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Abstract This paper presents a detailed analysis of the
efficiency of software-based techniques to mitigate SEU and
SET in microprocessors. A set of well-known rules is
presented and implemented automatically to transform an
unprotected program into a hardened one. SEU and SET are
injected in all sensitive areas of a MIPS-based microprocessor
architecture. The efficiency of each rule and a combination of
them are tested. Experimental results show the limitations of
the control-flow techniques in detecting the majority of SEU
and SET faults, even when different basic block sizes are
evaluated. A further analysis on the undetected faults with
control flow effect is done and five causes are explained. The
conclusions may lead designers into developing more
efficient techniques to detect these types of faults.
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1 Introduction

The last-decade advances of the semiconductor industry in
transistor dimensions, low voltage supply and high density
integration have led in the to the development of more and
more complex architectures, combining large parallelism
with high frequencies. However, the same technology that
made all these progresses possible has also reduced the
transistor reliability, either by reducing threshold voltages,
node capacitances or tightening the noise margins [5, 11].
These have made transistors more susceptible to faults
induced by radiation interference, which can be caused by
particles from space or secondary particles such as alpha
particles, generated by the interaction of neutron and
materials at ground level [1]. As a consequence, high
reliability applications demand techniques capable of
recovering the system from a fault with minimum imple-
mentation and performance overhead.

One of the major effects that may occur when a single
radiation ionizing particle strikes the silicon is known as
Single Event Effect (SEE). SEE can be destructive and non-
destructive. An example of destructive effect is Single Event
Latchup (SEL) that results in a high operating current, above
device specifications, that must be cleared by a power reset.
Non-destructive effects, also called soft errors, are defined as
a transient effect fault provoked by the interaction of a single
energized particles in drain PN junction of the off-state
transistors. This strike temporally charges or discharges the
upset node of the circuit, generating transient voltage pulses
that can be interpreted as internal signals, thus provoking an
erroneous result [9]. The transient pulse is classified as
Single Event Upset (SEU) when it occurs in a memory cell
or Single Event Transient (SET) when it occurs in a sensitive
node of a combinational logic cell.

Fault tolerance techniques based on software can provide
high flexibility, low development time and low cost
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solutions for computer-based dependable systems, because
modifications in the hardware of the microprocessor are not
required. In addition, new generations of microprocessors
that do not have RadHard hardware versions can be used.
As a result, aerospace applications can use commercial off-
the-shelf (COTS) microprocessors with hardened software.
High efficiency systems called systems-on-chip (SoC), which
usually use COTS microprocessors, are getting more popular
in many applications that require high reliability. Examples of
such systems are data servers, transportation vehicles,
satellites and others. Such systems are composed of a large
number of microprocessors and other cores connected through
a network on chip. (NoC). On such cases, the designers are
responsible for hardening their applications. Therefore, fault
tolerance by means of software-based techniques have been
receiving a lot of attention in the past years.

Software-based fault tolerance techniques exploit infor-
mation redundancy, control flow analysis and comparisons
to detect errors during the program execution. For that
purpose, software-based techniques use additional instruc-
tions in the code area, either to recompute instructions or to
store and to check suitable information in memory
elements. In the past years, tools have been implemented
to automatically insert such instructions into C or assembly
code, reducing significantly the hardening costs.

Related works have pointed out drawbacks of software-
based techniques, such as high overhead in memory and
degradation in performance. Memory increases due to the
additional instructions and often requires memory duplica-
tion. Performance degradation comes from the execution of
redundant instructions [10, 13, 18]. Some results from
random fault injection have shown the impossibility of
achieving complete fault coverage of SEU [3, 4, 6] when
using software-based techniques. But these works do not
correlate the errors with each software-based technique and
their capability of detecting faults. In addition, there is no
study in the literature that analyzes both SEU and SET
faults and correlates the fault location and effects with a
detected or undetected status.

