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ABSTRACT

Motivation: An important problem in systems biology is the inference

of biochemical pathways and regulatory networks from postgenomic

data. Various reverse engineering methods have been proposed in the

literature, and it is important to understand their relative merits and

shortcomings. In the present paper, we compare the accuracy of recon-

structing gene regulatory networks with three different modelling

and inference paradigms: (1) Relevance networks (RNs): pairwise

association scores independent of the remaining network; (2) graphical

Gaussian models (GGMs): undirected graphical models with

constraint-based inference, and (3) Bayesian networks (BNs): directed

graphical models with score-based inference. The evaluation is carried

out on the Raf pathway, a cellular signalling network describing the

interaction of 11 phosphorylated proteins and phospholipids in

human immunesystemcells.Weuseboth laboratorydata fromcytome-

try experiments as well as data simulated from the gold-standard net-

work.We also compare passive observationswith active interventions.

Results:OnGaussian observational data, BNs andGGMswere found

tooutperformRNs.Thedifference inperformancewasnotsignificant for

thenon-linearsimulateddataandthecytoflowdata, though.Also,wedid

not observe a significant difference between BNs andGGMs on obser-

vational data in general. However, for interventional data, BNs outper-

formGGMsandRNs, especially when taking the edge directions rather

than just theskeletonsof thegraphs intoaccount.This suggests that the

higher computational costs of inference with BNs over GGMs and RNs

are not justified when using only passive observations, but that active

interventions in the form of gene knockouts and over-expressions

are required to exploit the full potential of BNs.

Availability: Data, software and supplementary material are available

from http://www.bioss.sari.ac.uk/staff/adriano/research.html.

Contact:adriano@bioss.ac.uk,dirk@bioss.ac.uk,Grzegorc@statistik.

uni-dortmund.de

1 INTRODUCTION

Traditional approaches to systems biology are based on a mathe-

matical description of putative pathways in terms of coupled differ-

ential equations with the objective to obtain a deeper understanding

of the exact nature of the regulatory circuits and their regula-

tion mechanisms. However, the availability of high-throughput

postgenomic data has recently prompted substantial interest in

reverse engineering the networks and pathways in an inferential

way from the data themselves. One of the first seminal papers pro-

moting this approach aimed to learn gene regulatory networks in

Saccharomyces cerevisiae from gene expression profiles with

Bayesian networks (Friedman et al., 2000). Since then, several

authors have applied Bayesian networks to infer regulatory networks

from postgenomic data of different nature (for instance, Imoto et al.,
2003a; Nariai et al., 2005). Various alternative methods, like rele-

vance networks (Butte and Kohane, 2003) and graphical Gaussian

models (Schäfer and Strimmer, 2005a) have been proposed and

applied to the inference of gene regulatory networks from gene

expression data. Given the diversity of proposed reverse engineering

methods, it is important for the systems biology community to obtain

a better understanding of their relative strengths and weaknesses.

One of the first major evaluation studies was carried out by

Smith, et al. (2002). The authors simulated a complex biological

system at different levels of organization, involving behaviour, neu-

ral anatomy, and gene expression of songbirds. They then tried to

infer the structure of the known true genetic network from the simu-

lated gene expression data with Bayesian networks. In a related

study, Husmeier (2003) evaluated the accuracy of reverse engineer-

ing gene regulatory networks with Bayesian networks from data

simulated from realistic molecular biological pathways, where the

latter were modelled with a system of coupled differential equations.

This network was also used in an earlier study by Zak et al. (2001),
who investigated the inference accuracy of deterministic linear

and log-linear models. While all three papers shed some light on

the accuracy of reconstructing regulatory networks, they only

investigated a particular inference method and do not include a

cross-method comparison.

