Utilização de resíduos agroindustriais em processo biotecnológico para produção de β -galactosidase de *Kluyveromyces marxianus* CCT 7082

Ana Paula Manera¹, Joana da Costa Ores², Vanessa Amaral Ribeiro², Maria Isabel Rodrigues¹, Susana Juliano Kalil² e Francisco Maugeri Filho^{1*}

RESUMO. O objetivo deste trabalho foi avaliar a composição do meio de cultura para a produção da enzima β-galactosidase de *Kluyveromyces marxianus* CCT 7082 utilizando a técnica de delineamento experimental. A produção da enzima foi realizada em meio composto por soro de queijo, água de maceração de milho (AMM) e hidrolisado de levedura Prodex-lac® e sais. Foi realizado um planejamento experimental fracionário (2⁵⁻¹) para determinar as variáveis significativas na produção da enzima. Foram testadas diferentes concentrações de lactose presente no soro de queijo (10 a 70 g L⁻¹), AMM (10 a 100 g L⁻¹), Prodex-lac (4 a 20 g L⁻¹), (NH₄)₂SO₄ (0 a 10 g L⁻¹) e o pH (5 a 7). As variáveis concentração de lactose, AMM e o pH apresentaram efeito estatisticamente significativo na atividade enzimática dentro das faixas estudadas, sendo estas variáveis empregadas num delineamento composto central rotacional para otimizar a produção da enzima. As faixas testadas foram: concentração de lactose de 40 a 100 g L⁻¹, AMM de 10 a 120 g L⁻¹ e pH de 3,5 a 6,5. As condições que resultaram em maior atividade enzimática (1400 U g⁻¹) foram 70 g L⁻¹ de lactose, 65 g L⁻¹ de AMM, 4 g L⁻¹ de Prodex-lac e pH 5, obtendo uma produtividade de 61 U L⁻¹ h⁻¹.

Palavras-chave: delineamento experimental, soro de queijo, água de maceração de milho, Prodex-lac.

ABSTRACT. Use of agroindustrial residues in biotechnological process by betagalactosidase production from *Kluyveromyces marxianus* CCT 7082. The objective of this work was to evaluate the composition of the culture medium for the production of the enzyme β-galactosidase from *Kluyveromyces marxianus* CCT 7082 using an experimental design. Enzyme production was carried out in a medium consisting of cheese whey, corn steep liquor (CSL) and Prodex-lac® yeast hydrolyzate. A factorial fractional design (2^{5-1}) was performed to determine the significant variables in the production of the enzyme. Different concentrations of lactose present in whey ($10-70 \text{ g L}^{-1}$), CSL ($10-100 \text{ g L}^{-1}$), Prodex-lac ($40-20 \text{ g L}^{-1}$), (NH₄)₂SO₄ ($0-10 \text{ g L}^{-1}$) and pH (5-7) were tested. Lactose concentration, CSL and pH were the variables that showed a statistically significant effect on enzyme activity within the ranges studied, and these variables were used in a central composite rotatable design to optimize production of the enzyme. The ranges used were: lactose concentration $40-100 \text{ g L}^{-1}$, CSL $10-120 \text{ g L}^{-1}$, and pH 3.5-6.5. The conditions that resulted in higher enzyme activity (1400 U g^{-1}) were 70 g L^{-1} lactose, 65 g L^{-1} CSL, 4 g L^{-1} Prodex-lac and pH 5, yielding 61 U L^{-1} h⁻¹.

Keywords: experimental design, cheese whey, corn steep liquor, Prodex-lac.

Introdução

O estudo de meios industriais de fermentação para obtenção de produtos biotecnológicos tem recebido grande atenção nos últimos anos. Diversos coprodutos e matérias-primas da indústria de alimentos e da agroindústria têm sido empregados para obtenção de produtos biotecnológicos, pela alta disponibilidade e por representarem fonte alternativa de baixo valor comercial (SILVA et al., 2009; ERNANDES et al., 2010).

Entre esses produtos biotecnológicos destaca-se a produção de enzimas, a qual é frequentemente limitada pelos custos dos substratos utilizados para o cultivo dos micro-organismos. Estima-se que aproximadamente 30-40% do custo envolvido na produção de enzimas é devido ao meio de cultura utilizado para o crescimento dos micro-organismos, portanto sua otimização é de grande importância para a redução de custos (JOO; CHANG, 2005).