It is well-known that SET is becoming the major issue in
high performance circuits. This behavior is due to the high
probability of capturing SETs when considering a hardware
that operates in a high clock frequency. The analysis of SET
and SEU and the association of each fault tolerant technique
to a set of injected faults is important. Such mapping could
guide designers in order to improve efficiency and detection
rates of soft error mitigation techniques based on software.

In this paper, the authors implement a set of software-
based techniques to harden the execution of algorithms
against SEU and SET faults. Two algorithms were chosen:
matrix multiplication and bubble sort. The microprocessor
being considered in the evaluations that follows is the
miniMIPS [12]. Faults were classified by location and

effect. The implemented techniques target data and control
flow fault tolerance. Results have shown that many faults
that led to control flow error could not be detected by
common and well-know control flow fault tolerance based
techniques. The effect of basic block sizing combined with
software signature was investigated to improve fault
coverage. However, software-based techniques present
limitations on fault detection that cannot be solved without
considering some hardware characteristics. Results high-
light the main vulnerable areas by plotting the upset area
and the detected and non-detected faults for each one. Also,
the unresolved issues were described.

The paper is organized as follows. Section 2 describes
the state-of-the-art. Section 3 presents the case-study
software-based techniques evaluated in this paper. Section 4
presents the fault injection campaign, results and shows the
evaluation of block sizing with signature control and the
limitations on fault detection. Section 5 presents main
conclusions and future work.

2 State-of-the-Art

A set of transformation rules has been proposed in the
literature. In [21], eight rules are proposed, divided in two
groups: (1) aiming data-flow errors, such as data instruction
replication [7, 21] and (2) aiming control-flow errors, such
as Structural Integrity Checking [14], Control-Flow Check-
ing by Software Signatures (CFCSS) [19], Control Flow
Checking using Assertions (CCA) [15] and Enhanced
Control Flow Checking using Assertions (ECCA) [2]. The
proposed techniques can achieve full data-flow fault toler-
ance concerning SEUs. It means that these techniques are
able to detect every fault affecting the data memory that led
the system to a wrong result. On the other hand, control-flow
techniques have not yet achieved full fault tolerance.

Most control-flow techniques divide the program into
basic blocks (BB). A basic block starts at a branch
destination address or at a memory position that follows
the branch instruction. The end of a basic block is at a jump
instruction address, at the beginning of a new basic block or
at the last instruction of the code.

ECCA extends CCA and is capable of detecting all the
inter-BB control flow errors, but is neither able to detect
intra-BB errors, nor faults that cause incorrect decision on a
conditional branch. CFCSS is not able to detect errors if
multiple BBs share the same BB destination address. In [8],
several code transformation rules are presented, from
variable and operation duplication to consistency checks.

Transformation rules have been proposed in the literature
aiming to detect both data and control-flow errors. In [21],
eight rules are proposed, while [17] uses thirteen rules to
harden a program.
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3 The Case-Study Software-based Techniques

In this paper, we address six code transformation rules,
proposed in [3] and based on different fault-tolerant
techniques present in the literature. These rules are divided
into faults affecting the datapath and the controlpath.

3.1 Errors in the Datapath

This group of rules, based on a technique called [20], aims
at detecting the faults affecting the data, which comprises
the whole path between memory elements. For example,
the path between a variable stored in the memory, through
the ALU, to the register bank. Every fault affecting these
paths, as well as faults affecting the register bank or the
memory should be protected with the following rules:

& Rule #1: every variable used in the program must be
duplicated;

& Rule #2: every write operation performed on a variable
must be performed on its replica;

& Rule #3: before each read on a variable, its value and its
replica’s value must be checked for consistency.

