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This paper presents a method for crowd simulation based on a biologically motivated space
colonization algorithm. This algorithm was originally introduced to model leaf venation patterns and
the branching architecture of trees. It operates by simulating the competition for space between
growing veins or branches. Adapted to crowd modeling, the space colonization algorithm focuses on
the competition for space among moving agents. Several behaviors observed in real crowds, including
collision avoidance, relationship of crowd density and speed of agents, and the formation of lanes in
which people follow each other, are emergent properties of the algorithm. The proposed crowd
modeling method is free-of-collision, simple to implement, robust, computationally efficient, and
suited to the interactive control of simulated crowds.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Animation of crowds finds applications in many areas, includ-
ing entertainment (e.g., animation of great numbers of persons in
movies and games), creation of immersive virtual environments,
and evaluation of crowd management techniques (for instance,
simulation of the flow of people leaving a football stadium after a
match). Several techniques for modeling crowd dynamics already
exist, but important aspects of crowd simulation have remained
open for further research. Specifically, (i) the existing approaches
are often focused on panic situations rather than usual (normal)
behavior, in which people in the crowd have goals to seek; (ii) not
integrated techniques are usually needed to calibrate the move-
ment of people in low or high density crowds, and to affect local
and global motion planning; (iii) existing crowd-modeling meth-
ods are often complex, and they require careful parameter tuning
to obtain visually convincing results [1,2]; and (iv) collision-free
motion, particularly in high densities is still a problem [3].

In this paper, we propose a novel crowd simulation algorithm
that addresses some of the shortcomings of previous methods.
Our model is based on the idea that individual agents affect each
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other by competing for the space where they move, which is
represented explicitly by a set of marker points. In contrast to
most methods proposed so far, the motion of each agent is thus
affected directly not by the presence of neighboring agents, but by
their absence, indicated by available markers. This change of
perspective leads to a crowd model that is simple and robust, and
it recreates emergently several aspects of real crowd behavior.
These include collision avoidance (mathematically guaranteed by
our algorithm), goal seeking, the dependency of the agents’ speed
and the smoothness of their trajectories on the density of crowds,
and the tendency of people with similar goals in dense crowds to
follow each other (form lanes). Furthermore, users can control
crowd motion by interactively “spraying” or erasing free-point
markers in selected areas of the scene.

In contrast to previous techniques for modeling crowd
dynamics, which drew inspiration from psychology (behavioral
models) or physics (e.g. models based on particle systems, force
fields, or fluid dynamics), our method is inspired by a model of
biological patterning. Specifically, it is derived from the space
colonization algorithm introduced by Runions et al. [4,5] to
simulate the development of leaf veins and trees. The simulated
veins compete for access to sources of the plant hormone auxin,
assumed to be distributed throughout the leaf blade. In the case of
trees, individual branches compete for access to abstract markers
of unoccupied space, which are distributed in the space of future
tree crowns. In our work, each agent exploits the local availability
of space in order to create an efficient path toward its goal while
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avoiding other agents. Thus, the simulated motion of human-like
agents in crowds is governed by competition for marker points
similar to that used to model veins and trees. As such, this work
demonstrates a surprising connection between methods used
previously to generate biological patterns and crowd dynamics,
since human beings also search for available space in order
to move.

The remainder of the paper is organized as follows. Previous
work on crowd dynamics, crowd simulation, and the space
colonization algorithm are reviewed in Section 2. The proposed
method for crowd simulation is described in Section 3, with
mathematical details left to the appendices. Results of simulated
experiments are presented and evaluated in Section 4. Finally, in
Section 5, we present conclusions and suggest directions for
future work.

2. Previous work
2.1. Crowd dynamics

The behavior of real crowds was analyzed in the late 1970s
and 1990s [6-9]; results of their analysis provide a useful
reference for simulation and animation of crowds. Two important
aspects that guide the motion of real people are: goal seeking,
reflecting the target destination of each individual; and the least-
effort strategy, reflecting the tendency of people to reach the goal
along a path requiring the least effort [9]. According to these
strategies, people travel along smooth trajectories, since this
requires less energy than frequent changes of direction or speed.
In particular, adjustments of direction and speed, required to
avoid collisions, are minimized. Further consequences of the
least-effort strategy are the formation of lanes and the speed
reduction effect. The first term refers to the tendency of people
walking in the same directions to reduce their effort by closely
following each other, while the second one refers to the reduction
of speed in dense crowds.

The concept of personal space, the subject of study of inter-
personal interactions in a spatial context (proxemics) [10], also
plays an important role in population dynamics. Personal space
can be thought of as an area with invisible boundaries, surround-
ing each individual, which should not be penetrated by other
individuals in order for interpersonal interactions to occur com-
fortably. The size of this zone depends on the environment as well
as the people culture, and decreases as the crowd density gets
higher. In the context of simulations, the personal space deter-
mines the minimum distance that should be maintained among
the agents.