¹Departamento de Engenharia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, 13083-862, Campinas, São Paulo, Brasil. ²Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brasil. *Autor para correspondência. E-mail: maugeri@fea.unicamp.br

Manera et al.

enzima β-galactosidase (EC 3.2.1.23) encontra-se entre as enzimas de grande interesse industrial empregada na hidrólise da lactose de leites e soro de queijo, obtendo, assim, alimentos com baixos teores de lactose, cujo resultado é a melhora da solubilidade e da digestibilidade de leites e derivados lácteos. tornando-os ideais consumidores intolerantes a este açúcar (HUSAIN, 2010). Recentemente, têm sido empregada na de galactooligossacarídeos (MANERA et al., 2010; PARK; OH, 2010), açúcares funcionais que trazem diversos efeitos benéficos à saúde de seus consumidores, tais como redução de metabólitos tóxicos, prevenção do câncer de cólon, aumento da tolerância à lactose e da absorção de cálcio com consequente redução dos riscos de (MARTINS; BURKERT, osteoporose OTIENO, 2010).

Um dos principais coprodutos agroindustriais empregados na produção da enzima β-galactosidase como fonte de carbono é o soro de queijo (SANTIAGO et al., 2004; PANESAR, 2008; OBEROI et al., 2008), porém de acordo com Vasiljevic e Jelen (2001), o crescimento do microorganismo e a produção da enzima em meio, contendo somente soro de queijo, é praticamente desprezível, sendo necessária a sua suplementação com fontes de nitrogênio, sais minerais e vitaminas. Como alternativa para suplementação do soro, e visando o reaproveitamento de outros coprodutos, pode-se empregar a água de maceração de milho, como fonte de nitrogênio e sais minerais em substituição à peptona e o Prodex-lac, um produto comercial com composição similar do extrato de levedura, como fonte de nitrogênio e vitaminas.

Considerando que o Brasil gera quantidades expressivas de soro de queijo e água de maceração de milho, desenvolveu-se o presente trabalho para avaliar fontes alternativas de carboidrato, nitrogênio e vitaminas para produção da enzima β-galactosidase por *Kluyveromyces marxianus* CCT 7082 utilizando a técnica de delineamento experimental.

Material e métodos

Substratos agroindustriais

Os substratos agroindustriais utilizados foram: soro de queijo em pó cedido pela Cosulati-Pelotas, Estado do Rio Grande do Sul, composto por 45% de lactose, 12% de proteínas e 8% de sais minerais e vitaminas; e a água de maceração de milho (AMM), cedida pela Corn Products-Mogi Guaçu, Estado de São Paulo, composta por 53% de matéria seca, 43% de proteínas bruta, 15,5% de sais minerais. O hidrolisado de levedura Prodex-lac® em pó foi

adquirido da Indústria Prodesa–Mogi Mirim, Estado de São Paulo, com 44% de proteínas e 0,32% de cloreto de sódio em sua composição.

Micro-organismo e condições de cultivo

A levedura Kluyveromyces marxianus CCT 7082, adquirida da Coleção de Culturas Tropicais (CCT) da Fundação André Tosello–Pesquisa e Tecnologia–Campinas, Estado de São Paulo, previamente selecionada por Manera et al. (2008), foi empregada para produção da enzima β-galactosidase. O microorganismo foi mantido em tubos com tampa de rosca contendo caldo YM com glicerol 10% (v v⁻¹) e congelados em freezer a –18°C.

A enzima β-galactosidase foi produzida por fermentação submersa, em frascos Erlenmeyers de 500 mL contendo 150 mL de meio de cultura a 30°C, 180 rpm (LUKONDEH et al. 2005). As fermentações iniciaram com 10% (v v⁻¹) de inóculo (NOR et al., 2001). As concentrações de lactose presente no soro de queijo, água de maceração de milho (AMM), Prodex-lac, (NH₄)₂SO₄ e o pH inicial do meio variaram de acordo com o delineamento experimental (Tabela 1). As concentrações de KH₂PO₄ e de MgSO₄.7H₂O foram fixadas em 5 e 0,4 g L⁻¹, respectivamente, de acordo com Manera et al. (2008).