Figure 1 illustrates the application of these rules to a
program with three instructions that operates with registers
and memory elements. Instructions 1 and 3 are inserted to
protect the load instruction located in position 2 (ld r1, [r4]),
where the first instruction verifies the register containing the
base address for the load instruction (r4) and its replica (r4').
The second instruction replicates the load instruction, using
the replicated memory position (r4' + offset) and loads the
value into the replicated register (r1'). Instructions 8, 9 and
11 are inserted to protect the store instruction. While
instructions 8 and 9 verify values stored in the base and
data registers (r1 and r2, respectively) against their replicas
(r1' and r2', respectively). Instruction 11 replicates the
original store instruction located in position 10 (st [r1], r2)
using the replicated registers r1' and r2' over a replicated
memory address (r1' + offset).

The original add instruction located in position 6 (add
r1, r2, r4) operates only over registers and therefore does
not need any offset. In order to protect this instruction,
instructions 4, 5 and 7 are inserted. The first two
instructions verify the registers that are read (r2 and r4)
against their replicas (r2' and r4', respectively). Instruction
7 performs the original instruction, but using the replicated
registers (r2' and r4') and writing over the replicated
destination register (r1').

These rules duplicate the data being stored, i.e., the
number of registers and memory addresses. Consequently,
the applications are limited to a portion of the available
registers and memory address. In some cases, compilers can
restrict the application to a small set of registers and
memory addresses, allowing the duplication. If not, the
rules can be applied to a subset of the used registers and
memory positions, but also lowering the fault detection
rates.

3.2 Errors in the Controlpath

This second group of rules, based on [15, 17, 21, 22], aims
at protecting the program’s execution flow. Faults affecting
the controlpath usually cause erroneous jumps, either by
causing a jump to an incorrect address or, in some cases, a
bit-flip in a non-jump instruction, which is interpreted as a
jump instruction. To detect these errors, three rules are
used:

& Rule #4: every branch instruction is replicated on both
destination addresses.

& Rule #5: an unique identifier is associated to each BB in
the code;

& Rule #6: At the beginning of each BB, a global variable
is assigned with the unique identifier of that BB. At the
end of each basic block, the unique identifier is checked
against the global variable.

Branch instructions are more difficult to duplicate than
non-branch instructions. This is due to the fact that they
have two possible paths, since either the branch condition is
true or false. Ùùwhen the condition is false (branch not
taken) the branch can be simply replicated. The new
instruction is added right after the original branch.
Otherwise, when the condition is true (branch taken), the
duplicated branch instruction must be inverted and inserted
on the branch taken addess.

Figure 2 illustrates the rule #4 being applied to a
program code. The conditional branch instruction Branch
if EQual located in position 1 (beq r1, r2, 6) will jump to
instruction 6 if registers r1 and r2 contain the same value.
Initially, the branch will be replicated and inserted right
after the original instruction, in position 2. The original
branch instruction is then inverted and inserted in theFig. 1 Datapath rules #1, #2 and #3
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original branch destination address (5). This is achieved by
using the Branch if Not Equal instruction (bne r1, r2,
error). In this process, the original branch instruction
destination address must be adjusted to the new address
(5, in the hardened code).

The insertion of the replicated inverted branch instruc-
tion may affect other execution flows. For example, the
instruction in position 5 cannot be executed after the add
instruction located in position 3 (add r2, r3, 1). The reason
is that it could modify the value stored in the r2 register and
cause a false fault detection. In order to protect the other
execution flows, the inverted branch must be protected with
the instruction in position 4. Such unconditional branch
does not allow the instruction in position 5 to be executed
after instruction 3, but only after a branch instruction with
destination address pointing to its actual position.

The role of rules #5 and #6 is to detect erroneous jumps
in the code. They achieve this by inserting a unique
identifier to the beginning of basic blocks and checking its
value on its end.

Figure 3 illustrates a program code divided in two BBs.
The first BB contains the instruction located in position 3 of
the hardened code. The second BB contains the instruction
located in positions 6 and 7 of the same code. In order to
apply rule #5 and #6, four instructions are added (positions
2, 4, 5 and 8). The first two protect the first BB by
assigning the unique identifier signature1 to the global
variable rX (mv rX, signature1) and by later verifying its
value when exiting the BB (bne rX, signature1, error).