2.2. Crowd simulation

Virtual crowds are usually modeled as collections of interact-
ing agents, although treating a crowd as a continuum (for
example, obeying laws of fluid dynamics) is also possible
[11-13]. In behavioral models, movements of a group of agents
are an emergent property of individual agents, which are both
influenced by and influencing their neighbors. These individual
behaviors are defined using sets of simple goal-oriented rules,
such as “move with the average speed of your neighbors” or
“keep an optimal distance to your neighbors”. Behavioral anima-
tion was pioneered by Reynolds [14], who simulated flocks of
birds and schools of fish assuming that each agent has direct
access to the motion characteristics (position and velocity) of
other agents. Tu and Terzopoulos [15] improved the conceptual
realism of this work by endowing artificial fish with synthetic
vision and perception of the environment. Both the original

results of Reynolds and the models of Tu and Terzopoulos were
confined to relatively small, low-density groups of animals.

The rules governing the movements of agents in behavioral
models may be viewed as an abstract representation of the
“psychology” of modeled individuals. In contrast, in force-field
models, interactions among agents (in this case, often referred to
as particles) are based on analogies with physics. For example,
Helbing et al. [16,17] introduced abstract attraction and repulsion
forces to simulate groups of people in panic situations. Braun
et al. [18] extended this model by endowing agents with indivi-
dual characteristics and including the concept of groups, which
improved the realism of simulations. Ondfej and collaborators [19]
explored the concept of synthetic vision to tackle the problem of
collision avoidance in crowd simulation, while other sensorial
attributes (such as sound and touch) were also explored in [20].

Hybrid methods have also been proposed. For instance, the
approaches presented by Pelechano et al. [21] and van der Berg
et al. [22] integrate behavioral and force-fields techniques in
order to improve crowd control, aiming to minimize the draw-
backs of both technologies. However, the negative aspect of these
methods is the increase in complexity of the implementation.

Some effort has also been dedicated to GPU implementations
of crowd simulation algorithms, aiming to reduce computational
time. For instance, Rudomin and colleagues [23] presented an
approach where the behavior of agents was specified as a finite
state machine with a GPU implementation. Their GPU implemen-
tation presented a gain of 10 times when comparing with a CPU
implementation for a large number of agents (around one
million).

Each category of models presents a tradeoff. Behavioral models
are suited for an individualized specification of agents, but global
crowd control is more difficult to achieve because of the emergent
character of the motions. In contrast, force-field models offer
good global crowd control in high-density situations, but tend to
generate less realistic motions of individual characters, which
reflect their simplistic physical basis. This sets the stage for our
method, in which crowds of agents obeying simple behavioral
rules can be globally controlled and relatively realistic motions
can be obtained without tedious parameterization as emergent
properties of the model.

Also, an important drawback of existing approaches is collision
treatment. In fact, quoting the statement of Patil et al. in a recent
work [3], “It is important to note that none of the collision
avoidance methods suggested in the literature can absolutely
guarantee collision-free paths for all the agents in the simula-
tion”. In the proposed approach, collision avoidance for all agents
is proved mathematically, being a relevant contribution of
the paper.

2.3. The space colonization algorithm

The crowd modeling method proposed in this paper is based
on the space colonization algorithm, which was originally pro-
posed to model leaf venation patterns [4]. Variants of this
algorithm make it possible to generate branching or reticulate
patterns. Here we review the branching venation model, which
more directly applies to crowd animation.

The venation model simulates three processes within an
iterative loop: leaf blade growth, the placement of markers of
free space, and the addition of new veins. The markers correspond
to sources of the plant hormone auxin, which, according to a
biological hypothesis, emerge in the growing leaf regions not
penetrated by veins. A set of markers S interacts with the vein
pattern, which consists of a set of points V called vein nodes. This
pattern is extended iteratively toward the markers of free space.
The markers that are approached by the advancing veins are
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gradually removed, since the space around them is no longer free.
As the leaf grows, additional markers of free space are added in
the space between existing veins and markers. This process
continues until the growth stops, and there are no markers left.

The interplay between markers of free space and vein nodes is
at the heart of the space colonization algorithm. During each
iteration, a vein node is influenced by all the markers closer to it
than any other vein node. Thus, veins compete for markers, and
thus space, as they grow. There may be several markers that
influence a single vein node x: this set of points is denoted by S(x).
If S(x) is not empty, a new vein node X' will be created and
attached to x by an edge representing a vein segment. The node x’
is positioned at a distance D from ¥, in the direction defined as the
average of the normalized vectors toward all the markers s € S(x).
Thus, ¥ =x+Dn, where

~ n S—X
= and n= 3 o M

s e S(x)

The distance D serves as the basic unit of distance in the model
and provides control over the resolution of the resulting structure.
Once the new nodes have been added to V, a check is performed
to test which, if any, of the markers of free space should be
removed due to the proximity of veins that have grown toward
these points.

The space colonization algorithm has subsequently been
adapted to model trees [5]. Beyond the extension to 3D struc-
tures, the algorithm for trees introduced the notion of the radius
of influence, which limits the distance from which markers of free
space can attract tree nodes. Furthermore, the set of marker
points is usually predefined at the beginning of simulation and no
new markers are added afterwards, since, in contrast to the
expanding leaf blade, the space in which a tree grows remains
fixed.