In order to address this shortcoming, an extensive evaluation

study was carried out by Pournara (2005). The author compared

graphical Gaussian models and Bayesian networks on synthetic data

generated from networks with random structures and different gene

regulation mechanisms, where the latter differed with respect to the

cooperative or competitive interactions between transcription fac-

tors regulating the same gene. The approach we present in our paper

is motivated by Pournara (2005) and complements this work in

four important respects. First, the learning algorithm for Bayesian

networks has been improved. In order to capture the uncertainty

inherent in learning from sparse and noisy data, we sample network�To whom correspondence should be addressed.
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structures from the posterior distribution with MCMC. This

approach is methodologically more consistent than the optimization

scheme applied in Pournara (2005). For the practical realization, we

apply a novel sampling strategy based on node orders (Friedman

and Koller, 2003), which achieves faster mixing and convergence

than conventional sampling in the space of network structures

(Madigan and York, 1995). Second, we use improved inference

methods for graphical Gaussian models. The approach adopted

in Pournara (2005) is based on the PC algorithm of Spirtes et al.
(2001). In the present work, we apply a more recent algorithm

proposed by Schäfer and Strimmer (2005b), which the authors

have developed after extensive experimentation with methods for

stabilizing covariance matrix estimations (Schäfer and Strimmer,

2005a). Third, we include another reverse engineering method in

our comparison: the approach of relevance networks proposed by

Butte and Kohane (2000, 2003). This approach is appealing owing

to its low computational costs, and we investigate to what extent the

results can be improved with the more complex alternative algo-

rithms mentioned above. Fourth, rather than evaluating the perfor-

mance on randomly generated network structures, we base our

comparison on the Raf pathway, a critical protein signalling net-

work involved in regulating cellular proliferation in human immune

system cells (Sachs et al., 2005). Our evaluation exploits four types
of data, distinguishing between passive observations and active

interventions, and using data from both laboratory experiments

as well as synthetic simulations. We have organized our paper as

follows. After a brief review of the methods evaluated in our study

(Section 2), we describe the data (Section 3) and simulation studies

(Section 4) and justify our evaluation procedure (Section 5). We

present our results in Section 6, followed by a discussion (Section 7)

and the final conclusions (Section 8). Owing to space restrictions,

some results, discussions and elaborations have been relegated to

the Supplementary Material.

2 METHODS

We review briefly the three methods compared in our study. We conceive of

a network as a generic interaction between nodes. Depending on the nature of

the biological problem, these nodes may represent genes, proteins, metabo-

lites, etc. The nodes are associated with experimentally observed measure-

ments, like gene expression levels, protein concentrations or metabolic

profiles.

2.1 Relevance Networks (RNs)

Themethod of RNs, proposed by Butte and Kohane (2000, 2003), is based on

pairwise association scores. These scores are computed for all pairs of nodes

from the signals associated with the nodes. The authors propose the mutual

information and the Pearson correlation as appropriate association scores.

This approach is straightforward to implement, and its computational costs

are comparatively low. The principled disadvantage of RNs, however, is that

the inference of an interaction between two nodes is not done in the context

of the whole system. Consequently, we expect that RNs are not particularly

powerful in distinguishing between direct (Fig. 1, left) and indirect (Fig. 1,

centre) interactions.

2.2 Graphical Gaussian models (GGMs)

GGMs are undirected probabilistic graphical models that allow the identi-

fication of conditional independence relations among the nodes under the

assumption of a multivariate Gaussian distribution of the data. The inference

of GGMs is based on a (stable) estimation of the covariance matrix of this

distribution. The element Cik of the covariance matrix C is related to the

correlation coefficient between nodes Xi and Xk. A high correlation coeffi-

cient between two nodes may indicate a direct interaction (Fig. 1, left), an

indirect interaction (Fig. 1, centre right) or a joint regulation by a common

(possibly unknown) factor (Fig. 1, centre left). However, only the direct

interactions are of interest to the construction of a regulatory network. The

strengths of these direct interactions are measured by the partial correlation

coefficient rik, which describes the correlation between nodes Xi and Xk

conditional on all the other nodes in the network. From the theory of normal

distributions it is known that the matrix of partial correlation coefficients rik
is related to the inverse of the covariance matrix C,C�1 (with elements C�1

ik )

(Edwards, 2000):

rik ¼ � C�1
ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C�1
ii C�1

kk

q ð1Þ

To infer a GGM, one typically employs the following procedure. From the

given data, the empirical covariance matrix is computed, inverted and the

partial correlations rik are computed from (1). The distribution of j rik j is

inspected, and edges (i, k) corresponding to significantly small values of

j rik j are removed from the graph. The critical step in the application of this

procedure is the stable estimation of the covariance matrix and its inverse. In

the present evaluation study, we apply the method of Schäfer and Strimmer

(2005b). The authors propose a novel covariance matrix estimator regular-

ized by a shrinkage approach after extensively exploring alternative regu-

larization methods based on bagging (Schäfer and Strimmer, 2005a).