Note that the original branch instruction located in
position 1 (beq r1, r2, 6) had its destination address
modified from 6 to 5. This change was necessary in order to
jump to the new beginning of the basic block. Instructions 5
and 6 have the same role as instructions 2 and 4,
respectively, but in order to protect the second basic block.

3.3 Hardening Post Compiling Translator Tool

The code transformation to apply a set of rules is a complex
task, which involves code analysis and processing, instruc-
tion replication and address correction. Even the BB

construction (required for some transformation rules) can
be an exhaustive task when performed by hand.

In order to automate the code transformation, we have
built a tool called Hardening Post Compiling Translator
(HPC-Translator). Implemented in Java, the HPC-
Translator tool is able to automatically transform an
unprotected code into a hardened one, by inserting
additional instructions and error subroutines to the soft-
ware. The HPC-Translator receives as input the program’s
machine code and therefore it is compiler and language
independent, but not microprocessor independent.

The tool is then capable of implementing the presented
rules, divided into groups. The first group, called variables,
or VAR, implements rules #1, #2 and #3; the second group,
called inverted branches, or BRA, implements rule #4.
Finally, the third group, referred as signatures, or SIG,
implements rules #5 and #6.

A Graphical User Interface (GUI) allows the user to
combine these techniques. The implemented tool outputs a
machine code, microprocessor dependent, which can be
directly interpreted by the target microprocessor.

Figure 4 shows the HPC-Translator’s workflow. The tool
receives four distinct inputs: the original program code, the
user choices of protection techniques, the instruction set
architecture (ISA) definition and a file describing the
microprocessor’s architecture. Using these inputs, the
HPC-Translator is able to generate a hardened program
code.

4 Fault Injection Experimental Results

The chosen case-study microprocessor is a five-stage
pipeline microprocessor based on the MIPS architecture,
but with a reduced instruction set. The miniMIPS micro-
processor is described in [12]. In order to evaluate both the
effectiveness and the feasibility of the presented
approaches, two applications were chosen: a 6×6 matrix
multiplication and a bubble sort. The matrix multiplication
requires a large data processing combined with only a few
loops. Therefore it uses mostly the datapath of the

Fig. 2 Controlpath rule #4

Fig. 3 Controlpath rules #5 and #6
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microprocessor. On the other hand, the bubble sort
algorithm uses a large number of loops, control registers
and branch instructions. Therefore it uses mostly the
controlpath, since all the data processing is related to the
control registers.

Four hardened programs were generated using the
Hardening Post Compiling Translator, each one imple-
menting the following software-based techniques: (I) SIG,
(II) VAR, (III) BRA and (IV) SIG-VAR-BRA (SIG, VAR
and BRA combined). Tables 1 and 2 show the original and
modified program’s execution time, plus the code and data
sizes from the matrix multiplication and bubble sort
algorithms, respectively.

In order to start the fault injection campaign, 50
thousand faults were injected, in each application, in all
signals of the non-protected microprocessor (including
registered signals), one per program execution run. The
SEU and SET faults were injected directly in the micro-
processor VHDL code by using ModelSim XE/III 6.3c
[16]. SEUs were injected in registered signals, while SETs
were injected in combinational signals, both during one and

a half clock cycle. The fault injection campaign was
performed automatically. At the end of each execution,
the results stored in memory were compared with the
expected correct values. If the results matched, the fault
was discarded. The amount of faults masked by the
program is application related and it should not interfere
with the analysis. So, in the end, only faults not masked by
the application were considered in the analysis. When
100% signal coverage was achieved and at least four faults
per signal were detected we normalized the faults, varying
from four to five faults per signal. Those faults were used to
build the test case list. Using one Intel Q8400 processor
with 8 Gb of memory, the total simulation time was 246 h
for the matrix multiplication and 56 h for the bubble sort.

