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ABSTRACT. The usage of so-called turbulence closure models within hydrodynamic circulation models comes from the need to adequately describe vertical mixing

processes. Even among the classical turbulence models; that is, those based on the Reynolds decomposition technique (Reynolds Averaged Navier-Stokes – RANS),

there is a variety of approaches that can be followed for the modeling of turbulent flows (second moment) of momentum, heat, salinity, and other properties. Essentially,
these approaches are divided into those which use the concept of turbulent viscosity/diffusivity in the modeling of the second moment, and those which do not use it.

In this work we present and discuss the models that employ this concept, in which the viscosity can be considered constant or variable. In this latter scenario, besides
those that use the concepts of mixture length, the models that use one or two differential transport equations for determining the viscosity are presented. The fact that

two transport equations are used – one for the turbulent kinetic energy and the other for the turbulent length scale – make these latter ones the most complete turbulent

closure models in this category.

Keywords: turbulence modeling, turbulence models, first-order models, first-order turbulent closure.

RESUMO. A descrição adequada dos processos de mistura vertical nos modelos de circulação hidrodinâmica é o objetivo dos chamados modelos de turbulência,

os quais são acoplados aos primeiros. Mesmo entre os modelos clássicos de turbulência, isto é, aqueles que se baseiam na técnica de decomposição de Reynolds

(Reynolds Averaged Navier-Stokes – RANS), existe uma variedade de abordagens que podem ser seguidas na modelagem dos fluxos turbulentos (segundos mo-
mentos) de momentum, calor, salinidade e outras propriedades. Fundamentalmente estas abordagens dividem-se entre aquelas que utilizam o conceito de viscosi-

dade/difusividade turbulenta na modelagem dos segundos momentos, e aquelas que não o utilizam. Nesse trabalho são apresentados e discutidos os modelos que
empregam este conceito, onde a viscosidade pode ser considerada constante ou variável. No caso variável, além daqueles que utilizam o conceito de comprimento de

mistura, são ainda apresentados os modelos que utilizam uma ou duas equações diferenciais de transporte para a determinação da viscosidade. O fato de empregar
duas equações de transporte, uma para a energia cinética turbulenta e outra para a escala de comprimento turbulento, fazem destes últimos os mais completos modelos

de fechamento turbulento desta categoria.

Palavras-chave: modelagem da turbulência, modelos de turbulência, modelos de primeira ordem, fechamento turbulento de primeira ordem.
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Phone: +55(53) 3233-6876 – E-mail: zefran.souza@gmail.com
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32 TURBULENCE MODELING IN GEOPHYSICAL FLOWS – PART I – FIRST-ORDER TURBULENT CLOSURE MODELING

INTRODUCTION

The difficulty in acquiring data in situ – which combines factors
such as the high costs involved, logistics, and access to the site,
among other things – as well as the continued advancement of
computational resources, has turned numerical modeling into an
essential tool for the study of geophysical flows. Additionally,
issues associated with global climate, offshore oil exploration,
environmental management, and other things, increases the de-
mand for data, which also reinforces the importance of numer-
ical modeling for the development of studies addressing these
themes. Ocean circulation, as a fundamental element in the ques-
tions raised above, will have its modeling addressed throughout
this work.

The exchanges of heat and mass through the free surface, the
action of surface and internal waves, the ebb and flow of the tide,
and wind action on the surface, are competing forces which add
complexity to the modeling of oceanic flows and the mixture pro-
cesses involved. The difficulty of reproducing the individual or
joint action of these forces on a laboratory scale explains the great
interest that the numerical simulation of geophysical flows has
aroused in researchers, especially from the 1980s onwards (Mel-
lor & Yamada, 1982; Hassid & Galperin, 1983; Chao & Boicourt,
1986; Chao, 1988; Galperin et al., 1989; Kantha & Clayson, 1994;
Nunes Vaz & Simpson, 1994; Garvin, 1999; Verdier-Bonnet et al.,
1999; Baumert & Peters, 2000; Burchard & Bolding, 2001; Liu
et al., 2002; Warner et al., 2005; Ilicak et al., 2008; Marques et
al., 2009; Canuto et al., 2010; Pimenta et al., 2011; and Palma &
Matano, 2012).