2.3 Bayesian networks (BNs)

BNs are directed graphical models for representing probabilistic relation-

ships between multiple interacting entities. Formally, a BN is defined by a

graphical structure M, a family of (conditional) probability distributions F

and their parameters q, which together specify a joint distribution over a set

of random variables of interest. The graphical structureM of a BN consists of

a set of nodes and a set of directed edges. The nodes represent random

variables, while the edges indicate conditional dependence relations. If

we have a directed edge from node A to node B, then A is called the parent

of B, and B is called the child of A. The structure M of a BN has to be a

directed acyclic graph (DAG), i.e. a network without any directed cycles.

This structure defines a unique rule for expanding the joint probability in

terms of simpler conditional probabilities. Let X1, X2, . . . ,Xn be a set of

random variables represented by the nodes i 2 {1, . . . , n} in the graph, define
pa [i] to be the parents of node Xi, and let Xpa[i] represent the set of random

variables associated with pa[i]. Then

PðX1‚ . . .‚XnÞ ¼
Yn
i¼1

PðXi jXpa½i�Þ: ð2Þ

When adopting a score-based approach to inference, our objective is to

sample model structures M from the posterior distribution

PðM jDÞ / PðD jMÞPðMÞ ð3Þ

Fig. 1. Elementary interaction patterns. Left: Direct interaction between two

nodes. Centre left: Regulation of two nodes by a common regulator. Centre

right: Signalling chain via an intermediate regulator. Right: Coregulation of a

node by two regulators (v-structure).
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which requires a marginalization over the parameters q:

PðD jMÞ ¼
Z

PðD j q‚MÞPðq jMÞ dq ð4Þ

If certain regulatory conditions, discussed in Heckerman (1999), are sat-

isfied and the data are complete, then the integral in (4) is analytically

tractable. Two function families F that satisfy these conditions are the

multinomial distribution with a Dirichlet prior Heckerman et al., 1995)
and the linear Gaussian distribution with a normal-Wishart prior (Geiger

and Heckerman, 1994). The resulting scores P(D jM) are usually referred to

as the BDe (discretized data, multinomial distribution) or the BGe (continu-

ous data, linear Gaussian distribution) score. Direct sampling from the pos-

terior distribution (3) is analytically intractable, though. Hence, a Markov

Chain Monte Carlo (MCMC) scheme is adopted (Madigan and York, 1995),

for which an efficient proposal algorithm based on node orders has recently

been proposed (Friedman and Koller, 2003). The final note in this brief

summary concerns the problem of equivalence classes. Two Bayesian net-

works are equivalent if they show alternative ways of representing the same

set of conditional independence relations. For instance, the two central-

graphs in Figure 1 represent the same independence relation, namely,

that nodes A and C are conditionally independent given B. This relation

is different from the one shown on the right, where the two parent nodes are

marginally independent—but conditionally dependent given the child. In

general, it can be shown that networks are equivalent if they have the same

skeleton and the same v-structure, where the latter denotes a configuration of

two directed edges converging on the same node without an edge between

the parents (Chickering, 1995). An equivalence class can be uniquely rep-

resented by a partially directed acyclic graph (PDAG), which is a graph that

contains both directed and undirected edges with the former indicating that

all network in the class concur about that edge direction. For instance, the

PDAG corresponding to Figure 1 is a network in which all edges are undi-

rected, except for the two edges in the v-structure on the right. For a more

detailed discussion, see Chickering (1995).

2.4 Observational versus interventional data

Modern molecular biology possesses an extensive inventory of techniques

for targeted interventions, for instance, knocking genes down with RNA

interference or transposon mutagenesis. The consequence is that targeted

nodes are no longer subject to the internal dynamics of the system under

investigation, and the respective terms have to be excluded from the expan-

sion in (2). This may break the symmetries within the equivalence classes;

while equivalent structures have equal posterior probabilities under passive

observations, this no longer holds when subjecting the system to external

interventions. Consequently, edge directions that are ambiguous under

passive observations can be retrieved, and this forms the basis for learning

putative causal interactions; see Pe’er et al. (2001) and Pournara and

Wernisch (2004) for further details.

2.5 Comparison between the methods

GGMs and BNs potentially distinguish between direct and indirect interac-

tions and therefore provide a more powerful modelling approach than RNs.