The faults were also classified by their source and effect
on the system. We defined four groups of fault sources to
inject faults of both SEU and SET types of faults: datapath,
controlpath, register bank and ALU. Program and data
memories were assumed to be protected by Error Detection
and Correction (EDAC) and therefore faults in the
memories were not injected.

The fault effects were classified into two different
groups: program data and program flow, according to the
fault effect. To sort the faults into these groups, we
continuously compared the Program Counter (PC) of two
microprocessors executing: the golden and the faulty
microprocessor. In case of a mismatch, the injected fault
was classified as having a control flow effect. If the faulty’s
PC matched the golden’s, the fault was classified as having
a data effect.

Note that the used miniMIPS has a fault detection
mechanism that resets itself, when a wrong instruction is
fetched. So, faults that may change the instruction opcode
have a control flow effect.

When transforming the program, new instructions were
added and as a result the time in which the faults were
injected changed. Since the injection time is not propor-
tional to the total execution time, we mapped each fault
locating the instruction where the fault was injected (by

Fig. 4 HPC-Translator

Source Original Hardened program versions

I II III IV

Matrix multiplication

Exec. time (ms) 1.24 1.40 2.59 1.30 2.73

Code size (byte) 1,548 3,500 3,704 2,580 5,460

Data size (byte) 524 532 1,048 524 1,056

Bubble sort

Exec. time (ms) 0.23 0.28 0.47 0.24 0.53

Code size (byte) 1,212 2,404 2,664 1,580 3,924

Data Size (byte) 120 128 240 120 248

Table 1 Original and hardened
program’s properties
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locating its new PC) and the pipeline stage where the fault
was manifested. Around 1% of the total number of faults
could not be mapped and were replaced by new faults.

Table 2 contains the results of the fault injection campaign.
The number of injected faults is shown, divided among the
source (controlpath and datapath) and effect (control flow or
data) of each fault. The detection rates of each technique
implemented are also shown in percentage values.

Results presented in Table 2 show that the VAR
technique (II) presented the highest detection rate among
the three. It was capable of detecting all faults that caused
errors with data effects and, in addition, some faults with
control flow effects. More specifically, the faults injected in
the register bank that affected the program flow could be
detected by the VAR technique because those data were
protected. For the matrix multiplication algorithm, this
technique resulted in 2.26 times larger code size and 2.39
times larger execution time. The detection rate was around
77% of the faults (SEU and SET). When applied to the
bubble sort algorithm, a 2.19 times larger code and a 2.04

times larger execution time were observed. The detection
rate was around 84%. On the other hand, techniques (I) and
(III) provided low detection rates and were not capable of
detecting most of the faults causing errors with control flow
effects. While the first (I) achieved a detection rate of 9.1%
and 3.7% for the matrix and bubble sort algorithms,
respectively, the later (III) resulted in a detection rate of
0.8% and 0.5% for the same algorithms, respectively.

When techniques I, II and III were combined into
technique IV, they complemented themselves. The highest
detection rates were achieved, up to 79% with a code size
increase of 3.52 times and execution time increase of 2.1
times for the matrix multiplication algorithm. For the
bubble sort algorithm a detection rate of 88% was achieved,
with an overhead of 3.23 times in program code and 2.12
times in execution time. However, 21% of faults injected in
the matrix multiplication algorithm remained undetected,
while 12% of the injected faults in the bubble sort
algorithm were not detected by any technique. Analyzing
Basic Block Sizing to Improve Fault Coverage

Table 2 Results for SET and SEU fault injection in the matrix multiplication and bubble sort algorithms: percentage of detected faults of
techniques (I) signatures, (II) variables, (III) inverted branches and (IV) signatures, variables and inverted branches combined