3. Modeling crowds with the space colonization algorithm

The proposed method for crowd modeling is based on the
space colonization algorithm. In its original applications to
biological patterning, veins or tree branches could be regarded
as paths created by vein or branch tips as they penetrated free
space. In crowd simulation, these growing tips are identified with
moving agents. Interestingly, an analogous relation between
paths and motions can be observed in the development and
applications of ideas related to particle systems. While some
applications focused on the motion of particles (e.g., simulations
of fire and fireworks), others emphasized their paths (e.g.,
simulation of grass and trees) [24].

The proposed approach preserves many characteristics of the
original space colonization algorithm and its extension to trees.
The key new elements, underlying the adaptation of the space
colonization algorithm to crowd simulation, are listed below:

1. Persistence of markers: In contrast to the sources of auxin,
which are permanently removed when reached by veins, the
markers in crowd simulations are claimed by each agent
temporarily, upon entering the agent’s personal space, and
are released when the agent moves away. The released
markers can subsequently be used by other agents.

2. Goal seeking: The development of veins is guided locally by the
presence of auxin sources in the proximity of a vein. In
contrast, the motion of people is also influenced by the
intention of each individual to reach a goal.

3. Speed adjustment: In the original space colonization algorithm,
veins grow at a constant rate. On the other hand, agents vary

their speed according to the available space in our crowd
model.

To describe the proposed approach, let us consider a 2D
simulation environment populated with discrete markers over
“walkable” regions, using the dart-throwing algorithm [25]. For
each agent [, there are assigned individual parameters, namely its
current position x;(t), its current goal g;(t), its desired maximum
speed si .., and its perception field (the maximum distance from
which an agent can perceive markers), modeled as a circular
region with radius R.! Next we describe the procedure for
updating the position of each agent.

3.1. Computation of displacement vector

For a given agent I, let us consider set S={a;,a,,...,ay} of
markers that are closer to agent I than any other agent and that
are also within its personal space. In the simulation of vein
development, the orientation vectors were normalized and simply
averaged to define the direction of vein growth (Eq. (1)). However,
in the simulation of the agents’ motion we also need to take their
goal vectors into account. To this end, we weight each orientation
vector according to the degree to which it is aligned with the
agent’s goal. Specifically, the tentative motion vector m is com-
puted as

N
m= " wi(a—x), @)
k=1
where coefficients wy are weights given by
—X,a;,—X
S E)
Yi-1fg—xa-x)

To determine function f, let us first assume that all markers ay
affecting agent I are at the same distance lla,—xIl from this agent.
Such function should prioritize markers that lead the agent directly
to its goal, i.e., it should (i) reach its maximum when the (non-
directed) angle 0 between g—x and a,—x is equal to 0°; (ii) reach its
minimum when 6=180° and (iii) decrease monotonically as 0
increases from O to 180°. Also, if the distances lla,—xl differ, the
markers further from the agent should have relatively smaller
weights, to prevent them from dominating the computation of the
tentative motion vector m.

A possible choice for f that satisfies these assumptions is

1+cos 1 (xy>
Tyl 14yl Ixliyl )’

fxy) = 4
where < -,-)> denotes the inner product. In Appendix A, we
demonstrate that, if markers claimed by an agent are continuously
and uniformly distributed in its personal space and within the
agent’s perception field, this choice of f will guarantee that the
tentative motion vector m will point in the direction of the agent’s
goal. Obviously, for other marker distributions (e.g. when the user
inserts obstacles) or when the perception field of an agent does not
lie in the interior of its personal space (e.g. when there are neighbors
at a short distance), the agent’s direction may deviate somewhat
from its goal. We also show that (i) the position x of agent I,
displaced by vector m, remains within the current personal space of
agent I, and (ii) the magnitude of vector m increases with the size of
this space. Taken together, these properties make vector m a good
candidate for specifying next-step movement of the agent, guaran-
teeing a collision-free trajectory and capturing the increase of speed
in larger spaces. However, in calculating the actual displacement, we
have to also consider the maximum speed (displacement per

1 For clarity, indices i and t will be omitted from now on, unless necessary.
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simulation step?) smax Of the agent. Consequently, we calculate the
actual displacement v as

m .
v=sm, where s = min{llmll,Smax}, (5)

so that the position of the agent is updated through
X(t+1)=x(t)+v. )

Eq. (5) implies that if Ilmll > spnax, the speed of the agent is
limited by smax. Otherwise, the speed is given by limll. It is
important to notice that, if the radius R of the perception field
is too small, the magnitude of the direction vector calculated in
Eq. (2) will always be smaller than spy.x, making it impossible for
an agent to achieve its maximum speed. In Appendix A, we
present the relation between R and the expected value of the
magnitude of displacement per step llmll, which may serve as a
guidance for setting an appropriate value for R.