The correct description of vertical mixing processes in hydro-
dynamic circulation models is the function of the so-called turbu-
lence models, which are linked to the former ones. It is interesting
to observe that flows in the internal or external platform or in the
ocean basin, and the circulation within an estuary or cove, un-
der the action of strong or moderate winds, under diurnal surface
warming or nocturnal cooling – in short, in each of these scenar-
ios, it is interesting to observe that the relative importance of the
turbulence production processes due to the shear or the buoyancy,
as well as the destruction process induced by the combined action
of the driving forces, is different, and the correct description of the
mixing processes, in each case, will depend on the efficiency of
the turbulence model (Burchard, 2002).

Various types of turbulent closure models have application in
the numerical modeling of geophysical flows. Empirical models
such as the K Profile Parameterization (KPP), models based on
Reynolds decomposition (known for RANS models), and models
based on Large Eddy Simulation (LES) models are found linked

to various hydrodynamic models currently in use. Due to compu-
tational limitations, the technique of Direct Numerical Simulation
(DNS), in which all the flow measures are solved, is not applica-
ble to geophysical flows which invariably have a higher Reynolds
number. A deeper discussion about KPP can be found in Large
et al. (1994) and Durski et al. (2004); and, for LES and DNS,
in Smagorinsky (1963), Silvestrini (2003), Lesieur et al. (2005),
Martinez (2006), and Pope (2008).

This article aims to present and discuss turbulence models
based on the Reynolds decomposition technique, better known
as Reynolds Averaged Navier-Stokes (RANS). Models of this type
are mostly used in numerical models for geophysical flow simu-
lation (e.g., HYCOM, POM, ROMS, TELEMAC, and others), due
to their simplicity when compared to other types of models (LES
and DNS), as well as their low computational cost (e.g., Sil-
vestrini, 2003).

These models may be subdivided into two groups (Yamada
& Mellor, 1974; Rodi, 1993; Burchard, 2002; Pope, 2008),
as follows: (i) they use the concept of turbulent viscosity/diffu-
sivity; or (ii) they do not use this concept. This paper presents
models from the first group, which can be subdivided into turbu-
lence models with constant turbulent viscosity and variable vis-
cosity (zero-equation models), and other more complex models
that employ one or two differential transport equations (models
with one and two equations) to determine the viscosity.

Numerous studies found in the literature cite the use of these
turbulence models in many geophysical applications. Xing &
Davies (1999), for example, used these models for turbulence
modeling in order to study the influence of the intensity and di-
rection of the wind on the spreading of the plume of wavy water
formed by the discharge of a river into the coastal region. Liu
et al. (2002) also applied these models to simulate the transient
stratification of the estuarine system of the Thanshui river in Tai-
wan. Warner et al. (2005) compared the performance of four tur-
bulent closure RANS type models coupled to a three-dimensional
oceanic circulation model. For this, they conducted some tests,
including one involving estuarine circulation in a long rectangu-
lar channel, forced by river discharge at the head and the tidal
current at the mouth (saline water). Blaise et al. (2007), in turn,
used RANS models in the investigation of the tidal flow around
Rattray Island, in the Great Barrier Reef, in Australia, which gives
rise to vortices in the wake of the motion.

This article is organized as follows: first we present the ba-
sic equations of motion and the Reynolds decomposition tech-
nique. Then, we present the equations of the average flow and the
additional unknowns introduced by the averaging process, and
also discuss the problem of turbulent closure. Subsequently, the
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turbulence models with zero, one and two equations are pre-
sented. Also, the main concepts for parameterization of the un-
known correlations are presented, and finally, the discussion and
concluding remarks.