Source classification #Data effect faults Fault coverage (%) #Control flow effect faults Fault coverage (%)

Hardened program versions Hardened program version

I II III IV I II III IV

Matrix multiplication

SET Controlpath 83 0 100 0 100 33 6.3 43.8 6.5 45.5

Datapath ALU 8 0 100 0 100 10 0 100 0 100

Reg. Bank 2 0 100 0 100 1 0 100 0 100

Others 9 0 100 0 100 2 0 100 0 100

Total 102 0 100 0 100 46 4.4 60 4.5 60.9

SEU Controlpath 22 0 100 0 100 36 20 34.3 0 42.4

Datapath ALU 1 0 100 0 100 0 – – – –

Reg. Bank 8 0 100 0 100 13 0 100 0 100

Others 5 0 100 0 100 7 16.7 100 0 100

Total 36 0 100 0 100 56 14.8 59.3 0 63.5

Bubble sort

SET Controlpath 24 4.5 100 0 100 89 8 68.9 2.3 80.8

Datapath ALU 5 0 100 0 100 14 0 100 0 100

Reg. Bank 2 0 100 0 100 4 0 100 0 100

Others 9 0 100 0 100 28 0 100 0 100

Total 40 2.2 100 0 100 135 5.3 82.5 1.5 87.9

SEU Controlpath 22 0 100 0 100 81 1.3 68.1 0 71.4

Datapath ALU 0 – – – – 0 – – – –

Reg. Bank 8 0 100 0 100 33 12.1 100 0 100

Others 5 0 100 0 100 19 0 100 0 100

Total 35 0 100 0 100 133 3.8 82.5 0 83.5
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Although the combined rules of technique IV are able to
detect most errors, they could not detect up to 21% of the
injected faults. The reason for that are mainly the following:

& Every incorrect jump from a given basic block to the
same basic block (also known as intra-block jump) will
not be detected. The unique identifier is an invariant
and therefore does not depend on the actual instruc-
tions. The matrix multiplication algorithm stays 83% of
its time in the same BB, which occupies 20% of the
program data. Therefore, causes an increase in the
occurrence of this drawback. Such situation can be seen
on Fig. 5 (1);

& Incorrect jumps to the beginning of a different BB will
not be detected, because the global variable containing
the unique identifier is updated exactly in the beginning
of each basic block. The occurrence of such error is
proportional to the number of basic blocks per
instructions, which is higher in control-flow applica-
tions. Figure 5 (2 and 3) shows this drawback;

& The used microprocessor has a mechanism that per-
forms a system restart (jumps to address 0) when an
inexistent instruction is fetched. This can be seen on
Fig. 5 (3);

& Incorrect jumps to unused memory positions, which are
filled with NOP instructions, result in time out. This
drawback can be seen on Fig. 5 (4).

& Incorrect jumps to branch instructions inside the code
will also not be detected, since such instructions are not
inside a basic block and therefore not protected by the
technique. This drawback can be seen on Fig. 5 (5).

Table 3 shows the amount of undetected faults, which
were organized by effect following the classification: (1),
(2) and (3) and (4) represented in Fig. 5. On data flow

applications, such as the matrix multiplications used as first
case-study in this paper, there are only few large basic
blocks, which are executed during most of the execution
time. In such cases, the effect (1) is more common. On
control flow applications, such as a bubble sort algorithm
used as the second case-study in this paper, the effect (2)
are expected to happen more often, since there are more and
smaller basic blocks. The use of watch-dog can solve the
effect (4), while more complex signatures based on the
program’s execution flow may cope with the effect (2).

However, the effect (1) is still a big issue. Note that more
than 30% of the undetected faults are classified as intra-
block jumps and jumps to the beginning of basic blocks.
Efficient solutions in terms of execution time to those
discussed effects (1), (2) and (3) must be investigated.