It is important to note that the proposed approach generates
collision-free motion if the agents are infinitesimal (i.e., present
no area). Otherwise, the center of the agents does not collide, but
their bodies may interpenetrate. However, as shown in the next
section, a visual inspection indicates that very few collisions occur
when using the proposed approach. In any case, an extension that
copes with collision-free motion for finite-size agents is presented
in Appendix A.3, and a preliminary comparison between infinite-
simal versus finite-sized agents is presented in Section 4.4.

4. Experimental results

In this section we present several examples that illustrate
various features of the proposed crowd simulation method. In
particular, we show that different aspects of the crowd dynamics
outlined in Section 2.1 are emergent properties of our model. It is
important to mention that, unless otherwise indicated, all results
were obtained using the same set of parameters, regardless of the
density of simulated crowds. The density of markers was set to
15 markers/m?, and the personal space R surrounding each agent
had radius of 1.25 m. Since every person in real life has their own
preferred maximum speed, the individual maximum speed si, .
for each virtual agent I; was drawn at random within the interval
0.03-0.05 m per time step of 1/30s, corresponding to the range
0.9 m/s-1.5 m/s. See Appendix A.2 for a further discussion of the
relation between smax and R. The default simulated environment
was a square of dimensions 50 x 50 m?, and all experiments were
performed using an Intel® Core™ 2 Duo T7500 2.2 GHz mobile
processor, 3 GB DDR2 memory and 128 MB NVIDIA® GeForce®
8400M GS video card.

We used two methods to visualize simulation results. In 2D
visualizations, agents are shown as moving dots associated with
line segments, and these lines point to the markers influencing
each agent. An example of such a visualization is given in
Fig. 2(b). It reveals that, in this case, the agents in the center of
the crowd have fewer markers available to them, and therefore a
more limited range of movements than the agents near the
boundaries. In 3D visualizations, agents are represented as articu-
lated virtual humans. An example of such a visualization is shown
in Fig. 3.

4.1. Impact of the density of markers

In order to properly set parameters for further experiments,
we analyzed the impact of the density of markers on the

2 Since the speed is given in “displacement per simulation step”, it in fact
relates to the distance traveled by the agent at each time step.

a T T T T T
g s 1
o
(0]
z
ser :
g I
5 4t .
>
D ‘Y
c B, A
®© R ]
(0]
g2y :
(]
>
3
0 i 1 1 1 1 Il
7.5 10 12.5 15 17.5 20
Markers Density (markers/squared meter)
b 60 —8—7 5 markers/m?
®— 10 markers/m?
50
- ¥~ 15 markers/m?
c
8 40 LN . —@— 20 markers/m?
@
@
230 ¢t
[}
[0]
§
& 20 ¢
10
0 S S A | il il

10° 104
Number of agents

102

Fig. 1. (a) Average variation of the agents direction per simulation step as a
function of the density of markers. Vertical bars indicate standard error.
(b) Simulation speed as a function of the number of agents, evaluated for four
different densities of markers. All standard deviations were less than 1 and thus
are not shown.

Fig. 2. (a) Personal space (shaded regions) and markers (dots) associated with five
sample agents (squares). The markers captured by each agent are shown in the
same color as the agent. (b) Line segments connect agents and corresponding
markers in 2D visualization. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

trajectory of agents and the computational efficiency of simula-
tions. According to the least effort hypothesis, the ideal trajectory
in the simplest case of a single agent is a straight line between its
initial position and the goal. Fig. 1(a) shows the average and
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b

Fig. 3. (a) Trajectory smoothness of a leading agent (blue) and an agent in the middle of the group (red). (b) Formation of lanes (indicated by circles and squares) in two
groups of 50 people moving in opposite directions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

standard deviation (vertical line segments) of the angular varia-
tion of the agent’s direction for several densities of markers. As it
can be observed, the average angular variation (as well as the
standard deviation) decreases rapidly for marker densities
increasing from 7.5 to 15 per m2. The decrease is slower for
marker densities exceeding 15 per m2.

We also analyzed the relation between the density of markers
and simulation speed. The results were obtained for markers
distributed over a square of dimension 80 x 80 m? at four differ-
ent densities. As shown in Fig. 1(b), the simulation speed
decreases with the number of markers, as expected.

Based on the results shown in Fig. 1, we used 15 markers per m?
in all subsequent experiments. This value represents a compromise
between computational time (simulation of 800 agents can be
performed in real-time, 30 frames per second) and trajectory
smoothness (increases in marker density above 15 markers per m?
do not reduce the angular variation significantly).

It is interesting to notice that a continuum distribution of
markers into Voronoi polygons could be easily formulated, just
replacing the summations in Eqs. (2) and (3) by integrals.
However, such integrals would have to be solved numerically,
which would lead to the discrete formulation proposed in this
work (and higher densities of markers would correspond to a
more accurate numerical solution).