Antes de ser empregado nas fermentações, o soro de queijo, após dissolução em água destilada para atingir a concentração desejada de lactose, passou tratamento termoácido desproteinização, o qual consistiu em ajustar o pH para 4,6 com acido acético e posterior aquecimento (90°C por 15 min.), e, em seguida, as proteínas precipitadas foram retiradas por filtração a vácuo (MATHEUS; RIVAS, 2003) e a solução de soro de queijo esterilizada por filtração com membrana de 0,2 μm (RAJOKA et al. 2003). A água de maceração de milho, após ser diluída na concentração desejada, foi centrifugada para retirada do material insolúvel, e esterilizada por filtração com membrana de 0,2 µm. O Prodex-lac e os demais reagentes foram preparados com água destilada e esterilizados em autoclave a 121°C por 15 min.

Delineamento experimental

Os efeitos das variáveis na concentração de lactose presente no soro de queijo, água de maceração de milho, Prodex-lac, $(NH_4)_2SO_4$, e o pH na produção da β -galactosidase foram avaliados usando um delineamento experimental fracionário 2^{5-1} com a adição de três ensaios no ponto central. As faixas estudadas foram selecionadas de acordo com a literatura e estão apresentadas na Tabela 1.

Tabela 1. Níveis codificados e concentrações das variáveis estudadas nos delineamentos experimentais, em que X_1 , X_2 , X_3 , X_4 , X_5 são, respectivamente, lactose (g L⁻¹), AMM (g L⁻¹), Prodexlac (g L⁻¹), (NH₄)₂SO₄ (g L⁻¹) e pH.

Níveis	X_1	X_2	X_3	X_4	X_5	
Delineamento fracionário						
-1	10	10	4	0	5	
0	40	55	12	5	6	
+1	70	100	20	10	7	
DCCR						
-1,68	40	10	-	-	3,5	
-1	52,1	32,3	-	-	4,1	
0	70	65	-	-	5	
+1	87,9	97,7	_	_	5,9	
+1,68	100	120	-	-	6,5	

Baseados obtidos nos resultados no delineamento fracionário, realizou-se ıım delineamento composto central rotacional (DCCR) de acordo com Rodrigues e Iemma, (2009). Foram realizados 17 ensaios (8 fatoriais, 6 axiais e 3 no ponto central) As variáveis independentes avaliadas foram concentração de lactose, concentração de AMM e o pH. Os níveis das variáveis estão apresentados na Tabela 1. A análise dos dados dos delineamentos experimentais foi realizada utilizando o programa STATISTICA versão 5.0.

Extração da enzima

A enzima β-galactosidase é uma enzima intracelular. Para ruptura da parede celular adicionou-se 1,1 g de pérolas de vidro (R < 0,4 mm) para cada mL de célula em suspensão. A suspensão foi submetida a um tratamento com ondas ultrassônicas, por 10 min. a 4° C. O sobrenadante foi separado por centrifugação a $6.000 \times g$ por 10 min. a 4° C e utilizado para determinação da atividade enzimática (MANERA et al., 2008).

Um mililitro de célula em suspensão foi obtido por ressuspensão em tampão KH₂PO₄ 50 mM com MnCl₂.4H₂O 0,1 mM pH 6,6 de células equivalente a 2,62 mg de células secas (NUMANOGLU; SUNGUR, 2004).

Determinações analíticas

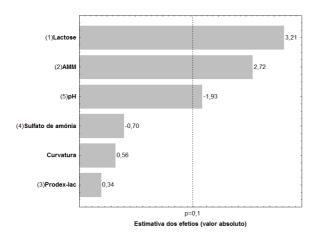
A atividade enzimática foi determinada usando o-nitrofenil-β-D-galactopiranosideo (ONPG) como substrato, segundo metodologia descrita por Inchaurrondo et al. (1994). Em tubo de ensaio contendo 2 mL de ONPG 1,25 mM, preparado em tampão KH₂PO₄ 50 mM com MnCl₂.4H₂O 0,1 mM pH 6,6, foram adicionados 50 μL da solução enzimática. A solução foi mantida a 37°C por 5 min. em banho agitado, a reação foi paralisada adicionando 0,5 mL de carbonato de sódio 1 M, em seguida determinou-se a absorbância a 420 nm, e calculou-se a atividade enzimática. Uma unidade de

atividade enzimática (U) é definida como 1 µmol de *o*-nitrophenol produzido por minuto, sob as condições do ensaio. O coeficiente de extinção molar do *o*-nitrophenol determinado experimentalmente nestas condições foi 4,64 cm² µmol⁻¹.