BNs have the potential to present a more refined picture of interactions

among nodes than GGMs owing to the directed nature of the edges; see

the Supplementary Material for more details. Moreover, the inference pro-

cedure we adopt for learning BNs is score-based and more complex than the

constraint-based approach adopted for GGMs [see Pournara (2005) for a

comprehensive exposition of the difference between these two learning

paradigms]. The latter approach aims to ‘explain away’ an observed cor-

relation between two nodes by testing whether this correlation is not the

effect of a regulation by other nodes. To this end, the partial correlations

are computed, that is, the correlations conditional on all the other nodes in

the system. This approach does not take into account whether network

configurations that explain away these correlations are truly present. The

score-based approach is in principle more powerful in that it marginalizes

over all possible network configurations. However, the respective integral is

analytically intractable, and the numerical approximation with MCMC is

computationally expensive. In fact, the robust estimation of a rank-deficient

covariance matrix proposed by Schäfer and Strimmer (2005b) turns

constraint-based inference with GGMs into an extremely fast and attractive

approach. Hence, the objective of the present study is to investigate whether

the application of the more complex score-based approach to learning BNs is

of any practical benefit for reverse engineering gene regulatory networks.

3 DATA

We base the evaluation of the three reverse engineering methods

(RNs, GGMs and BNs) on the Raf signalling network, depicted in

Figure 2. Raf is a critical signalling protein involved in regulating

cellular proliferation in human immune system cells. The deregu-

lation of the Raf pathway can lead to carcinogenesis, and the path-

way has therefore been extensively studied in the literature (e.g.

Sachs et al., 2005; Dougherty et al., 2005).We use four types of data

for our evaluation. First, we distinguish between passive observa-

tions and active interventions. Second, we use both real laboratory

data as well as synthetic simulations. This combination of data

is based on the following rationale. For simulated data, the true

structure of the regulatory network is known; this allows us, in

jnk

Fig. 2. Raf signalling pathway. The graph shows the currently accepted signalling network, taken from Sachs et al. (2005). Nodes represent proteins, edges

represent interactions and arrows indicate the direction of signal transduction. In the interventional studies, the following nodes were targeted. Activations: PKA

and PKC. Inhibitions: PIP2, AKT, PKC and MEK.

Comparative evaluation of reconstructing networks

2525

 at FundaÃ
§Ã

£o U
niversidade do R

io G
rande on N

ovem
ber 20, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


principle, to faithfully evaluate the prediction results. However, the

model used for data-generation is a simplification of real molecular-

biological processes, and this might lead to systematic deviations

and a biased evaluation. The latter shortcoming is addressed using

real laboratory data. In this case, however, we ultimately do not

know the true signalling network; the current gold-standard might

be disputed in light of future experimental findings. By combining

both approaches, we are likely to obtain a more reliable picture

of the performance of the competing methods. Below, we

will briefly summarize the main features of the data. For space

restrictions we relegate a more detailed description to the

Supplementary Material.

3.1 Linear Gaussian distribution

A simple synthetic way of generating data from the gold standard

network of Figure 2 is to sample them from a linear-Gaussian

distribution. The random variable Xi denoting the expression of

node i is distributed according to

Xi � N
�X

k

wikxk‚s
�
‚ ð5Þ

where N(.) denotes the Normal distribution, the sum extends over all

parents of node i, and xk represents the value of node k. We set the

standard deviation to s ¼ 0.1, sampled the interaction strength

jwik j from the uniform distribution over the interval [0.5,2], and

randomly varied the sign of wik. For simulating (noisy) interven-

tions, we replaced the conditional distribution (5) by the following

unconditional distributions. For inhibitions, we sampled Xi from a

zero-mean Gaussian distribution, N(0,s). For activations, we sam-

pled Xi from the tails of the empirical distribution of Xi, beyond the

2.5 and the 97.5 percentiles.

3.2 Realistic non-linear simulation

A more realistic simulation of data typical of signals measured in

molecular biology is the following approach. The expression of a

gene is controlled by the interaction of various transcription factors,

which may have an inhibitory or activating influence. Ignoring time

delays inherent in transcription and translation, these interactions

can be compared with enzyme–substrate reactions in organic chem-

istry. From chemical kinetics it is known that the concentrations of

the molecules involved in these reactions can be described by a

system of ordinary differential equations (ODEs) (Atkins, 1986).