As shown in Table 3, up to 7.8% of the undetected faults
caused a system restart (3) due to an exception and up to
36.4% caused jumps to an unused part of the program
memory (4). These faults are not an issue because the
exception handling circuit is already able to detect them.
From the remaining undetected faults, up to 30.7% were an
incorrect jump to the same basic block (1), while up to
71.6% were an incorrect jump to the beginning of a basic
block (2). From the total faults injected, only 1% caused an
incorrect jump to an unprotected branch instruction (5).

According to these results, solutions must focus on two
effects: Same basic block (1) and Beginning of basic block (2).

4.1 Undetected Faults: Jumps to the Same Basic Block

In order to protect the system against this type of faults, one
can think of different basic block sizes to reduce the
number of possible addresses inside the same BB. The BB
maximum size is defined by the branch instructions placed
by the software compiler. Each BB must end before a
branch instruction and start in both possible destination
branch addresses.

An analysis on the original matrix multiplication code
shows a total of 79 basic blocks and 454 instructions, where
the largest basic block has 65 instructions, followed by 36
and 12. Note that, from the 26% of the faults that are
caused by jumps to the same BB, 89.3% were faults in
those large BBs.

Considering the average basic block size of 5.74, the
maximum number of instructions per basic block was set to 4.
This number is increased to 7 when the SIG technique is
applied (the chosen microprocessor requires 2 assembly
instructions to compare a register with a constant). The
program characteristics of BB sizing can be seen on Table 4.

The execution time of the matrix multiplication algo-
rithm protected by SIG using BBs sized by 4 instructions is
2.94 times the one protected using SIG with BB sized by
the maximum allowed. It is also 3.32 times higher than theFig. 5 Control flow effects of undetected faults
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original code. When reducing the BB size to four
instructions, one can see that the code size has also
increased 86%, when compared to the SIG technique
without minimal BB sizing. Similar results were found for
the bubble sort algorithm: increases of 2.67 and 3.26 times
for the execution time and 2.07 times for the code size.

In order to inject faults following the same strategy
presented in Section 3, a new analysis on the effect of each
fault was done and a new set of faults was built. The faults
were randomly injected on the microprocessor without
protection and results were gathered. Faults causing a
wrong system result were selected and normalized to each
signal (around five faults per signal). The faults affecting
the data were then excluded, remaining only the faults
which effect caused an error on the control flow.

Faults causing a system to restart or to jump to unused
memory addresses are easily detected by exception han-
dling circuits. These faults vary from 15% to 40% of the
total faults that manifested a control flow effect. Such faults
should be considered if the system’s detection hardware
could not detect them. Since these faults were detected by

the chosen microprocessor, they will not be considered in
the results.

Table 5 shows that when decreasing the maximum size
of the BBs to four instructions, the number of faults causing
an erroneous jump to the beginning of BBs increased in the
same proportion that the faults causing an erroneous jump
to the same basic block decreased for the matrix multipli-
cation algorithm. For the bubble sort these values remained
unchanged. This means that a tradeoff between the two
types of effects can be achieved, but the detection rate has
not been improved enough (around 5% to 10%) to justify
the overhead penalties in program code and execution time.

4.2 Undetected Faults: Jumps to the Beginning of Basic
Block

Faults causing an incorrect jump to the beginning of a BB
cannot be detected by the SIG technique, since the extra
instructions check only if the last basic block to start is the
first to finish. That means that the SIG do not check the

Type of effects: jumps to SIG technique BB—max. size allowed

Total Undetected faults (%)

Matrix multiplication Same basic block (1) 27 30.7

Beginning of basic block (2) 25 28.4

System restart (3) 3 3.4

Unused memory (4) 33 36.4

Unprotected instructions (5) 1 1.1

Total faults injected 89 100

Bubble sort Same basic block (1) 31 12.8

Beginning of basic block (2) 174 71.6

System restart (3) 19 7.8

Unused memory (4) 18 7.4

Unprotected instructions (5) 1 0.4

Total faults injected 243 100

Table 3 Effects of the
undetected faults responsible to
cause control flow errors
that were not detected by the
SIG technique for the matrix
multiplication and bubble
sort algorithms