A concentração celular foi estimada por leitura da absorbância a 620 nm e convertida para peso seco conforme curva-padrão. As células do caldo foram coletadas por centrifugação a $6.000 \times g$, 10 min., lavadas duas vezes com água destilada e ressuspendidas com água para leitura da absorbância. Para a curva-padrão as células foram secas a 90° C até peso constante (LONGHI et al., 2004).

Resultados e discussão

As condições experimentais testadas no delineamento experimental fracionário 2⁵⁻¹ estão apresentadas na Tabela 2, bem como as respostas para a atividade enzimática máxima de cada ensaio e o tempo de fermentação em que ocorreu a máxima atividade. As atividades enzimáticas máximas obtidas neste delineamento variaram de 790,0 U g⁻¹ até 1733,7 U g⁻¹, e o tempo de fermentação necessário para atingir estes valores de atividade variaram de 24 a 72h.


Tabela 2. Matriz do delineamento experimental fracionário 2^{5-1} , em que X_1 , X_2 , X_3 , X_4 , X_5 são, respectivamente, lactose (g L⁻¹), AMM (g L⁻¹), Prodex-lac (g L⁻¹), (NH₄)₂SO₄ (g L⁻¹) e pH; Y é a atividade enzimática máxima (U g⁻¹) e t é o tempo (h).

	X_1	X_2	X_3	X_4	X_5	Y	t
1	-1	-1	-1	-1	1	898,3	48
2	1	-1	-1	-1	-1	1317,1	48
3	-1	1	-1	-1	-1	1280,2	48
4	1	1	-1	-1	1	1733,7	48
5	-1	-1	1	-1	-1	939,5	48
6	1	-1	1	-1	1	1430,0	48
7	-1	1	1	-1	1	1249,8	72
8	1	1	1	-1	-1	1528,2	48
9	-1	-1	-1	1	-1	1334,5	48
10	1	-1	-1	1	1	939,5	48
11	-1	1	-1	1	1	792,0	24
12	1	1	-1	1	-1	1718,5	48
13	-1	-1	1	1	1	913,5	24
14	1	-1	1	1	-1	1291,0	24
15	-1	1	1	1	-1	1459,4	48
16	1	1	1	1	1	1423,4	48
17	0	0	0	0	0	1323,6	48
18	0	0	0	0	0	1210,7	48
19	0	0	0	0	0	1484,1	48

As maiores atividades, 1733,7 e 1718,5 U g⁻¹, foram obtidas nos ensaios 4 e 12, respectivamente, em 48h de fermentação. As condições destes ensaios foram 70 g L⁻¹ de lactose, 100 g L⁻¹ de AMM, 4 g L⁻¹ de Prodex-lac, para ambos os ensaios, a concentração de sulfato de amônio foi 0 e 10 g L⁻¹, para os ensaios 4 e 12, respectivamente e o pH inicial da fermentação foi 7,0 para o ensaio 4 e 5,0 para o ensaio 12.

158 Manera et al.

O efeito de cada variável na atividade enzimática pode ser observado na Figura 1. As variáveis concentração de lactose e de água de maceração de milho e o pH apresentaram efeito estatisticamente significativo a 90% de confiança; a concentração de lactose e de AMM apresentaram um efeito positivo, ou seja, ao passar do nível -1 (menor concentração) para o nível +1 (maior concentração), houve incremento na atividade enzimática, já o pH apresentou efeito negativo, ou seja, ao passar do nível -1 para o nível +1, houve diminuição da atividade. As concentrações de Prodex-lac e (NH₄)₂SO₄ não apresentaram efeito estatisticamente significativo dentro das faixas estudadas.

Figura 1. Estimativa dos efeitos para as concentrações de lactose presente no soro de queijo, água de maceração de milho, Prodexlac, (NH₄)₂SO₄ e o pH para o delineamento experimental fracionário (2⁵⁻¹).