4.2. The shape of trajectories

The smoothness of the trajectories depends not only on the
density of markers but also on the density of agents. In fact, when
two groups of people move through the same space in opposite
directions, people at the front of their group have to change
direction to a larger extent than people who walk behind, to avoid
frontal collisions with the members of the other group [9]. This
behavior is consistent with the least effort hypothesis, applied to
each individual agent. To verify whether the same behavior
emerges in our simulations, we considered two groups of agents
moving in opposite directions. We then selected two agents from
the same group: one at front and the other in the middle of the
group, marked as blue and red trajectories, respectively, in
Fig. 3(a). Visually, it can be observed that the red trajectory is
smoother. Such smoothness is also evaluated quantitatively by
computing the average angular change (in absolute value) of both

agents. The agent at the front presented an angular change of
19.19°, with standard deviation 13.69° per simulation step. The
agent in the middle of the crowd presented and average angular
variation of 15.11°, with standard deviation 12.99°. For the sake of
comparison, an isolated agent moving in the same field of
markers would change its direction with average 3.86° and
standard deviation 4.64°. Thus, as expected, a follower in a crowd
changes its direction to a smaller extent than a leading agent, but
to a larger extent than an isolated agent.

4.2.1. The emergence of lanes

Minimization of effort leads to a spontaneous formation of
lanes, or chains of people who walk behind each other (cf. Section
2.1). Such lanes also readily emerge in our simulations, as
it can be visually observed in Fig. 3(b). Once again, these results
were obtained for two groups of agents moving in opposite
directions.

4.2.2. Collision avoidance

A very important behavior is collision avoidance within the
crowd. While our algorithm guarantees collision-free motion
(Appendix A.1), it is nevertheless interesting to evaluate it in
the simulations. To this end, we considered four groups, each with
50 agents, which originated at the corners of a square scene and
moved toward the opposite corners. These groups create a dense
crowd of people moving in different directions near the center of
the scene. Fig. 4 shows four frames from the resulting simulation.
While the set of markers allocated to each agent decreased near
the center, these sets do not interpenetrate. For each agent, the
next step will thus be collision free.

4.2.3. The speed reduction effect

As the density of crowd increases, the number of markers
associated with each agent decrease, suggesting that the agents’
speed is reduced as a function of crowd density. This reduction is
the essence of the “speed reduction effect”. To analyze its
emergence in our simulations, we performed a series of experi-
ments with different groups and numbers of agents now moving
in a corridor of dimensions 10 m x 40 m. The maximum desired
speed of all agents was fixed at Smax = 1.2 m/s. In the first two
experiments, one group of 25 or 50 agents moved from one end of
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Fig. 4. 2D visualization of the collision-avoidance behavior. Four groups cross each other in the center of the scene.

Table 1

Speed reduction effect: reduction of realized speed as a function of the number of agents. Maximum agent speed in each case is Smax = 1.2 m/s.

Agents (groups) 25 (1) 50 (1) 50 (2) 100 (2) 200 (2) 400 (2) 800 (2)
Mean realized speed (m/s) 1.19 1.19 1.17 1.16 1.14 1.11 1.09
Standard deviation 0.0006 0.0006 0.0021 0.0045 0.0096 0.0206 0.0319
1.4 - -
the corridor to the other. In the remaining experiments, two —H- Green guide
groups of 25, 50, 100, 200 and 400 agents moved in opposite —O- Fruin H
directions. Each experiment was repeated 20 times for different —7 Purple guide

randomized configurations of marker points and initial positions
of the agents. The average speeds of agents realized in these
experiments are shown in Table 1. As expected, in the absence of
flow in the opposite direction (the first two experiments), the
realized speed is almost equal to the maximum speed allowed for
the agents (1.2 m/s). In the simulations with groups of agents
moving in opposite directions, the realized speeds were progres-
sively smaller as the number of agents increased.

These results can be expressed in terms of the global density of
agents. For instance, in the last experiment (last column in Table 1)
there are on average 2 agents per m? (800 agents/400 m?). However,
global density is not a very informative measure of crowding, since
it may vary spatially. In our simulations, the groups crossed each
other near the center of the corridor, forming a high-density area
there, while other areas were relatively empty. To take these
differences into account, we divided the corridor into cells of
dimensions 1mx 1m, and computed the number and mean
velocity of agents in each cell. The results are shown in Fig. 5, which
compares the distribution of speeds generated using our method
(here labeled BioCrowds) with the average speeds reported for

—O— BioCrowds 0

Speed (meters/second)

O i i i i i

1 1.5 2 2.5 3 35 4
Density (agents/squared meter)

Fig. 5. Mean agent speed as a function of local crowd density. Plots labeled green
guide, fruin, and purple guide represent measured data from real life, while plot
labeled BioCrowds describes emergent results of our method. In these simulations,
we assumed that the maximum velocity of agents was 1.2 m/s. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 6. (a) Bottleneck effect: ellipses highlight the regions where agents stop due
to the environment. (b) Arc formation: agents have the same goal (e.g. location of
a door—black square) and stop forming an arc.