Assuming equilibrium and adopting a steady-state approximation, it

is possible to derive a set of closed-form equations that describe the

product concentrations as non-linear (sigmoidal) functions of com-

binations of substrates. However, instead of solving the steady-state

approximation to ODEs explicitly, as pursued in Pournara (2005),

we approximate the solution with a qualitatively equivalent com-

bination of multiplications and sums of sigmoidal transfer func-

tions. The resulting sigma–pi formalism has been implemented

in the software package Netbuilder (Yuh et al., 1998, 2001),

which we have used for simulating the data from the gold standard

Raf networks (see Supplementary Material for further information).

To model stochastic influences, we subjected all nodes to additive

Gaussian noise, and repeated the simulations for three different

noise levels. Interventions were simulated by drawing values

from a peaked Gaussian distribution (s ¼ 0.01) around the maxi-

mum (activation) and minimum (inhibition) values of the domain.

3.3 Cytometry data

Sachs et al. (2005) have applied intracellular multicolour flow

cytometry experiments to quantitatively measure protein expression

levels. Data were collected after a series of stimulatory cues and

inhibitory interventions targeting specific proteins in the Raf path-

way. A summary is given in the caption of Figure 2; see Sachs et al.
(2005) for a more detailed description. The data are available from

the following website: http://www.sciencemag.org/cgi/content/full/

308/5721/519/DC1.

3.4 Dataset size

Flow cytometry allows the simultaneous measurement of the pro-

tein expression levels in thousands of individual cells. Sachs et al.
(2005) have shown that for such a large dataset, it is possible to

reverse engineer a network that is very similar to the known gold

standard Raf signalling network. However, for many other types of

current postgenomic data, such abundance of data is not available.

We therefore sampled the data of Sachs et al. (2005) down to 100

data points; this is a representative figure for the typical number of

different experimental conditions in current microarray experi-

ments. We averaged the results over five independent samples.

We used the same sample size and the same number of replications

for the synthetic data. For observational data, all nodes were unper-

turbed. Interventional data were obtained by perturbing each of the

six target nodes (described in the caption of Fig. 2) in turn, taking 14

measurement for each type of intervention, and including a further

set of 16 unperturbed measurements.

4 SIMULATIONS

As opposed to GGMs, RNs and BNs do not require the assumption

of a Gaussian distribution. However, deviations from the Gaussian

incur an information loss as a consequence of data discretization

(mutual information for RNs, BDe score for BNs). Alternatively,

when avoiding the discretization with the heteroscedastic regression

approach of Imoto et al. (2003b), the integral in (4) becomes ana-

lytically intractable and has to be approximated. It would obviously

be interesting to evaluate the merits and shortcomings of these non-

linear approaches. However, the main objective of the present study

is the comparison of three modelling paradigms: (1) pairwise asso-

ciation scores independent of all other nodes (RNs), (2) undirected

graphical models with constraint-based inference (GGMs) and

(3) directed graphical models with score-based inference (BNs).

To avoid the perturbing influence of additional decision factors,

e.g. related to data discretization, and to enable a fair comparison

with GGMs, we use the Gaussian assumption throughout. To mini-

mize the deviation from this assumption, we subjected the data to a

quantile normalization, ensuring that all marginal distributions of

individual nodes were Normal.

Applying the Gaussian assumption to BNs, with the normal-

Wishart distribution as a conjugate prior on the parameters, the

integral in (4) has a closed-form solution, referred to as the BGe

score. Details are given in Geiger and Heckerman (1994). The score

depends on various hyperparameters, which can be interpreted as

pseudocounts from a prior network. To make the prior probability

over parameters—P(q jM) in Equation (4)—as uninformative as

possible, we set the prior network to a completely unconnected

graph with an equivalent sample size as small as possible subject

to the constraint that the covariance matrix is non-singular. For the

A.V.Werhli et al.
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prior over network structures—P(M) in Equation (3)—we followed

Friedman and Koller (2003) and chose a distribution that is uniform

over parent cardinalities subject to a fan-in restriction of 3. We

carried out MCMC over node orders, as proposed in Friedman

and Koller (2003). To test for convergence, each MCMC run

was repeated from two independent initializations. Consistency

in the marginal posterior probabilities of the edges was taken as

indication of sufficient convergence. We found that a burn-in period

of 20 000 steps was usually sufficient, and followed this up with a

sampling period of 80 000 steps, keeping samples in intervals of 200

MCMC steps. For RNs, we computed the pairwise node associa-

tions with the Pearson correlation. We computed the covariance

matrix in GGMs with the shrinkage approach proposed by Schäfer

and Strimmer (2005b), choosing a diagonal matrix as the shrinkage

target. Note that this target corresponds to the empty prior network;

hence the effect of shrinkage is equivalent to the selected prior for

the computation of the BGe score in BNs. The practical computa-

tions were carried out with the software provided by Schäfer and

Strimmer (2005b). The MCMC simulations were carried out with

our ownMATLAB programs, which are available from our website.