Em função dos resultados obtidos neste delineamento, as concentrações de lactose e de água de maceração de milho e o pH foram selecionadas para serem estudadas em um DCCR, em que se aumentou as concentrações de lactose e de AMM e diminuiu-se os valores de pH. As concentrações de Prodex-lac e (NH₄)₂SO₄ foram mantidas no nível -1, ou seja, 4 g L⁻¹ de hidrolisado de levedura e o sulfato de amônio foi retirado do meio já que tinha sido estudado de 0 a 10 g L⁻¹.

O sulfato de amônio foi empregado como fonte inorgânica de nitrogênio, porém pelos resultados obtidos, a água de maceração de milho e o Prodexlac forneceram a quantidade de nitrogênio necessária para o crescimento do micro-organismo e produção da enzima, não sendo necessária sua adição no meio de cultivo. O mesmo comportamento foi observado nos trabalhos de Rao e Dutta (1977) e Sonawat et al. (1981) em que a produção da β-galactosidase foi pouco influenciada quando o soro de queijo foi suplementado com fontes inorgânicas de nitrogênio, ao passo que

quando o soro foi suplementado com fontes orgânicas de nitrogênio a atividade enzimática aumentou consideravelmente.

A partir dos resultados apresentados na Tabela 3, observa-se que os ensaios 1 a 4 em que o pH estava no nível -1 (pH = 4,1) foram os ensaios que necessitaram de maior tempo de fermentação para atingir a máxima atividade enzimática, isto provavelmente ocorreu pois o micro-organismo necessitou de um tempo maior para se adaptar ao meio ácido, tendo como consequência uma maior fase lag (fase de adaptação ao meio). No ensaio 13 em que o pH estava no nível -1,68 (pH = 3,5), observa-se a menor produção da enzima, 33 U g⁻¹ em 96h de fermentação, indicando que neste pH o micro-organismo não conseguiu se adaptar, logo, a produção da enzima foi muito baixa.

Tabela 3. Matriz do DCCR, em que X_1 , X_2 , X_5 são, respectivamente, lactose (g L⁻¹), AMM (g L⁻¹) e pH; Y é a atividade enzimática máxima (U g⁻¹) e t é o tempo (h).

	X ₁	X_2	X_5	Y	t
1	-1	-1	-1	844,1	48
2	1	-1	-1	707,4	144
3	-1	1	-1	989,5	72
4	1	1	-1	835,4	168
5	-1	-1	1	679,2	24
6	1	-1	1	982,9	24
7	-1	1	1	874,4	48
8	1	1	1	1403,9	24
9	-1,68	0	0	1071,9	72
10	1,68	0	0	1208,6	24
11	0	-1,68	0	1108,8	48
12	0	1,68	0	1015,5	24
13	0	0	-1,68	33	96
14	0	0	1,68	904,8	48
15	0	0	0	1550,0	24
16	0	0	0	1358,3	24
17	0	0	0	1498,5	24

A literatura apresenta alguns estudos sobre a influência da variação do pH na obtenção de β-galactosidases produzidas por leveduras em meio à base de soro de queijo. Bales e Castillo (1979) obtiveram máxima produção enzimática empregando *Candida pseudotropicalis* quando o pH inicial do meio foi ajustado para 3,5. Matheus e Rivas (2003) determinaram como ótimo o pHde 4,68 para a produção da enzima de *Kluyveromyces lactis*, e Panesar (2008), ao fermentar *K. marxianus*, obteve maiores atividades enzimáticas em pH 5,0.

Sabe-se que leveduras crescem melhor em pH ácido, porém ficou evidente que para a levedura empregada neste trabalho, pH menores de 4,1 prejudicam o crescimento celular e a obtenção da enzima. De acordo com Panesar (2008), o pH de um sistema afeta pelo menos dois aspectos das células microbianas, o funcionamento de suas enzimas e o transporte de nutrientes na célula.

As condições que resultaram nas maiores atividades enzimáticas foram as condições dos pontos centrais, ou seja, 70 g L¹ de lactose, 65 g L¹ de água de maceração de milho e pH 5. Por meio da análise estatística dos resultados, obteve-se a equação do modelo codificado (Equação 1) que foi validada pela análise de variância (Tabela 4) em que o coeficiente de correlação obtido foi de 0,84 e o F calculado foi 4,88 vezes maior que o valor tabelado.