Table 4 Original and SIG program’s overhead characteristics for the
matrix multiplication and bubble sort algorithms

Original SIG BB—max.
size allowed

SIG BB—4
instructions

Matrix multiplication

Exec. time (ms) 1.24 1.40 4.12

Code size (byte) 1,548 3,500 6,536

Data size (byte) 524 532 532

Bubble sort

Exec. time (ms) 0.23 0.28 0.75

Code size (byte) 1,212 2,404 4,984

Data size (byte) 120 128 128

Table 5 Effects of the undetected faults responsible to cause control
flow errors that were not detected by the SIG technique when BB is
sized applied to the matrix multiplication and bubble sort algorithms

Type of effects: jumps to SIG BB—max.
size allowed

SIG BB—4-
instruction size

Total % Total %

Matrix
multiplication

Same basic block (1) 27 50.9 20 40

Beginning of basic block (2) 25 47.2 30 60

Unprotected instructions (5) 1 1.9 0 0

Total faults injected 53 100 50 100

Bubble sort Same basic block (1) 31 15 31 16.9

Beginning of basic block (2) 174 84.5 152 82.6

Unprotected instructions (5) 1 0.5 1 0.5

Total faults injected 206 100 184 100

548 J Electron Test (2011) 27:541–550



control flow itself, but the basic block"s consistency.
Therefore, a control flow error that maintains the basic block
consistency, such as an incorrect jump to the beginning of a
basic block or an incorrect path taken by a branch instruction,
cannot be detected by the SIG technique.

This issue is partially solved by [15] using the ECCA
technique. The ECCA technique introduces a new invariant
to each basic block and a two-element queue that keeps
track of the current executing basic block and the possible
next basic blocks (which have the same identifier in order
to fit the two element queue). A few instructions are added
to each basic block in order to manage and check the
queue’s consistency.

Even increasing the detection rate, ECCA cannot
achieve 100% fault coverage in control flow errors, since
it cannot guarantee that a possible path was not incorrectly
taken, such as an incorrect path taken by a branch
instruction. On the other hand, such errors could be
detected by the combination of techniques VAR and BRA.

In order to detect all incorrect jumps to the beginning of
a basic block, a combination of techniques should be
implemented, resulting in a higher overhead in both
program code size and execution time.

5 Conclusion

In this paper, we presented a set of software-based
techniques that rely on groups of transformation rules to
detect soft errors in microprocessors. Then, a tool was
implemented to automatically harden two applications
described in machine code according to the presented
techniques. In order to evaluate both their effectiveness and
feasibility, a set of faults was then built and a fault injection
campaign was performed on the hardened programs.
Results showed that the VAR technique is capable of
achieving a high detection rate, up to 88%, while the SIG
and BRA showed results below expected, with detection
rates up to 9.1%.

The SIG technique was then analyzed and some draw-
backs were found to explain the undetected faults. In order
to further analyze the signature"s undetected faults, a new
software implementation was built. The BBs with more
than four instructions were divided and a new set of faults
was injected. The results showed that the execution time
varies from 2.67 to 2.94 times higher than the original,
while the detection rate increased slightly, varying from 5%
to 10%.

We are currently working on improving the detection rates
of the SIG technique to decrease the overhead impact in
memory and execution time. We are also expanding the set of
applications to a wider and more complex group of
algorithms, such as the LZW, SPEC orVITERBI benchmarks.

As future work, we intend to verify the feasibility and
efficiency of the studied techniques when applied to
microprocessors with different architectures, such as VLIW
and superscalar. We also aim at physical tests, such as
electromagnetic interference (EMI) and radiation cam-
paigns, to confirm the obtained simulation results.
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