5 EVALUATION

While the true network is a directed graph, our reconstruction meth-

ods may lead to undirected, directed, or partially directed graphs. To

assess the performance of these methods, we apply two different

criteria. The first approach, referred to as the undirected graph

evaluation (UGE), discards the information about the edge direc-

tions altogether. To this end, the original and learned networks are

replaced by their skeletons, where the skeleton is defined as the

network in which two nodes are connected by an undirected edge

whenever they are connected by any type of edge. The second

approach, referred to as the directed graph evaluation (DGE), com-

pares the predicted network with the original directed graph. A

predicted undirected edge is interpreted as the superposition of

two directed edges, pointing in opposite directions.

Each of the three reverse engineering methods compared in our

study leads to a matrix of scores associated with the edges in a

network. These scores are of different nature: correlation coeffi-

cients for RNs, partial correlation coefficients for GGMs and mar-

ginal posterior probabilities for BNs. However, all three scores

define a ranking of the edges. This ranking defines a receiver opera-

tor characteristics (ROC) curve, where the relative number of true

positive (TP) edges is plotted against the relative number of false

positive (FP) edges. Ideally, we would like to evaluate the methods

on the basis of the whole ROC curves. Unfortunately, this approach

would not allow us to concisely summarize the results obtained

from applying several methods to many datasets. We therefore

pursued two different approaches. The first approach is based on

integrating the ROC curve so as to obtain the area under the curve

(AUC), with larger scores indicating, overall, a better performance.

While this approach does not require us to commit ourselves to the

adoption of any (arbitrary) decision criterion, it does not lead to a

specific network prediction. It also ignores the fact that, in practice,

one is particularly interested in the performance for low FP rates.

Our second performance criterion, hence, is based on the selection

of a threshold on the edge scores, from which a specific network

prediction is obtained. The question, then, is how to define this

threshold. Schäfer and Strimmer (2005a) discuss a method for

converting the (partial) correlation coefficients of RNs and

GGMs into q-values [i.e. p-values corrected for multiple testing;

see Storey and Tibshirani (2003)] and ‘posterior probabilities’.

However, these posterior probabilities are not equivalent to those

defined for BNs. Imposing the same threshold on both leads to

different rates of TPs and FPs, and hence different operating points

on the ROC curves. We also found that controlling the false

discovery rate at the typical value of q ¼ 0.05 turned out to be

too conservative; the numbers of predicted edges were very low, and

sometimes zero. We therefore chose the threshold such that it led

to a fixed count of five FPs. This procedure is guaranteed to

compare the competing methods at the same operation point on

the ROC curves, and the evaluation can therefore simply be

based on the TP counts.

6 RESULTS

For a concise summary, we present our results visually in terms

of scatter plots. A complete set of tables is available from our

supplementary material.

Figure 3 compares the performance of BNs and GGMs on the

synthetic Gaussian data and the protein concentrations from

the cytometry experiment. The two panels on the left refer to the

Gaussian data. Without interventions, BNs and GGMs achieve a

similar performance in terms of both AUC and TP scores. Inter-

ventions lead to improved predictions with BNs. As a consequence

of interventions, the number of correctly predicted undirected edges

increases slightly from 15.8 to 18.5; this is not significant, though

(p ¼ 0.097). However, the number of correctly predicted directed

edges shows a significant increase from 4.9 to 18.4 (p < 10�4). On

the intervened data, BNs outperform GGMs, and this improvement

is significant when the edge directions are taken into account

(AUC: p ¼ 0.0002, TP: p ¼ 0.0005).