Atividade(U g⁻¹) =
$$1464,6 - 102,9(\text{lactose})^2 - 130,5(\text{AMM})^2 + 148,7(\text{pH}) - 130,7(\text{pH})^2 + 140 \text{ (lactose x pH)}$$

A partir da equação foi possível gerar as superfícies de resposta (Figura 2) para analisar as melhores condições de concentração de lactose, de AMM e pH para produção da β-galactosidase que conduzem a um maior valor de atividade enzimática.

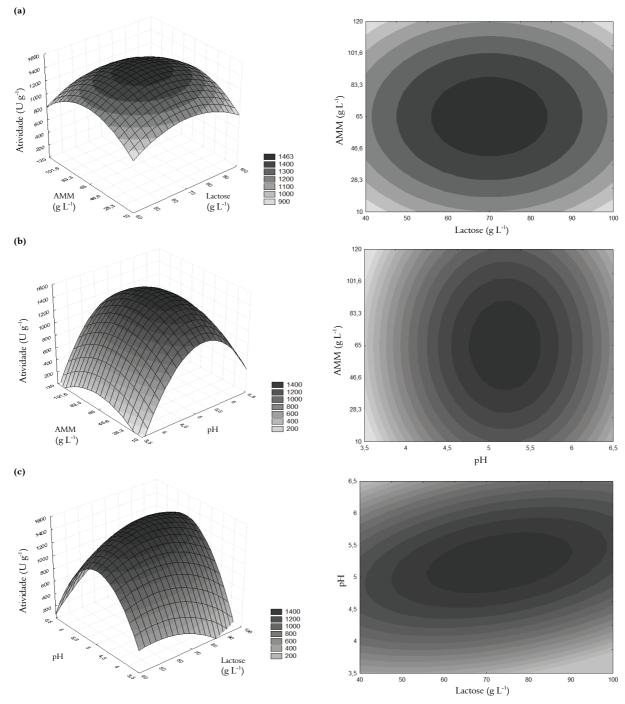


Figura 2. Superfícies de respostas para a atividade de β-galactosidase em função: (a) concentração AMM e de lactose; (b) concentração de pH e AMM; (c) pH e concentração de lactose.

160 Manera et al.

Tabela 4. Análise de variância para o delineamento composto central rotacional.

Fonte de variação	Soma dos quadrados	Graus de liberdade	Média quadrática	F calculado
Regressão	1776847,56	5	355369,5	11,98
Resíduo	326428	11	29675	
Total	2103275	16		

 $R^2 = 84,5\%$; $F_{5;11;0,1} = 2,45$.

Pode-se observar na Figura 2(a) que as concentrações de AMM entre 30 e 100 g L⁻¹ e lactose entre 50 e 90 g L⁻¹ conduzem a valores de atividade enzimática superiores a 1400 U g⁻¹. A Figura 2(b) indica que concentrações de AMM entre 30 e 100 g L⁻¹ e pH na faixa de 4,8 a 5,6 propiciam altos valores de atividade enzimática. Pela Figura 2(c) observa-se que as maiores atividades são obtidas ao empregar concentração de lactose entre 60 e 90 g L⁻¹ e pH entre 4,8 e 5,7.

Sonawat et al. (1981) observaram que o emprego de água de maceração de milho influenciou positivamente na produção da enzima β-galactosidase, o mesmo comportamento foi observado no trabalho de Rao e Dutta (1977), em que houve aumento de aproximadamente 28% na atividade enzimática usando soro suplementado com água de maceração de milho. Furlan et al. (2000) estudaram a produção da β-galactosidase empregando *Kluyveromyces marxianus*, a partir de um meio de cultura com melaço de cana-deaçúcar. A máxima produção da enzima foi obtida quando o meio foi suplementado com 100 g L⁻¹ de água de maceração de milho.

