=
∫

Ω

dτ
′ dyv(τ ′,y)

∫
Ω

dτ dzp(z,τ)Φ
(

yexp
(

σ
†z− (σ†)2

2
τ

))
·
(

z2

σ†τ
− z− 1

σ†

)
=
∫

Ω

dτ dzp(z,τ)
(

z2

σ†τ
− z− 1

σ†

)∫
Ω

dτ
′ dyv(τ ′,y)Φ

(
yexp

(
σ

†z− (σ†)2

2
τ

))
Thus,

−F ′(a†)∗v =
(

z2

σ†τ
− z− 1

σ†

)
〈−v,Φ(·)〉 . (33)

We now exemplify the regularization functional f as the Boltzmann-Shannon entropy

f (a) =
∫

Ω

a log(a)dx , a ∈D(F) ,

whose Fenchel conjugate is given by

f ∗(µ) =
∫

Ω

eµ−1 dx̃ .

Since we are in a Gaussian model, applying [AS06, Lemma 11] and (33) to the definition of ρ with
ν = Φ

(
yexp

(
σ†(z)− (σ†)2τ/2

))
we get

ρ(ν) =− log
(

Ey0
Q

[
exp
(

z2

σ†τ
− z− 1

σ†

)
〈−v,ν〉

])
−Ey0

Q [ν ] . (34)

5 Conclusions and Future Work

The problem of volatility surface calibration is a classical and fundamental one in Quantitative Finance.
See [BJ99, DKZ96] for an early survey of the literature. We address this problem by presenting a
unifying framework for the regularization that makes use of tools from Inverse Problem theory and
Convex Analysis.

We illustrate our approach’s theoretical strength by establishing convergence and convergence rate
results. In this respect, the main novelty is the use of a regularization term that only requires convexity
properties and weak lower-semicontinuity. Thus, the present regularization applies to a large class of
regularization functionals. In particular, we connect with the statistical viewpoint through the concept
of exponential families. This is turn, allows the derivation of a Kullback-Leibler regularization of the
calibration problem. We establish for Bregman distances better convergence rates than those available in
the literature to the calibration problem. This analysis also allows us to obtain convergence of the regu-
larized solution with respect to the noise level in L1(Ω) by means of a Kullback-Leibler regularization
functional. See Equation (22). Another advantage of the current framework is the requirement of weaker
conditions than those previously required in the literature. Namely, we only require (36).

The convergence results also hold true if we measure the misfit of the Tikhonov functional (12)
in W 1,2

p (Ω). See [CSZ10]. This may have implications at the level of stabilization by means of less
discrepancy of the greeks, since the W 1,2

p (Ω) norm involves information associated to Θ, ∆, and Γ.
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The connection with exponential families opens the door to recent works on entropy-based estima-
tion methods. It also connects to the work developed by Avellaneda and collaborators on minimum-
relative-entropy regularization [Ave98a, Ave98c, Ave98b, AFHS97]. In particular, it might allow more
information on the convergence rates of such approach.

The connection with convex risk measures required the use of techniques from Malliavin calculus.
In fact, such techniques have been attracting substantial attention from the Quantitative Finance com-
munity since the pioneering work [FLL+99b]. See also [BET04] and references therein. It would be
interesting to investigate further the relation between the convex risk measures we obtain and the regu-
larization properties of the corresponding functionals. This might even allow to incorporate risk aversion
or indifference in the choice of such functional.

Finally, a natural continuation of the present work and of that described in [CSZ10] would be to
consider applications to vol-surface estimation in the multi-asset case as well to fixed-income markets.
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A Technical Appendix

A.1 Properties of the forward operator and ill-posedness of the inverse problem

In this section we verify Item 4 of Assumption 4. In this Appendix, we denote by U = H1+ε(Ω) and
V = L2(Ω). This allows us to apply the Theorem 5 in order to guarantee well-posedness, stability, and
convergence of the regularized solutions of the Tikhonov functional (12). We use the following definition
of compactness:

Definition 25. F : D(F)⊂U →V is compact if for every bounded sequence (xk) in D(F) (F(xk)) has
a convergent subsequence.

In particular the composition of a compact linear operator and a sequentially continuous non-linear
operator is compact.

Theorem 26. Let ε ≥ 0. Then F : D(F) ⊂U → V is continuous and compact. Moreover, F is sequen-
tially weakly continuous and weakly closed.

Proof. The proof follows from [EE05, Theorem 2.1] or [Cré03a, Proposition 4.4 and 5.1], where it is
proven that F : D(F)⊂U →W 1,2

p (Ω) satisfies the property for all 2≤ p < p̄ with an appropriate p̄ > 2.
The result then follows by using that the embedding from W 1,2

p (Ω) into L2(Ω) is bounded.