Fig. 7. The Convex Hull of an agent is the red polygon that circumscribes it. In this
simulation, we used 60 markers/m?. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

various densities of real crowds [7].>* As it can be observed, the
emergent speeds of crowds simulated using our method are con-
sistent with the measured data.

4.2.4. The stopping effects

Virtual agents move when they have available markers in their
perception fields and personal spaces. It is the essence of
competition for space strategy in which agents fight for space
and, then, move accordingly. However, when there are no
markers available, stopping effects can happen, as it can also
happen in real life. Two stopping effects are illustrated in this
paper: (i) Bottleneck effect and (ii) Arc formation.

The first one describes the increase of density (and reduction
of speed) that happens in environment presenting bottleneck due
to walls (see Fig. 6(a)). In this figure, the ellipses on the left
indicate bottleneck regions that present a higher density of virtual
agents (4 persons/m?), lower speed (average 0.31 m/s, standard
deviation 0.056), and a smaller amount of available markers. The
ellipses on the right indicate the corresponding regions after the
bottleneck, with a lower density of agents (2 persons/m?), higher
speed (average 1.18 m/s, standard deviation 0.03) and more
available markers. The middle of the corridor (rectangular region)
presents intermediate results, with an average density of three
persons/m?, mean speed 0.99 m/s and standard deviation 0.004.

The second behavior was firstly proposed by Helbing et al. [17],
and it describes the phenomena that occur when people stop due to
an exit door, including stopping effect and also the emerging
geometrical arc formation (see Fig. 6(b)).

4.2.5. Interactive crowd control

The motion of agents can be controlled by interactively
spraying or erasing markers. Fig. 8(a) shows a screenshot of our
prototype system that implements such interaction. Agents tend
to follow paths with higher density of markers, so that local
control can be achieved by increasing the number of markers

3 GreenGuide: Department of National Heritage, Guide to safety at sports
grounds (The green guide), fourth ed. London, UK: HMSO, 1997.

4 PurpleGuide: Health and Safety Executive, Guide to health, safety and welfare
at pop concerts and similar events (The purple guide), first ed. London, UK: HMSO,
1993.

along preferred paths. When markers are removed, agents imme-
diately adjust their paths as shown in Fig. 8(b).

4.3. Crowd models: a comparative analysis

This section presents a comparative analysis of the proposed
approach and some existing crowd simulation models
[17,11,21,22,12]. Table 2 presents the computational complexity,
performance and hardware related to such models. It is important
to point out that the presented computational cost consider only
the simulation process, ignoring the rendering step. Regarding to
our BioCrowds model, frame rates refer to those obtained for a
density of 15 markers/m?, as shown in Fig. 1(b).

According to Table 2, BioCrowds presents a computational
performance comparable to the other models. It is also interesting
to note that the results of BioCrowds were obtained using a
monothread implementation, whereas, for example, the model
presented by Berg [22] used 16 processing cores to parallelize
their code.

Table 3 presents a qualitative analysis regarding the main
emergent behaviors produced by the analyzed models. The
symbols indicate whether the behavior occurs (»~), does not
occur (x) or could not be verified (?), through the analysis of
the specified literature and related videos. It is possible to verify
that BioCrowds model presents the main expected behaviors for
crowd simulation.

Another interesting effect provided in BioCrowds is the stop-
ping effect. In other models [17,11,21,22], the agents present low-
amplitude oscillations when they have no space to move. It
happens mainly in force-fields models due to the balance of
forces. In our model, since the available markers for each agent
do not change, agents may really stop, as illustrated in Fig. 6(b).
On the other hand, if the application requires an oscillation in the
crowd motion (e.g., impatient people), we can easily produce it by
including a random parameter in Eq. (2). The resulting effect is
that for each frame the motion direction should be different,
liberating and taking into account other markers.

4.4. Infinitesimal versus finite agents in collision-free simulations

As discussed in Appendix A, the motion of the agents is collision
free for infinitesimal agents, but agents occupying a finite space may
interpenetrate. A possible solution for collision-free motion for
finite-area agents as well is presented in Appendix A.3, and this
section shows a brief comparison between both versions (infinite-
simal versus finite-area agents).

As described in Appendix A.3, the body of a finite-sized agent
is approximated by a circular region, which radius r should be
based on information of anthropomorphic sizes of populations of
the world. Still [9] reported that the average width between the
shoulders is around 0.4558 m, leading to our choice of
r=0.2279 m for the radius r.

The scenario for this simulation is a corridor of dimensions
10 m x 40 m (the same simulation scenario used in Section 4.2.3),
populated with two groups of 200 agents moving in opposite
directions. The value for the agent maximum speed and the radius
of the perception region will remain the same as the other
experiments, i.e., Smax = 1.2 m/s and R=1.25 m.