GOVERNING EQUATIONS
The starting point for the study of turbulence is the equations of
continuity, momentum, and scalar transport, applied to a fluid as-
sumed to be incompressible. The equations are described below.1

Equation of Continuity

∂ũi
∂xi
= 0 (1)

Equation of Momentum

∂ũi
∂t
+ ũj

∂ũi
∂xj
− fũjεij3

= − 1
ρo

∂p̃

∂xi
− ρ̃g
ρo
δ13 + ν

∂2ũi
∂x2j

(2)

Transport Equation

∂ϕ̃

∂t
+ ũj

∂ϕ̃

∂xj
= Γ
∂2ϕ̃

∂x2i
(3)

In these equations, ũ, ṽ, w̃, p̃ and ϕ̃ represent the instan-
taneous values of the components of the velocity, pressure, and
scalar property which could be representing the temperature or
salinity, while ν and Γ are the coefficients of viscosity and molec-
ular diffusion, respectively. The Boussinesq approximation was
implicitly adopted in Equation (2). Equation (1) expresses the
conservation of mass for an incompressible fluid. Starting from
the left, the terms of Equation (2) correspond to: i) local variation,
(ii) advective variation, (iii) Coriolis acceleration (due to the rota-
tion of the Earth), (iv) the pressure gradient term, (v) the buoyancy
term, and (vi) the friction term. The terms on the left hand side of
Equation (3) describe the local variation term and advective term
of the scalar φ, respectively, while the term on the right hand side
corresponds to the diffusion of this scalar.

The equations above are exact and provide the solution at
each point and instant, and, therefore, do not need to (explicitly)
include any turbulence term. This is already solved, or is already
implicitly included in the instantaneous values that appear in the
equations. This set of equations correctly represents any type of
flow, as long as the appropriate boundary and initial conditions
are provided. However, the lack of an analytical solution to these
equations obliges us to resort to numerical resources in order

to achieve such a solution. Although we have numerical proce-
dures for solving Equations (1) to (3), the processing speed and
the storage capacity of computers is still not good enough to al-
low the resolution of any turbulent geophysical flow of practical
interest.

The need to solve practical problems led to the adoption of
an approach introduced by Reynolds, known as the “decomposi-
tion technique” which is widely used in modeling. This technique
consists of separating the instantaneous flow into an average part
or component, (on a large scale) and another floating component
(on a small scale), from which only the global effect on the av-
erage flow will be considered. This procedure will be exemplified
by using the same velocity database as Müller et al. (1998) and
Oliveira (2003), which was obtained by a current measurer an-
chored at latitude 27.54◦S on the axis of the Brazil Current at a
depth of 220 m. Figure 1a shows a segment of the instantaneous
(gross) temporal series of meridional velocity obtained by this in-
strument, which contains a total of 960 pieces of data, stored at
intervals of 2 h and with a total sampling period of 80 days. Fig-
ure 1b shows the same series after 40 h of low pass filtering; that
is, it shows the average value of the current’s meridional veloc-
ity for this time scale. Finally, Figure 1c shows the fluctuations
of this velocity, which were obtained by subtracting the average
value (Fig. 1b) from the instantaneous series (Fig. 1a).

G
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D
.

Figure 1 – Fluctuations in the flow.

The application of this decomposition technique is done in
two steps: (i) the instantaneous variables that appear in the equa-
tions of motion (1) to (3) are decomposed into an average part and
a floating part; and (ii) the average temporal operator is used in
the equations resulting from the previous step, thereby obtaining
the average component of the flow.

1The equations are presented in indicial notation. The reader who is unfamiliar with this notation can refer to sections 1.2 and 1.3 of Schwind (1980).
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EQUATIONS OF AVERAGE FLOW

After the decomposition of the flow into an average part (large
scale) and another floating part (small scale), followed by appli-
cation of the average temporal operator to the resulting equations,
we obtain the equations of average flow, which are presented be-
low. Further details regarding this procedure can be found in Stull
(1988) and Kundu & Cohen (2002).

Equation of Continuity:

∂Ui

∂xi
= 0 (4)

Equation of Momentum

∂Ui

∂t
+ Uj

∂Ui

∂xj
− fUjεij3

= − 1
ρo

∂P

∂xi
− ρg
ρo
δi3 +

∂

∂xj

(
ν
∂Ui

∂xj
− uiuj

) (5)

Heat Transport Equation

∂Θ

∂t
+ Ui

∂Θ

∂xi
=
∂

∂xi

(
Γ
∂Θ

∂xi
− uiθ

)
(6)

Salt Transport Equation

∂S

∂t
+ Ui

∂S

∂xi
=
∂

∂xi

(
Γ
∂S

∂xi
− uis

)
(7)

The variables written with a capital letter represent average
values, while those in lowercase letters represent the fluctuations
around these values. In the equations, ν = 1.0 · 10−6 m2s−1

represents the molecular viscosity of the water, while the molec-
ular diffusivities are given the values Γθ = 1,38 · 10−7 m2s−1

for the heat and Γs = 1,1 · 10−9 m2s−1 for the salt (Burchard,
2002).

It is observed that in the momentum equation (5), after aver-
aging the smaller turbulent fluctuations, the term uiuj remained.
This represents the global effect of the turbulence process on the
average flow, which, when multiplied by the specific mass, ac-
quires the dimensions of stress. The resulting term can be inter-
preted as a turbulent flow of momentum; however, using the sta-
tistical approach for turbulence, it is seen as a correlation of the
velocity fluctuations, a second-order moment, or even as a second
moment.

Although the term uiuj has its origin in the non-linearities
of the inertia terms of Equation (2), it is usually grouped with vis-
cous stress, as shown by the last term on the right hand side of

Equation (5). This is reasonable because the effect of these fluc-
tuations on the average flow is to increase the diffusion of mo-
mentum, a similar role to that played by viscous stress. It should
be noted that uiuj represents nine components of the so-called
Reynolds tensor τij , given by:

τij = ρuiuj = ρ

⎛
⎜⎝ u1u1 u1u2 u1u3

u2u1 u2u2 u2u3

u3u1 u3u2 u3u3

⎞
⎟⎠

It is worth noting that τij is symmetrical, since:

u1u2 = u2u1 u1u3 = u3u1 u2u3 = u3u2

We see then that the Reynolds tensor has only six independent
components. The score of the tensor (i.e., the sum of the elements
of the main diagonal) represents, by definition, twice the turbulent
kinetic energy k defined by,

k =
u21 + u

2
2 + u

2
3

2
(8)

Equations (1) and (2) solve the flow hydrodynamics that
one desires to model (velocity and pressure field), while (3) solves
the scalar transport (distribution of ϕ). It is notable that, with-
out considering the scalar transport, we need to determine the
three components of the velocity ũi and the pressure p̃ in the
hydrodynamic system formed by Equations (1) and (2). There-
fore, this system is closed in the sense that the number of un-
knowns is equal to the number of equations (four). Meanwhile,
in the system of Equations (4) and (5) of the average flow, there
are four equations (averages) and ten unknowns to determine (six
more), because the decomposition technique introduced six new
unknowns: the correlations between the fluctuations of velocity
uiuj . The system is now said to be “open” and the solution will
only be possible if these correlations are determined, or estimated,
in some way that is independent of the system formed by Equa-
tions (4) and (5). The independent determination of these corre-
lations, so that the number of unknowns (ten) adjusts to the num-
ber of available equations (four), is called “closure” or a “closure
problem” of the turbulence.

The determination of the correlations uiuj , uiθ and uis
is the main goal of the “turbulence modeling”. There are sev-
eral techniques for the modeling of these terms, including: (i)
Reynolds decomposition (RANS), whose models may or may not
use the concept of turbulent viscosity/diffusivity; (ii) direct nu-
merical simulation, in which the models solve the 3D equations
for the instantaneous variables (DNS), covering all the turbulence
scales; and (iii) simulation of the large scales of the turbulent flow
(LES), a technique which uses a spatial filter for separating the
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large scales from the small ones, thereby parameterizing the latter
(e.g., Silvestrini, 2003; Martinez, 2006).

The first of these techniques is widely used in the modeling of
geophysical flows, while the others, although reasonably well de-
veloped, have applications limited to areas that are relatively small
in flows with a low Reynolds number. It is worth noting that, in this
study, the RANS models that use the concept of turbulent viscos-
ity/diffusivity will be addressed. Those not using this concept,
because of their greater complexity, will be the subject of Part II
of this work (Souza et al., manuscript submitted for publication).