The compactness and weak closedness of the operator F , concluded in Theorem 26, imply the local
ill-posedness of the inverse problem of identification of the local volatility surface σ(T,K). In fact,
for any U-bounded sequence {an}n∈N in D(F), that has no strong convergent subsequences, we can
extract an U-weakly-convergent subsequence, say {ank}k∈N. Since D(F) is weakly closed with respect
to the H1-norm, the weak limit of {ank}k∈N belongs to D(F). Thus, since F is compact, {F(ank)} has a
convergent subsequence. So, similar option prices may correspond to completely different volatilities.

Remark 27. Theorem 26 and the continuity of the embedding of W 1,2
p (Ω) in L2(Ω) ensures that Item 4

of Assumption 4 holds. Therefore, Theorem 5 is applicable for the functional F
β ,uδ defined in (12).
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A.2 Attainment of source conditions

The convergence result of Theorem 7 is directly connected to the existence of a source function w that
satisfies the source condition (16).

Theorem 28. Let ε > 0. Assume that â ∈ D(F) ⊂U is a minimizer of (12) with uδ substituted by ũ.
Then, there exists w̃ := λ (ũ−F(â)) such that

ζ = λF ′(â)∗w̃ ∈ ∂ f (â)

In particular, if â = a†, then (16) holds.

For a proof, see [CSZ10].
It turns out that, for the specific problem under consideration, we are not able to characterize the

source condition (16). However, we can guarantee (15). See section A.3. The first step in order to
guarantee (15) is the following simple Lemma, whose proof can be found in [CSZ10].

Lemma 29. Let ζ † ∈ ∂ f (a†). Then, there exists a function w† ∈V and a function r ∈U such that

ζ
† = F ′(a†)∗w† + r (35)

holds. Furthermore, ‖r‖U can to be taken arbitrarily small.

A.3 Convergence rates

In this subsection we exhibit a class of functionals such that we are able to prove that condition (15) holds
provided the variational source condition (35) is satisfied. For that we shall make use of the following
concept:

Definition 30. Let 1 ≤ q < ∞ and Ũ be a subset of U. The Bregman distance Dζ (·, ã) of f : U →
R∪{+∞} at ã ∈DB( f ) and ζ ∈ ∂ f is said to be q-coercive with constant c > 0 if

Dζ (a, ã)≥ c‖a− ã‖q
Ũ , ∀a ∈D( f ). (36)

In the next lemma we prove that the existence of an approximated source condition as (35) and f
satisfying Definition 30 is sufficient for convergence rates:

Lemma 31. Let ζ † ∈ ∂ f (a†) satisfy (35) with w† and r such that

c
(
C‖w†‖V +‖r‖L2(Ω)

)
:= β1 ∈ [0,1),

and the Bregman distance with respect to f is 1− coercive with Ũ := U. Then, equation (15) holds. In
particular, the convergence rates of Theorem 7 hold.

Proof. Using the continuously Sobolev embedding theorem [Ada75], Equations (35) and the estimate

‖u′ ·h‖W 1,2
p (Ω) ≤C‖h‖U . (37)

we have that

|〈ζ †,a−a†〉| ≤ |〈ζ †− r,a−a†〉+ 〈r,a−a†〉|
≤ |〈w†,F ′(a†)(a−a†)〉|+‖r‖U ‖a−a†‖U
≤ ‖w†‖V ‖F ′(a†)(a−a†)‖V +‖r‖U ‖a−a†‖U
≤
(
C‖w†‖V +‖r‖U

)
‖a−a†‖U .
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From the assumption that f satisfies Definition 30 and the definition of β1 we have

|〈ζ †,a−a†〉| ≤
(
C‖w†‖V +‖r‖U

)
‖a−a†‖U

≤ β1Dζ †(a,a†)≤ β1Dζ †(a,a†)+β2
∥∥F(a)−F(a†)

∥∥
V .

The convergence rates now follow from Theorem 7.

Under the assumption of Lemma 31 if in addition f is q-coercive a convergence rate in the norm
holds: ∥∥∥aδ

β
−a†

∥∥∥
U
≤ Dζ †(aδ

β
,a†) = O(δ ) . (38)

In the sequel we present possible choices for q-coercive Bregman distance.

Example 32 (q-coercive Bregman distance). Let Ũ be a Hilbert space and D( f ) ⊂ Ũ and f (a) :=
q−1
∥∥a−a†

∥∥q
Ũ . Then, the Bregman distance associated to f is q-coercive. See [HH09] and references in

there.

Example 33. Let 1 < q≤ 2 and ε > 0. We consider the functional

f (a) =
∞

∑
n=1
|< a,φn > |q ,

where {φn} is an orthonormal basis in H1+ε(Ω). The functional is convex, proper and sequentially
weakly lower semi-continuous. Moreover, the Bregman distance of the functional f satisfies

f (a)− f (a†)−〈∂ f (a†),a−a†〉 ≥C
∞

∑
n=1
|〈a−a†,φn〉|2 = C‖a−a†‖2

U .

Hence, f is 2-coercive. Therefore, according to Lemma 31 and equation (38) the rate of O(δ ) holds for
the H1+ε -norm.
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