Running the finite-area version of the simulator with a density
of 15 markers/m? yields an average speed of 0.47 m/s for the
agents, which is significantly lower than the analogous simulation
with infinitesimal agents shown in Table 1, sixth column. In fact,
such difference is explained by the fact that we approximate the
Voronoi polygons around each agent by the convex hull of its
markers, and a density of 15 markers/m? may lead to very
irregular polygons. To alleviate this problem, we have increased
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Fig. 8. Snapshots of the proposed interface, illustrating (a) the “sprayed” markers (green dots) on the floor, and (b) the possibility of erasing markers (the yellow circle
represents the marker eraser, and it has been used to narrow down the region where the agents can walk). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 2

Computational complexity and performance of analyzed crowd models, where n denotes the number of agents. Additionally,

m is the number of markers for BioCrowds.

Model Hardware

Complexity/performance

Helbing et al. [17]
Treuille et al. [11]
Pelechano et al. [21]

Not specified
Intel Pentium 3.4 GHz Processor
Intel Xeon 2.99 GHz Processor

Berg et al. [22] Intel Xeon 2.93 GHz Processor
Narain et al. [12] Intel Core i7-965 3.2 GHz Processor
BioCrowds Intel Core 2 Duo 2.2 GHz Mobile Processor

om?) | _

_/ 10K agents (2 to 5 FPS)

_ [ 1.8 K agents (25 FPS)

_ [ 2.5K agents (20 FPS) to 20 K agents (2 FPS)

_ | 2K agents (62 FPS) to 100 K agents (4 FPS)
O(nm) [ 800 agents (30 FPS) to 13 K agents (6 FPS)

Table 3
Emergent behaviors presented by analyzed crowd models.

Model Emergent crowd behaviors
Lanes Bottleneck effect Arc formation Guaranteed free-of-collision
Helbing et al. [17] 17 17 17 v —However, can generate low-amplitude oscillations
Treuille et al. [11] I » ? x—Proposes a final test in case of collision situation
Pelechano et al. [21] » » » »—However, is based on a series of specific proximity rules
Berg et al. [22] 17 17 17 x—Authors mention that collisions can occur
Narain et al. [12] I I I x—Authors mention that collisions can occur
BioCrowds » » 1 v —Free-of-collision behaviors are inherent to the model, and proved mathematically

the density to 60 markers/m?, achieving an average speed of
1.08 m/s, with standard deviation of 0.06. As expected, the
average speed is a little lower than the infinitesimal version for
the same scenario, and the standard deviation a little larger, since
infinitesimal agents may be as close to each other as possible,
whereas the minimum distance between finite-sized agents is
limited by their bodies. For the sake of illustration, a screenshot of
the simulation illustrating the convex hull around each agent is
shown in Fig. 7.

5. Final considerations

In this work, we proposed a new model for crowd simulation.
Important aspects of people’s motion in a crowd (collision
avoidance, goal seeking, relationship between density/speed and
smoothness of trajectories on the local density of the crowd, and
lane formation) are some of emergent properties of the model.
The model also provides a convenient method for interactively
controlling the movements of crowds.

Methodologically, the key innovation is the simple way in which
the agents monitor their environment, by “observing” free space,
rather than each other directly. This space is represented using a set
of marker points, which leads to a simple yet computationally
effective implementation of the competition for space. To this end,

each agent captures the markers that are within its perceptive field
and that are closer to it than to any other agent. These markers
locally guide the motion of the agents. Global goal-seeking is
modeled by biasing the influence of the captured marker points
according to their agreement with each agent’s direction to its goal,
which can be assigned to individual agents or groups.

The use of markers also provides a conceptually clean meta-
phor for interacting with the simulated crowds, which can be
directed by spraying or erasing the markers. To find the set of
markers that lie within the personal space of each agent, the
Voronoi tessellation could be computed. However, since the
markers are fixed, our implementation consisted of analyzing
each marker, and finding which agent is the closest one (a grid
structure is also used to reduce the search space, so that
exhaustive search for all agents in not necessary).

Regarding validation, it is still a challenge to evaluate crowd
simulation models qualitatively in terms of attained realism. In
fact, there are no objective metrics that quantify the similarity
between two simulations, or to evaluate quantitatively how
realistic a given result is. Nevertheless, in terms of the “speed
reduction effect”, the decay of speed in terms of crowd density
achieved by virtual humans in the proposed approach was
coherent with measured data in real life, as shown in Fig. 5.

Finally, it is important to point out that the proposed approach
generates guaranteed collision-free motion, which is a challenging
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problem in crowd simulation [3]. The formulation considering
infinitesimal agents produces few interpenetrations when display-
ing agents as finite-area regions, and the extension to provide
collision-free motion for finite-sized agents presented in Appendix
A.3 and Section 4.4 can be used to avoid interpenetrations (at the
cost of increasing the complexity of the algorithm).