The two columns on the right of Figure 3 summarize the results

obtained for the cytometry data. Without interventions, GGMs and

BNs show a similar performance. As a consequence of interven-

tions, the performance of BNs improves, but less substantially than

for the Gaussian data. For instance, the number of correctly pre-

dicted directed edges increases from 3.3 to 6.9, which is just sig-

nificant (p ¼ 0.013). With interventions, BNs tend to outperform

GGMs. This improvement is only significant for the DGE-TP score,

though (p ¼ 0.007); while the UGE-AUC score for BNs is consis-

tently better than for GGMs, its p-value of 0.055 is above the

standard significance threshold.

To obtain a deeper understanding of the models’ performance, we

applied them to the non-linear simulated data (Netbuilder) with

different noise levels. The results are shown in Figure 4. When

comparing the performance of BNs and GGMs on observational

data, we observe the following trend. For low noise levels, GGMs

slightly outperform BNs, although this difference is only significant

for the DGE-TP score (p ¼ 0.008); all other p-values are >0.05.
When increasing the noise level, the situation is reversed. BNs

outperform GGMs, and the differences are significant for all scores

except for DGE-TP (UGE-AUC: p¼ 0.025, DGE-AUC: p¼ 0.029,

UGE-TP: p ¼ 0.016, DGE-TP: p ¼ 0.067). For large noise levels,

GGMs and BNs show a similar performance, without a significant

difference in any score. Interventions lead to an improvement in

the performance of BNs when taking the edge direction into

account. The improvement is significant in both scores, DGE-TP
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andDGE-AUC, for all noise levels,with p<0.002. The improvement

is most pronounced for the medium noise level, where the number of

correctly predicted edges increases from 7.2 to 17.3 (p � 10�4).

A comparison between GGMs and BNs reveals that with interven-

tions, BNs consistently outperform GGMs when taking the edge

direction into account; all differences are significantwith (p< 0.005).
Figure 2 of the Supplementary Material and Figure 5 compare

the performance of BNs and GGMs with RNs. On the Gaussian

observational data, both GGMs and BNs consistently outperform

RNs. However, there is no significant difference in the performance

of the methods on the nonlinear simulated data (Netbuilder) and the

cytoflow protein concentrations when no interventions are used; in

fact, the DGE-TP scores for BNs are actually worse than those

obtained with RNs (see the next section for a discussion). With

interventions, GGMs outperform RNs on the cytometry data

(UGE: p ¼ 0.001, DGE: p ¼ 0.001), and they obtain higher TP

counts than RNs on the non-linear simulated data (p < 0.0002 for

both UGE and DGE). BNs consistently outperform RNs on all

datasets with respect to all scoring schemes when interventions

are used (p < 0.001).

7 DISCUSSION

Dependence on the noise level. When varying the noise level on the

non-linear simulated data (Fig. 4) we observe that when increasing

the noise level, the performance with BNs first increases, and then

decreases. For instance, the average number of predicted true

undirected edges increases from TP ¼ 11 for s ¼ 0.01 to TP ¼
18 for s ¼ 0.1, and then decreases again to TP ¼ 15.5 for s ¼ 0.3.

To understand this behaviour, consider a parent node that regulates

several children, where the children do not have any direct

interactions; see Figure 1, centre left. Without noise, the response

of each child is a deterministic function of the parent. However, this

implies a deterministic functional relationship between the children.

Consequently, the true network cannot be distinguished from a

network in which all children are connected by edges, and it is

intrinsically impossible to learn the true network. The deterministic

relationship between the children is destroyed by the addition of

noise, which renders, on average, the signal of a child more similar

to that of its parent than that of a sibling. Consequently, some noise

is useful and forms the basis for learning gene regulatory networks

from data. However, when the noise level becomes so large that

it hides the regular signal, successful learning will no longer be

feasible. Hence, we would expect the accuracy of reconstructing

regulatory networks to first increase and then decrease with increas-

ing noise level, and this trend is confirmed in our simulations.