A partir dos resultados, para obtenção de uma atividade enzimática por volta de 1400 U g⁻¹, pode-se empregar as condições dos pontos centrais, ou seja, 70 g L⁻¹ de lactose, 65 g L⁻¹ de água de maceração de milho e pH 5, estes ensaios resultaram em uma produtividade média de 61 U g⁻¹ h⁻¹. O maior valor de atividade enzimática obtido no DCCR foi inferior ao máximo obtido no delineamento fracionário, em que se obteve nos ensaios 4 e 12 uma atividade por volta de 1700 U g⁻¹, porém a produtividade nesses ensaios foi aproximadamente 35 U g⁻¹ h⁻¹.

Manera et al. (2008) otimizou a produção da enzima β-galactosidase de *Kluyveromyces marxianus* CCT 7082 empregando um meio sintético composto por lactose, extrato de levedura e sais, a máxima atividade enzimática obtida foi 800 U g⁻¹. Comparando esse resultado com os obtidos neste trabalho pode-se verificar o aumento de 75% na produção da enzima β-galactosidase.

Conclusão

A produção de β-galactosidase de *Kluyveromyces* marxianus CCT 7082, utilizando um meio de cultura composto por coprodutos industriais, é um processo

biotecnológico promissor. O emprego de soro de queijo, um subproduto dos laticínios, água de maceração de milho, um coproduto da indústria de extração do amido, e a substituição do extrato de levedura por Prodex-lac, como substrato para fermentação tem o intuito de reduzir custos e propiciar uma enzima com alta atividade enzimática. Com o emprego de metodologia de delineamento experimental e análise de superfície de resposta foi possível obter uma produção enzimática de aproximadamente 1400 U g⁻¹ em 24h de fermentação.

Agradecimentos

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Capes, entidade do governo brasileiro voltada para a formação de recursos humanos, pelo apoio financeiro.

Referências

BALES, S. A.; CASTILLO, F. J. Production of lactase by *Candida pseudotropicalis* grown in whey. **Applied and Environmental Microbiology**, v. 37, n. 6, p. 1201-1205, 1979.

ERNANDES, F. M. P. G.; BOSCOLO, M.; CRUZ, C. H. G. Influência da composição do meio para a produção de *Zimomonas mobilis*. **Acta Scientiarum**. **Technology**, v. 32, n. 1, p 21-26, 2010.

FURLAN, S. A.; SCHNEIDER, A. L. S.; MERKLE, R.; CARVALHO-JONAS, M. F.; JONAS, R. Formulation of a lactose-free, low-cost culture medium for the production of β-D-galactosidase by *Kluyveromyces marxianus*. **Biotechnology Letters**, v. 22, n. 7, p. 589-593, 2000.

HUSAIN, Q. β-galactosidase and their potential applications: a review. **Critical Reviews in Biotechnology**, v. 30, n. 1, p. 41-62, 2010.

INCHAURRONDO, V. A.; YANTORNO O. M.; VOGET, C. E. Yeast growth and β -galactosidase production during aerobic batch cultures in lactose-limited synthetic medium. **Process Biochemistry**, v. 29, n. 1, p. 47-54, 1994.

JOO, H. S.; CHANG, C. S. Production of protease from a new alkalophilic *Bacillus* sp. I-312 grown on soybean meal: optimization and some properties. **Process Biochemistry**, v. 40, n. 3-4, p. 1263-1270, 2005.

LONGHI, L. G. S.; LUVIZETTO, D. J.; FERREIRA, L. S.; RECH, R.; AYUB, M. A. Z.; SECCHI, A. R. A growth kinetic model of *Kluyveromyces marxianus* cultures on cheese whey as substrate. **Journal of Industrial Microbiology and Biotechnology**, v. 31, n. 1, p. 35-40, 2004.

LUKONDEH, T.; ASHBOLT, N. J.; ROGERS, P. L. Fed-batch fermentation for production of *Kluyveromyces marxianus* FII 510700 cultivated on a lactose-based medium. **Journal of Industrial Microbiology and Biotechnology**, v. 32, n. 7, p. 284-288, 2005.

MANERA, A. P.; ORES, J. C.; RIBEIRO, V. A.; BURKERT, C. A. V.; KALIL, S. J. Optimization of the culture medium for the production of β-galactosidase from *Kluyveromyces marxianus* CCT 7082. **Food Technology and Biotechnology**, v. 46, n. 1, p. 66-72, 2008.