As future work, we plan to extend the proposed biologically
motivated model to cope with groups, and further dedicate to
obtaining quantitative metrics to evaluate crowd simulation
results. We also plan to perform a more thorough evaluation for
the proposed simulation algorithm using finite-area agents.
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Appendix A

A.1. Collision avoidance

Before proving the collision free nature of the proposed
method it is necessary to introduce the properties of Voronoi
diagrams and convex sets used in the proof. First, given a set of
agents with associated positions, dividing the space into the
regions of points that are closer to one agent than any other is
exactly the Voronoi tessellation of the point set containing the
positions of all agents [26]. Second, in such a partition, the region
associated with each agent is a convex polygon [26]. Finally, a
convex polygon is a special type of convex set, which can be
defined as follows [27]:

Definition 1. Let C be a set, then C is convex provided that for
any set of points {xq,...,X;}eC, and any wy,...,w,eR such
that wy+wy+--- +wy =1, 0<w; <1, it follows that > 7_; wx;
is also in C.

In the proposed formulation, it is important to notice that the
set of markers related to an agent lie within the intersection of its
circular perception field and its personal space, defined as the
corresponding Voronoi polygon. Since both regions are convex,
their intersection remains convex (so that all markers lie within a
convex set).

The displacement vector v given by Eq. (5) can be either m
(if Smax > lmll) or smaxm/llmll (if smax < llmll). In the first case, m is
computed using a weighted average of the displacement vectors
a,—x that satisfy the conditions of Definition 1 (as the weights

a

uj

b
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sum to 1). Thus v=m must be a point in the translated Voronoi
polygon of agent I. In the second case, as Smax/Ilmll <1
(as Smax < Ilmll) it follows that v =smxm/Iimll is a point on the
line segment connecting the origin and m. As the origin and m are
both in I's translated Voronoi polygon it follows that all points on
the line segment connecting the points are also in the polygon
(by Definition 1, as the region is convex). Thus v must be a point
within the translated Voronoi polygon. Hence, in both cases v
must belong to the Voronoi polygon of agent I (translated to the
origin). Finally, as the Voronoi tessellation provides a disjoint
partition of space, the trajectory of each agent is guaranteed to be
collision-free.

A.2. Relation between the perception field and the
displacement vector

In this section, we show the relation between the radius R of
the perception field and the expected value for the magnitude of
the motion vector lml given by Eq. (2).

Let us consider a given agent, with a goal such that g—x = (1,0)
(without loss of generality, we have chosen the unit vector in the
x direction), and a circular perceptive field with radius R. Assum-
ing that the markers are continuously distributed around the
agent according to a uniform distribution, the expected value for
the direction vector m is

1 {8X)
f91+HxH(1+ Il )"‘d"‘
) = — , @
) —(1+—<g'x>>dx
JoT Tl X

where Q is the circular perceptive field. Using polar coordinates
(r,0), a direct computation leads to
1R?-2R+2In(1+R)
Fm = <4R—1n(1+R)'0>' ®
so that m points to the goal vector g—x. Furthermore, its
magnitude Ilmll is given by 1(R®—~2R+2 In(1+R))/(R-In(1+R)).
To ensure that the radius R of the perceptive field is large enough
to allow agents to move spax during a time step we must choose R
and smax such that the condition Smax < }T(R2—2R+2 In(1+R))/
(R—In(1+R)) is satisfied. It should be noticed that the values for
Smax and R defined in Section 4 satisfy this relation.

A.3. Elimination of collision for finite-sized agents

As discussed before, the motion of the agents is collision free,
irrespective of the density of the crowd or markers, since their
personal spaces are always non-intersecting. However, this obser-
vation only applies to infinitesimally small agents, and agents
occupying a finite space may theoretically collide (if they
approach from opposite sides the same point on an edge of a
Voronoi polygon).

(1= i) <u v

Fig. 9. Collision avoidance for non-punctual agents. (a) Situation of possible collision. (b) Enforcement of collision avoidance by using a speed reduction factor.
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Let us consider that a virtual agent is represented in two
dimensions by a circle with radius r. If the whole circle lies within
the personal space of the agent in the subsequent iteration, then
collision-free motion is also guaranteed for non-punctual agents.
To accomplish that, we include a reduction factor 0 <f <1 in
Eq. (6), leading to

X(t+1) =x(O+fv. €)]

To determine f3, we first compute the distances D; from x(t)+v to
each edge e; of the Voronoi polygon related to the agent. If D; > r,
the agent lies entirely within its personal space, and there is no
chance of collision. Otherwise, its body invades the personal space
of a neighboring agent, and collision (at that particular Voronoi
edge) can be avoided by selecting an adequate reduction factor f3;.
More precisely, the reduction factor that leads the agent the
closest to e; without crossing it is given by

1-"=B iep <,
B = <uj,v) (10)
1 if Dj >T,

where u; is a unit vector normal to edge e; pointing outwards
from the polygon, as shown in Fig. 9. To avoid crossing any edge e;
of its personal space, we select #=min f; as the reduction factor
for the agent, as required for Eq. (9). In practice, Voronoi edges for
which (u;,v) is negative are not considered, since the agent is
moving away from them. Additionally, if we want to enforce a
minimum distance ¢ between two agents, we can simply replace r
with r+¢/2 when computing f; in Eq. (10). In terms of imple-
mentation, if we know all the markers assigned to a certain agent,
its corresponding Voronoi polygon may be approximated by the
Convex Hull of such markers [28].
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