GGMs versus RNs. To better understand the different perfor-

mance of GGMs and RNs, we computed the average posterior

probabilities of the true and false edges from the (partial) cor-

relation coefficients according to the scheme described in Schäfer
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better performance of BNs over GGMs. Each subfigure compares the results obtained from two different data types, using only passive observations (empty

symbols) and including active interventions (filled symbols). Two different evaluation criteria have been applied, based on directed graphs (DGE, represented by

triangles) and their undirected skeletons (UGE, represented by circles). Bottom row: Histograms showing the average AUC scores and TP counts for BNs (filled

bars) and GGMs (empty bars). The codes under the histograms indicate the type of evaluation (UGE versus DGE) and whether observational (Obs) or

interventional (Int) data have been used. Columns: The four columns refer to different data and scoring criteria. Left: Gaussian data, AUC score. Centre left:
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Fig. 4. GGMs versus BNs on data simulated with Netbuilder. This figure compares the performance of GGMs and BNs on the synthetic data generated with
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and Strimmer (2005a). The results are shown in Table 2 of the

Supplementary Material and suggest that GGMs show a clearer

separation of the true and false edges than RNs. This difference

has not translated itself into an improved performance of GGMs

over RNs in terms of AUC and TP scores for the unintervened

non-Gaussian data. The reason is that although the separation

between the scores is poorer for RNs than for GGMs, it has

not affected the ranking of the edges. However, this finding sug-

gests that inference with RNs is less stable than with GGMs. In

fact, for interventions, RNs show a more substantial degradation

in their performance than GGMs; GGMs consistently outperform

RNs on the intervened cytoflow data (p < 0.021), and obtain

significantly higher TP counts on the non-linear simulated data

(p < 10�4).

Interventions for low noise level. The left column of Figure 4

reveals a curious finding for the low-noise scenario: on interven-

tions, the UGE score for BNs deteriorates. As discussed above, the

ability to suppress spurious associations between unconnected

nodes deteriorates for low noise levels. Interventions reduce the

average noise level; so if the noise is already very low, this further

reduction in the noise may lead to the prediction of spurious asso-

ciations. The deterioration of the UGE (as opposed to the DGE)

score can be explained by the fact that a spurious undirected edge is

equivalent to two spurious directed edges (since there are twice as

many directed as undirected edges in the graph), and that the UGE

score does not benefit from any corrections of edge directions that

result from the interventions.

Dependence on the network topology. We investigated the influ-

ence of the network topology as follows. We removed four edges

from the graph to create four v-structures, and reran the whole

analysis. Since undirected graphs intrinsically cannot represent

v-structures, as discussed in the Supplementary Material, we

would expect an increase in the performance of BNs relative to

GGMs. Owing to space restrictions we have relegated the details of

this study to the Supplementary Material. The findings were, over-

all, similar to the results obtained on the original network. On the

observational linear-Gaussian data, the comparison of BNs versus

GGMs showed a significant shift in favour of BNs, with p < 0.05 for

all performance scores; this confirms our hypothesis. There was no

significant difference between the performance scores of BNs and

GGMs on the non-linear data generated with Netbuilder, though.

Learning directed graphs from the cytometry data. BNs obtain

poorer DGE scores on the unintervened cytometry data than RNs

and GGMs, while there is no significant difference in the UGE

scores. This suggests that while BNs learn the skeleton of the net-

work as accurately as GGMs and RNs, some of the edge directions

are systematically inverted. A possible explanation are errors in the

gold standard network. In fact, a recent publication (Dougherty

et al., 2005) reports evidence for negative feedback loops, which

are not included in the gold standard network of Sachs et al. (2005).
Such feedback could explain systematic deviations between the

predicted and the ‘gold standard’ network. Negative feedback is

also known to have a stabilizing effect with respect to interventions;

this might explain why the improvement in the DGE scores for BNs

is less pronounced than for the simulated data. This example points

to a fundamental problem inherent in any evaluation based solely on

real biological data, and illustrates clearly the advantage of our

combined evaluation based on both laboratory and simulated data.

8 CONCLUSION

Our main findings can be summarized as follows. BNs and GGMs

tend to outperform RNs, but the difference is less pronounced for

the non-linear simulated data (Netbuilder) and the measured protein

concentrations (cytometry experiments) than for Gaussian data.

Also, there is insufficient evidence for any significant difference

between BNs and GGMs on observational data. These findings are

different from those reported in Pournara (2005), which seems to

result from the improved inference algorithm for GGMs (Schäfer

and Strimmer, 2005b). However, for interventional data, BNs

outperform GGMs and RNs when taking the edge directions into

account. This suggests that the higher computational costs of infer-

ence with BNs over GGMs and RNs are not justified for passive

observations, but that active interventions in the form of gene

knockouts and over-expressions are required to exploit the full

potential of BNs.
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Schäfer,J. and Strimmer,K. (2005a) An empirical Bayes approach to inferring large-

scale gene association networks. Bioinformatics, 21, 754–764.
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