MANERA, A. P.; COSTA, F. A. A.; RODRIGUES, M. I.; KALIL, S. J.; MAUGERI FILHO, F. Galacto-oligosaccharides production using permeabilized cells of *Kluyveromyces marxianus*. **International Journal of Food Engineering**, v. 6, n. 6, article 4, 2010.

MARTINS, A. R.; BURKERT, C. A. V. Galactooligossacarídeos (GOS) e seus efeitos prebióticos e bifidogênicos. **Brazilian Journal of Food Technology**. v. 12, n. 3, p. 230-240, 2009.

MATHEUS, A. L. R.; RIVAS, N. Produción y caracterización parcial de β -galactosidase de *Kluyveromyces lactis* propagada en suero de leche desproteinizado. **Archivos Latinoamericanos de Nutrición**, v. 53, n. 2, p. 194-201, 2003.

NOR, Z. M.; TAMER, M. I.; MEHRVAR, M.; SCHARER, J. M.; MOO-YOUNG, M.; JERVIS, E. J. Improvement of intracellular β-galactosidase production on fed-batch culture of *Kluyveromyces fragilis*. **Biotechnology Letters**, v. 23, n. 11, p. 845-849, 2001.

NUMANOGLU, Y.; SUNGUR, S. β-galactosidase from *Kluyveromyces lactis* cell disruption and enzyme immobilization using a cellulose-gelatin carrier system. **Process Biochemistry**, v. 39, n. 6, p. 705-711, 2004.

OBEROI, H. S.; BANSAL, S.; DHILLON, G. S. Enhanced β-galactosidase production by supplementing whey with cauliflower waste. **International Journal of Food Science and Technology**, v. 43, n. 8, p. 1499-1504, 2008.

OTIENO, D. O. Synthesis of β -galactooligosaccharides from lactose using microbial β -galactosidase. Comprehensive Reviews in Food Science and Food Safety, v. 9, n. 5, p. 471–482, 2010.

PANESAR, P. Production of β-D-galactosidase from whey using *Kluyveromyces marxianus*. **Research Journal of Microbiology**, v. 3, n. 1, p. 24-29, 2008.

PARK, A. R.; OH, D. K. Galacto-oligosaccharide production using microbial β -galactosidase: current state

and perspectives. **Applied Microbiology and Biotechnology**, v. 85, n. 5, p. 1279-1286, 2010.

RAJOKA, M. I.; KHAN, S.; SHAHID, R. Kinetics and regulation studies of the production of β-galactosidase from *Kluyveromyces marxianus* grown on different substrates. **Food Technology and Biotechnology**, v. 41, n. 4, p. 315-320, 2003.

RAO, M. V. R.; DUTTA, S. M. Production of β-galactosidase from *Streptococcus thermophilus* grown in whey. **Applied and Environmental Microbiology**, v. 34, n. 2, p. 185-188, 1977.

RODRIGUES, M. I.; IEMMA A. F. **Planejamento de experimentos e otimização de processos**. 2. ed. Campinas: Casa do Pão Editora, 2009.

SANTIAGO, P. A.; MARQUEZ, L. D. S.; CARDOSO, V. L.; RIBEIRO, E. J. Estudo da produção de β-galactosidase por fermentação de soro de queijo com *Kluyveromyces marxianus*. **Ciência e Tecnologia de Alimentos**, v. 24, n. 4, p. 567-572, 2004.

SILVA, G. A. B.; ALMEIDA, W. E. S.; CORTES, M. S.; MARTINS, E. S. Produção e caracterização de protease obtida por *Gliocladium verticilloides* através da fermentação em estado sólido de subprodutos agroindustriais. **Revista Brasileira de Tecnologia Agroindustrial**, v. 3, n. 1, p. 28-41, 2009.

SONAWAT, H. M.; AGRAWAL, A.; DUTTA, S. M. Production of β-galactosidase from *Kluyveromyces fragilis* grown on whey. **Folia Microbiologica**, v. 26, n. 5, p. 370-376, 1981.

VASILJEVIC, T.; JELEN, P. Production of β-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bactéria. **Innovative Food Science and Emerging Technology**, v. 2, n. 2, p. 75-85, 2001.

Received on April 8, 2010. Accepted on September 1, 2010.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited