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ABSTRACT 

 

 The simplified methods of CEB and of ACI for prediction of deflections of reinforced 

concrete beams are analyzed in this work. Obtained results with those methods are compared 

with those obtained through a nonlinear analysis. Additional deflections due to creep and 

shrinkage are considered in the study. The obtained results indicate that the two simplified 

methods are appropriate for calculation of instantaneous deflections of reinforced concrete 

beams. The method of CEB also supplies good results when creep and shrinkage of concrete 

are considered. However, the method of ACI is not satisfactory for evaluation of long-term 

deflections of reinforced concrete beams. 

 

 

1. INTRODUCTION 

 

Actual design procedures of reinforced concrete structures are based in concepts of 

limit states. They are generally classified as ultimate limit states and serviceability limit states. 

The ultimate limit state refers to the bearing capacity of a structural part or of the structure as 

a whole. The serviceability limit states are associated with the structural performance under 

expected actions in normal conditions of utilization.  

In the verifications of the serviceability limit states, actions are considered with 

characteristic values, which is equivalent to consider partial safety factors equal to one. In the 

same way, mean mechanical properties of the materials are used to evaluate the structural 

rigidity. 

Usually, design codes for reinforced concrete structures require that beam deflections 

are calculated for the quasi-permanent combination of the actions. In each combination, 

permanent action is represented by a single representative value, g . Usually, this value is 

considered as a mean value, which is calculated from nominal dimensions of the structural 

elements. Variable actions are considered with the quasi-permanent value q2ψ , where q  is 

the characteristic value and 12 <ψ . This is the format of CEB-FIP Model Code (1993), for 

example. 

According to the Brazilian code NBR-8681 (ABNT(2003)), for the accidental loads of 

residential buildings and of office buildings, it is necessary to consider 3.02 =ψ . In these 

cases, the quasi-permanent load op  is given by 

 

qgpo 3.0+=                                                                (1) 
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where g  and q  are the characteristic values of the permanent load and the accidental load, 

respectively. 

  In a consistent analysis of reinforced concrete beam, it is necessary to take into 

account the cracking and the tension stiffening effect. Creep and shrinkage of concrete should 

also be considered for calculation of long-term deflection. 

The analysis may be accomplished with different refinement levels, from the nonlinear 

analysis, until the utilization of simplified formulas to represent an equivalent rigidity of the 

cracked beam, as in the simplified method adopted in ACI Code (1995). This method of ACI 

has been adopted in many national codes, as in EHE (1999) of Spain, in NBR-6118 

[ABNT(2004)] of Brazil, and in the codes of several countries of Latin America. 

On the other hand, the CEB (1985) recommends the use of the bilinear method, which 

is adopted in Eurocode 2 (2003) with small modifications. 

The objective of this work is to verify the precision of those two simplified methods, 

which will be named method of ACI and method of CEB. The nonlinear model presented in 

the following section is considered as the reference model. 

 

 

2. NONLINEAR MODEL FOR REINFORCED CONCRETE BEAMS ANALYSIS 

 

The nonlinear model used in this work had its precision demonstrated in previous 

works [Araújo (1991) and Araújo (2003)] and it allows obtaining the probable deflections of 

reinforced concrete beams. 

The stress-strain diagram for concrete subjected to compression is shown in Fig. 1. 
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Fig. 1 – Stress-strain diagram for concrete in uniaxial compression 

 

According to CEB (1993), the compression stress cσ , is given by 
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where coce fEk ε−= ; oc εεη =  and cε  is the compression strain. 

For the strain oε , corresponding to the peak compressive stress cf , the value 

( )ϕε +−= 10022.0o  is adopted, where ϕ  is the creep coefficient. The ultimate strain is 

( )ϕε +−= 10035.0u . 
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The initial modulus of elasticity of concrete, cE , may be estimated from the mean 

compressive strength, cf , by means of relation 

 

( ) 31
1021500 cc fE =                                                                (3) 

where cf  and cE  are given in MPa.  

According to CEB (1993), the mean strength for use in expression (3) may be 

estimated as 

   8+= ckc ff  MPa                                                                (4) 

 

where ckf  is the characteristic compressive strength of concrete, given in MPa. 

 For long-term loading, the total deformation including creep is calculated by using an 

effective modulus of elasticity for concrete, ceE , given by 

 

( )ϕ+= 1cce EE                                                                     (5) 

 

For concrete subjected to tension are adopted the stress-strain diagrams indicated in 

Fig. 2.   
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Fig. 2 – Stress-strain diagrams for concrete in tension 

 

The tensile stress ctσ  is given by 
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where ctε  is the tensile strain and lim,ctσ  is the maximum tensile stress for cracked concrete, 

given by 
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where cctcr Ef=ε  is the cracking strain of concrete for short-term loads. 

The expression (7) takes into account the tension stiffening effects and reproduces the 

experimental results satisfactorily, as it may be verified in Araújo (1991). 

According to CEB (1993), axial tensile strength ctf  may be estimated through the 

expression 
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with ckf  and ctf  given in MPa. 

As it may be observed, the constitutive model is an extension of the effective modulus 

method for the nonlinear case. This model is satisfactory when the history of stress is 

characterized by limited variations during the aging of concrete. When great stress variations 

occur during the aging period, the model may be improved applying the adjusted effective 

modulus method, as in Ghali and Favre (1986) and in CEB (1984). That is equivalent to 

consider an adjusted creep coefficient ζϕϕ =a , where ζ  is the aging coefficient. In the 

practical applications 8.0=ζ  may be adopted. 

In this work 1=ζ  is adopted because it is admitted that the quasi-permanent load op  

doesn't vary along the time. 

 The total strain of concrete, totc,ε , is given by 

 

csctotc εεε σ +=,                                                                      (9) 

 

where σε c  is the stress dependent strain and csε  is the shrinkage strain. 

 Therefore, the stresses in the concrete may be obtained with the previous model 

considering the portion of the strain cstotcc εεε σ −= , . 

 The structural analysis is made by means of the finite element method. The finite 

element used is the classic element for plane frames, with two nodes and three degrees of 

freedom for node. Three Gauss integration points are considered along the finite element 

length, for determination of the nodal nonlinear actions. 

At each integration point the concrete cross-section is discretized in 30=n  layers in 

the height direction. The resistant sectional forces are obtained considering the stresses in the 

reinforcement and in the center of each concrete layer [Araújo (1991)]. 

Using the finite element method, the strain xε  in a generic layer of the cross-section, 

located to a distance z  from centroidal axis of the gross section, neglecting reinforcement, is 

given by 

χεε zxox +=                                                           (10) 

 

where xoε  and χ  represent the axial strain and the curvature, obtained through the nodal 

displacements of the element. 

 The expression (10) supplies the total strains in the concrete, including creep and 

shrinkage. The mechanical strain σε c  is given by   

 

csxoc z εχεε σ −+=                                                         (11) 

 

where izz = , with ni ,...,1= , represents the distance of the center of concrete layer until the 

centroidal axis of gross section. 

After the calculation of the strain σε c , the constitutive model is used to obtain the 

stress in the center of each concrete layer. 

The expression (10) is also used to calculate the strain in each steel layer, being 

enough to use for z  the distance of the steel layer to the centroidal axis of gross section. It is 
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assumed that the reinforcing steel presents a perfect elastic-plastic behavior in tension and in 

compression.  

Using the finite element method it is obtained the displacements of the structure at a 

certain load level. The nonlinear equations system, due to material nonlinearities, is solved 

iteratively using the BFGS method. Small load increments are applied on the beam until the 

rupture occurs. 

Occurrence of the rupture is admitted when the compression strain in the concrete 

results smaller or equal the ( )ϕε +−= 10035.0u , or when the tensile strain in the steel reaches 

the value limits of 010.0 . 

 

 

3. SIMPLIFIED PROCEDURE OF ACI 

 

According to ACI Code (1995), instantaneous deflections of reinforced concrete 

beams, ( )otW , shall be computed with the effective moment of inertia eI , given by 
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where cI = moment of inertia of gross concrete section about centroidal axis, neglecting 

reinforcement; 2I  = moment of inertia of cracked section transformed to concrete; M = 

maximum moment in member at stage deflection is computed; rM  = cracking moment. 

The cracking moment is given by  
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where ty  is the distance from centroidal axis of the gross section, neglecting reinforcement, to 

extreme fiber in tension. 

 Thus, for a rectangular section result the expression 62
ctr fbhM = . 

 For prismatic members, effective moment of inertia eI  may be calculated considering 

the geometrical properties of the critical section. 

 ACI Code adopted different expressions for the modulus of elasticity and for the 

tensile strength of concrete. However, cE  and ctf  will be calculated through the expressions 

(3) and (8) for those properties to be the same in all the analyzed methods. 

 To consider possible material nonlinearities, rigidity is evaluated with the secant 

modulus of elasticity ccs EE 85.0= . Thus, deflections are calculated considering the effective 

rigidity given by ecs IE . 

 Additional long-term deflection, W∆ , resulting from creep and shrinkage, is obtained 

by 

( )otWW
'501 ρ

ξ

+
=∆                                                           (14) 

 

where ( )otW  is the instantaneous deflection caused by the sustained load and ( )bdAs′=′ρ  is 

the compression reinforcement ratio on the critical section. 
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Critical section may be taken at midspan for simple and continuous beams, and at 

support for cantilevers.  

The factor ξ  depends on the duration of the load, being 0.2=ξ , for 5 years or more, and 

4.1=ξ , for 12 months of duration of the load.   

 The total deflection of the beam, W , is given by 

 

( ) WtWW o ∆+=                                                             (15) 

 

 

4. THE BILINEAR METHOD OF CEB 

 

 In the bilinear method (CEB (1985)), the deflection due to load, including creep and 

shrinkage, is given by 

 

( ) 211 WWW ηη +−=                                                        (16) 

 

where 1W  and 2W  are the deflections calculated for uncracked and fully cracked conditions, 

respectively. 

 In order to calculate 1W , it is considered the moment of inertia 1I  of uncracked section 

transformed to concrete. For to obtain 2W , it is considered the moment of inertia 2I  of 

cracked section transformed to concrete. Critical sections are defined as previously. 

 Coefficient η , allowing for tension stiffening effect, is given by 

 

0=η ,   if   rMM <                                                              (17) 

 

 
M

M rβη −=1  ,   if   rMM ≥                                                          (18) 

 

where 0.1=β  for a single short-time loading and 5.0=β  for sustained loads or many cycles 

of repeated loading. 

 Creep may be included by using the effective modulus of elasticity for concrete 

according to expression (5). To consider material nonlinearities, it is adopted the effective 

secant modulus of elasticity cecse EE 85.0= .  

 Shrinkage curvatures 1,csχ , for uncracked sections, and 2,csχ , for cracked sections, 

may be assessed by expressions 
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where csε  is the free shrinkage strain; 1I  and 2I  are the moments of inertia of uncracked and 

cracked section transformed to concrete, respectively; 1S  and 2S  are the first moments of area 

of the reinforcement about centroid of the transformed section in the uncracked and cracked 

stages; csese EE=α is the effective modular ratio. 

 Thus, additional deflections 1,csW  and 2,csW  resulting from shrinkage are obtained by 

integration of the curvatures given in expression (19). For a single span beam, it results  
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where L  is the span of the beam. 

 Finally, 1,csW  and 2,csW  are used in the expression (16) to obtain the additional 

deflection caused by shrinkage. 

 

 

5. EXAMPLES 

 

The reinforced concrete single span beam of constant cross-section shown in Fig. 3 is 

analyzed in this work. The uniform loading is composed by the permanent load g  and by the 

accidental load q . Assuming that gq 15.0≅  and considering the equation (1), it results 

ko pp 90.0= , where qgpk +=  is the total service load on the beam. 
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Fig. 3 – Loading and geometry of the beam 

 

In the analyzed examples, it is admitted that the characteristic compressive strength of 

concrete is 20=ckf MPa. Using the expressions (3) and (4), it is obtained the initial modulus 

of elasticity of concrete 30300=cE MPa. The secant modulus of elasticity is 

2575585.0 == ccs EE MPa. Through the expression (8), it is obtained the tensile strength of 

concrete 22.2=ctf MPa. The creep coefficient is considered equal the 5.2=ϕ  and free 

shrinkage strain is 51050 −−= xcsε .  

The characteristic yield stress of reinforcing steel is 500=ykf MPa and it is assumed a 

modulus of elasticity 200=sE GPa. 

Service loads 10=kp kN/m, 15=kp kN/m and 20=kp kN/m are considered for study. 

Those values represent the service loads that usually act in the beams of the residential 

buildings.  

The steel areas in the beam cross-section are calculated considering partial safety 

factors given in NBR-6118 [ABNT(2004)]. This calculation indicates that 0=′sA  for the three 

cases of loading. Then, 62.0=′sA cm
2
 is adopted as compressive steel. Table 1 indicates the 

loads and steel areas of the three analyzed beams. 

 

Table 1 – Loads and steel areas of the beams 

Load (kN/m) Steel area (cm
2
) Beam 

kp  op  sA  sA′  

B1 10 9.0 2.29 0.62 

B2 15 13.5 3.52 0.62 

B3 20 18.0 4.83 0.62 
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6. RESULTS 

  

The answers of the three beams, obtained with the nonlinear model, with the bilinear 

method of CEB and with the method of ACI, are shown in figures 4 to 6. These figures 

indicate the relationships between the uniform load and the midspan instantaneous deflection. 

It may be observed that there is a good agreement among the three methods in all the 

stages of the loading. In the proximities of the cracking load, the simplified methods of CEB 

and ACI supply a larger initial deflection than the nonlinear model. This happens because the 

steel areas were not included in the calculation of the cracking moment in those simplified 

methods.  

A better adjustment may be obtained, for this loading stage, if the steel areas are 

included in the calculation of the cracking moment rM . However, this stage is not of larger 

importance, because the quasi-permanent load is usually larger than the cracking load, as it is 

observed in figures 4 to 6. 
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Fig. 4 – Curves load-instantaneous deflection for beam B1 
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Fig. 5 – Curves load-instantaneous deflection for beam B2 
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Fig. 6 – Curves load-instantaneous deflection for beam B3 

 

Table 2 indicates the values of the instantaneous deflection for the quasi-permanent 

load op . As it is observed, the two simplified methods agree satisfactorily with the nonlinear 

analysis.    

 

Table 2 – Instantaneous deflection (mm) for the quasi-permanent load 

Method  

Beam Nonlinear CEB ACI 

B1 2.5 4.2 3.6 

B2 6.4 6.5 7.6 

B3 7.8 7.8 9.4 

 

Figures 7 to 9 show the relationships between the load and the midspan total 

deflection, including creep and shrinkage effects. For the method of ACI, coefficients 4.1=ξ  

and 0.2=ξ are considered. 
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Fig. 7 - Curves load-total deflection for beam B1 
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Fig. 8 - Curves load-total deflection for beam B2 
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Fig. 9 - Curves load-total deflection for beam B3 

 

 As it is observed in figures 7 to 9, the bilinear method of CEB agrees very well with 

the nonlinear model for all the analyzed beams. That good agreement is verified for all the 

levels of loading. 

 However, the simplified method of ACI diverges enough of the nonlinear model. 

When the load is small and the beam is in the uncraked state, the method of ACI 

underestimates the total deflection. On the other hand, this method overestimates the total 

deflections for higher loads. In a general way, the total deflection is overestimated for the 

quasi-permanent load. 

  Table 3 indicates the values of total deflection obtained with the three methods for the 

quasi-permanent load op . As it is observed, the method of ACI overestimates the total 

deflection, except for the beam B1 and for the coefficient 0.2=ξ . 
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Table 3 – Total deflection (mm) for the quasi-permanent load 

 

Method  

 

Beam 
Nonlinear CEB ACI 

4.1=ξ  
ACI 

0.2=ξ  

B1 10.9 11.9 8.5 10.6 

B2 13.9 14.4 17.9 22.4 

B3 15.5 16.0 22.2 27.6 

 

 With the values of the tables 2 and 3, it can be obtained the relationships between the 

additional deflection W∆  and the instantaneous deflection ( )otW . Those relationships are 

presented in the Fig. 10.  

As it is observed, the relationship ( )otWW∆  depends on the loading level. Then, the 

expression (14) represents only a rude approach of creep and shrinkage effects in the 

reinforced concrete beams deflections. 
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Fig. 10 - Variation of ∆W/W(to) as a function of the load 

 

 

7. CONCLUSIONS 

 

As a consequence of the results presented, it may be concluded that the bilinear 

method of CEB, as well as the method of ACI, are satisfactory for the evaluation of 

instantaneous deflections of reinforced concrete beams. Both methods may be used for beams 

in the uncracked state and in the cracked state, being obtained good results. 

The bilinear method also supplies good results when creep and shrinkage effects are 

considered. This method may be used for calculation of the total displacements of beams, for 

several stages of the loading. 

However, the method of ACI is not appropriate for evaluation of the total deflections 

of reinforced concrete beams. When this method is used, the following mistakes are expected: 

- In structural elements that behave in an uncracked state, as solid slabs and beams 

submitted to loads of small intensity, the effects of the concrete delayed strains (creep and 

shrinkage) are underestimated. In this case, the design is not reliable in relation to the limit 

state of deformation.   
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- In elements that behave in the cracked state, as most of the beams of buildings, the 

effects of the concrete delayed strains are overestimated. In this case, the design is anti-

economical. 

Besides, the expression (14) is independent of the creep coefficient and of the 

shrinkage strain. That expression was determined empirically, based on a series of 

experimental results (Branson (1971), Yu and Winter (1960)). Consequently, it is only 

appropriate to reproduce the specific conditions adopted in those tests. 

Any general expression for the relationship ( )otWW∆  should take into account the 

following factors:   

- degree of cracking of the beam, measured through the relationship MM r ;   

- steel rates ( )bdAs=ρ  and ( )bdAs′=′ρ ;   

- value of the creep coefficient ϕ ;   

- value of the shrinkage strain csε .   

Consequently, the employment of the method of ACI is not recommended for 

calculation of  deflections of reinforced concrete beams due to creep and shrinkage of 

concrete. 
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