MODELS BASED ON THE CONCEPT OF TURBULENT
VISCOSITY

The assumption that the Reynolds stresses, which appeared in
Equation (5), are proportional to the deformation of the average
flow, in an analogy with the viscous stresses, led Boussinesq to
propose the concept of a turbulent viscosity, corresponding to
molecular viscosity. He imagined the vortices to be portions of
fluid that collide and exchange quantities of movement among
themselves, just like the molecules in kinetic theory. According
to this theory, the molecular viscosity is proportional to a char-
acteristic velocity of the molecules and the average free path be-
tween the collisions. To complete the analogy, Boussinesq de-
vised a hypothetical viscosity, called apparent or turbulent vis-
cosity, which should be proportional to a typical velocity of the
fluctuations of the turbulent motion and to a typical length of this
motion (e.g., Rodi, 1993). A more detailed discussion of this
analogy can be found in Souza et al. (2011). Despite the imper-
fections of the analogy, most of the turbulence models in use are
based on this concept. As a result, turbulence models which are
based on this concept will be addressed without, and also with
one and with two differential transport equations.

Zero-equation models

Models of this type are very simple and use the concept of tur-
bulent viscosity proposed by Boussinesq in 1877, which was
the first attempt at modeling turbulence. These models are based
on the analogy between the viscous stresses (molecular) and the
Reynolds stresses, and they are expressed by the equations

−uiuj = KM
(
∂Ui

∂xj
+
∂Uj

∂xi

)
− 2
3
kδij (9)

and, for the transport of scalars:

−uiϕ = Kϕ ∂Φ
∂xi

(10)

Use of the turbulent viscosity concept in the turbulence
models, besides introducing some conceptual shortcomings,
such as the fact that this is not a property of the fluid, transfers
the problem of indetermination of the Reynolds stresses to the
problem of indetermination of the turbulent viscosity coefficient.

a) Constant viscosity

Some models use a constant turbulent viscosity coefficient
throughout the area of the flow. In fact, adopting a constant value
for this coefficient and introducing it into Equation (9) does not
quite constitute a turbulence model itself – although this proce-
dure is widely used, mainly to resolve hydraulic problems (e.g.,
Rodi, 1993). In many models, also in accordance with this author,
the turbulence terms in the momentum equations are neglected.
It is worth noting that many times a viscosity coefficient is intro-
duced just to provide numerical stability.

It should be noted that the adoption of constant turbulent vis-
cosity/diffusivity means considering it to be isotropic and homo-
geneous. Sometimes we relax this concept of isotropy and we
consider coefficients that are constant but different in the hori-
zontal and vertical directions. When the turbulent terms signifi-
cantly influence the behavior of the flow, then the adoption of a
constant coefficient denotes a conception that is too crude (e.g.,
Eiger, 1989; Rodi, 1993). The relationship between the turbulent
viscosity and diffusivity coefficients obeys Equation (11),

KH =
KM

σ
(11)

in which σ = Pr is dimensionless and known as a turbulent
Prandtl number for the transport of heat, and φ = Sc is called
the turbulent Schmidt number for the transport of other scalars
(salt, kinetic energy, dissipation rate, and others).

The concept of constant viscosity/diffusivity is most important
in the two-dimensional models (called 2DH models), in which the
equations are averaged in the water column and only the horizon-
tal transport is considered. In these models, the vertical transport
of momentum is represented by the friction stresses on the surface
(τs) and at the bottom (τb) [e.g., Rodi, 1993].

b) Variable viscosity – mixing length models

The first model to consider the possible variation of turbulent
viscosity, and therefore, the first turbulence model itself, was
proposed by Prandtl in 1925 and became known as the Prandtl
mixing length model (e.g., Rodi, 1993). In the kinetic theory of
gases, the viscosity is proportional to a velocity scale V̂ and
a length scale L, with both characterizing large scale turbulent
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�

�

“main” — 2014/8/1 — 12:00 — page 36 — #6
�

�

�

�

�

�

36 TURBULENCE MODELING IN GEOPHYSICAL FLOWS – PART I – FIRST-ORDER TURBULENT CLOSURE MODELING

motion, as shown by the expression

KM ∝ V̂ · L (12)

Based on this, Prandtl postulated that, in (12), V̂ is equal to
the product of the average velocity gradient and the mixing length
�m, and L, the length scale, is the mixing length �m itself (see
Souza et al., 2011). Thus, considering that the average flow oc-
curs in the x-y horizontal plane and that the horizontal velocities,
U and V , vary in the vertical direction z, the turbulent viscosity
coefficient described by (12) will (for three-dimensional flow) be
given by:

KM = �
2
m

√(
∂U

∂z

)2
+

(
∂V

∂x

)2
(13)

It is worth noting that the problem of the indetermination of
KM is now transferred to another turbulent entity, �m, which
needs to be specified. The mixing length should in some way
represent the size of the vortices of the flow which are respon-
sible for the transport of the turbulent kinetic energy. A limitation
of this model is the fact that it only produces acceptable results
for flows having a characteristic dimension (e.g., Eiger, 1989), as
is the case of the flows in large channels or geophysical flows
whose horizontal scale is much larger than the vertical one. In
these cases, the depth represents this characteristic length.

When we approach a wall or bottom (see Fig. 2), the scale of
the mixing length, or the vortices of interest, decreases in such a
manner that it is well accepted that �m = κ · z, with “z” being
the perpendicular distance to the wall and “κ”, the von Karman
constant, equal to 0.4. This expression shows that, when we move
away from the wall, the characteristic size of the vortices grows
and is inclined to do so up to the characteristic size of the flow or
a threshold value, when the wall then fails to exert any influence
on the local turbulence. A ramp model up to 25% of the depth, as
shown in Figure 2, has been used with good results (e.g., Eiger,
1989). From this depth, this model considers the mixing length
to be constant and equal to 0.25H.

Figure 2 – Distribution of the length scale near a surface.

Influence of stratification

Stratification can affect the mixing processes considerably, acting
as a kind of “shock absorber” for the turbulent fluctuations (i.e.,
it inhibits the turbulence) and thus affect the viscosity/diffusivity
coefficients. In the turbulence models this influence is normally
considered through the Richardson gradient number, Ri, which
is defined as (Kundu & Cohen, 2002):

Ri = −g
ρ

∂ρ/∂z

(∂U/∂z)2
(14)

Equation (14), where the “z” axis is vertical and oriented from
the bottom upwards, can be interpreted as a balance between
stabilizing forces of the stratification, which tend to hinder the
processes of turbulent mixing (numerator), and the generating
forces of turbulence (denominator), represented by the vertical
shear of the flow velocity (Souza, 2011). This means that, if the
density increases with the depth, it will be necessary to produce
more turbulence to generate the same mixing intensity, since the
medium will be more stratified and stable in this condition (e.g.,
Eiger, 1989).

If ρS represents the density near the surface, ρF the den-
sity near the bottom, and the numerator of (14) is written in finite
form, then we have:

Δρ

Δz
=
ρS − ρF
Δz

(15)

If the denominator of Equation (14) is kept constant, then the
Richardson gradient number may be interpreted as:

ρS < ρF ⇒ Ri > 0 ⇒ Stable ∴ KM is smaller
stratification

ρS < ρF ⇒ Ri = 0 ⇒ Neutral ∴ KM
stratification

ρS < ρF ⇒ Ri < 0 ⇒ Unstable ∴ KM is greater
stratification

Depending on the type and intensity of the stratification, the
viscosity/diffusivity coefficients need to be corrected. There ex-
ist some proposals for this correction, including that of Munk &
Anderson (1948), apud Nunes Vaz & Simpson (1994):

KM = KMo(1 + 10Ri)
−1/2

KH = KHo(1 + 3.33Ri)
−3/2

(16)

In the expressions of (16), KMo(KHo) is the viscosity
(diffusivity) in neutral stratification conditions (Ri = 0), de-
termined in accordance with Figure 2.
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Equations Unknowns

∂Ui

∂xi
= 0 U, V,W, P

∂Ui

∂t
+ Uj

∂Ui

∂xj
− fUjεij3 = − 1

ρo

∂P

∂xi
− ρg
ρo
δi3 +

∂

∂xj

(
ν
∂Ui

∂xj
− uiuj

)
−uiuj

∂Θ

∂t
+ Ui

∂Θ

∂xi
=
∂

∂xi

(
Γθ
∂Θ

∂xi
− uiθ

)
Θ,−uiθ

∂S

∂t
+ Ui

∂S

∂xi
=
∂

∂xi

(
Γs
∂S

∂xi
− uis

)
S, −uis

−uiuj = KM
(
∂Ui

∂xj
+
∂Uj

∂xi

)
KM

−uiθ = KH ∂Θ
∂xi

and − uis = KH ∂S
∂xi

KH

KM = KMo(1 + 10Ri)
−1/2

KH = KHo(1 + 3.33Ri)
−3/2

KMo = Cte KHo = KMo/σ (∗)

�m (ramp model from Fig. 2) andKMo = �2m

√(
∂U

∂z

)2
+

(
∂V

∂z

)2
(∗∗)

(*) Constant viscosity (**) Variable viscosity

Summary of the equations: The table above presents a sum-
mary of the equations which describe the average flow and the
turbulence model (with the variants: constant viscosity and vari-
able viscosity).

To circumvent the limitation of the zero-equation models,
which do not consider the influence of the turbulence at one point
over others, models were developed that take into account the
transport of characteristic quantities of the turbulence. In these
models, it is necessary to solve one or two differential transport
equations according to whether one or two of these characteristic
quantities is considered. Such models receive the designation of
one-equation models and two-equation models, respectively. The
following topic presents the model that uses only one transport
equation, in which the transported entity is the turbulent kinetic
energy.

Models with one equation

In an analogy with the kinetic theory of gases, the turbulent vis-
cosity should be proportional to a velocity scale and a length scale
[see expression (12)]. Thus, the quantity of greatest physical sig-

nificance for the representation of this velocity scale is the turbu-
lence intensity, defined by

√
k, in which k is the kinetic energy of

the turbulent motion (per unit of mass). In accordance with Equa-
tion (8), one can see that k is a direct measurement of the intensity
of the turbulent fluctuations in the three directions of the motion
(e.g., Rodi, 1993). With this consideration and the introduction of
an empirical constant c, expression (12) takes the following form:

KM = c
√
k ·L (17)

in which c is a proportionality coefficient that provides informa-
tion about the state of stratification in the water column (stable,
unstable, or neutral stratification). This coefficient is called the
damping function or stability function (e.g., Vaz Nunes & Simp-
son, 1994).

Expression (17) is known as the “Prandtl-Kolmogorov model”
because both authors introduced the model independently (e.g.,
Rodi, 1993). Of course, the quantities present in (17) must be
specified in some way. In this model, the distribution of the tur-
bulent kinetic energy is determined by solving a differential trans-
port equation for k, which can be obtained accurately from the
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Navier-Stokes equations which, after some algebraic manipula-
tion, results in the transport equation for the turbulent kinetic en-
ergy. The development of this expression, which is presented be-
low, and the interpretation of its terms, can be found in Chapter 13
of Kundu & Cohen (2002). In this, ρo is the constant reference
density, while ρ′ represents the fluctuations in the density field.

∂k

∂t
+ Uj

∂k

∂xj
=−uiuj ∂Ui

∂xj︸ ︷︷ ︸
Pk

− g
ρo
(uiρ′δi3)︸ ︷︷ ︸
PB

− ∂

∂xj

{
uj

(
uiui
2
+
p

ρo

)
−Γ ∂k
∂xj

}
︸ ︷︷ ︸

D

− ν ∂ui
∂xj

∂ui
∂xj︸ ︷︷ ︸
ε

(18)

Equation (18) – in which k is expressed in J/kg and each term
has the unit W/kg – has on its left hand side the variation rate of
the turbulent kinetic energy. On its right hand side, we have four
terms: (i) the first, Pk, can be interpreted as the production of
turbulent kinetic energy due to the shear of the average flow; (ii)
the term PB corresponds to the production of turbulent kinetic
energy by buoyancy forces; (iii) D may be associated with the
transport of turbulent kinetic energy performed by the forces of
viscous and turbulent origin; and (iv) the term ε represents the
dissipation of the turbulent kinetic energy. This equation is not
used in turbulence models in the exact form, as presented in (18),
because the correlations contained in the terms on its right hand
side are unknown and need to be parameterized (e.g., Rodi, 1993;
Burchard, 2002), which will be presented below.

a) Modeling of the term Pk – using the concept of turbulent vis-
cosity and Equation (9), one can write

Pk = −uiuj ∂Ui
∂xj

= KM

(
∂Ui
∂xj
+
∂Uj
∂xi

)
∂Ui
∂xj
− 2
3
kδij
∂Ui
∂xj

Note that the last term is cancelled because δij = 0 for i �= j
and, when i = j it is the derivative which is cancelled due to the
continuity equation. Thus, the final form of this term is given by

Pk = KM

(
∂Ui

∂xj
+
∂Uj

∂xi

)
∂Ui

∂xj
(19)

b) Modeling of the term PB – this term only exists for i = 3 and
can be written as:

PB = − g
ρo
(uiρ′δi3) = − g

ρo
(wρ′) =

g

ρo

[
KH
∂ρ

∂x

]
(20)

The square of the Brunt-Väissälä frequency, N2, is defined by
N2 = −(g/ρo)∂ρ/∂z; thus, (20) can be written as:

PB = KH
g

ρo

∂ρ

∂z
= −KH ·N2 (21)

in whichKH is the diffusivity of the buoyancy.

c) Modeling of the term D – the first part of the term between
braces, of a turbulent nature, contains poorly understood correla-
tions (e.g., Eiger, 1989), but its diffusive character suggests that
it is modeled in accordance with the flow-gradient relationship
expressed by Equation (10). The difficulties associated with this
modeling are due to the correlation between the fluctuations of
the velocity and pressure fields, something which is very difficult
to assess experimentally (e.g., Fontoura Rodrigues, 2003). Thus,
expressing this part as a function of the gradient k, we have

−uj
(
uiui
2
+
p

ρo

)
= Kk

∂k

∂xj
(22)

in whichKk = KM/σk is the diffusion coefficient of the turbu-
lent kinetic energy and σk is the turbulent Schmidt number, which
is usually assumed to be unitary. The second part of the term D
represents the molecular diffusion of the turbulent kinetic energy
(TKE) . Thus, we can write this term as follows:

D =
∂

∂xj

{
− uj

(
uiui

2
+
p

ρo

)
+ Γ
∂k

∂xj

}

=
∂

∂xj

[(
KM

σk
+ Γ

)
∂k

∂xj

] (23)

Also according to Eiger (1989), the term D probably forms
at the weakest point of the modeled form of Equation (18). It is
worth noting that when the molecular diffusivity is neglected in ex-
pression (23), in its place a minimum value (background) should
be provided for the turbulent diffusion coefficient. Also worthy of
attention is that the termD does not contribute to the global level
of turbulent kinetic energy – it only acts in its redistribution in
the three directions and for this reason is known as the return-to-
isotropy term.

d) Modeling of the term ε – this term is the dissipation rate of the
turbulent kinetic energy in heat, which mainly occurs in the small
scales of the turbulence. However, most of the energy of the turbu-
lence is contained in the large vortices that feed the small vortices
(see Souza et al., 2011). Thus, the availability of energy in the
small scales depends on the transfer process which, in turn, de-
pends on the large scales of the turbulence, which are associated
with the kinetic energy k and with the length scale L – charac-
teristics of the largest vortices. Dimensional considerations and
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experimental observations lead to the following estimate for the
term ε:

ε = ν
∂ui

∂xj

∂ui

∂xj
= cL

k3/2

L
(24)

in which cL = 0.17 is an empirical constant. The unit of ε is
[J kg−1 s−1]. Finally, substituting expressions (19), (20), (23),
and (24) in Equation (18), we obtain the modeled form of this
equation, given by

∂k

∂t
+ Uj

∂k

∂xj
= KM

(
∂Ui
∂xj
+
∂Uj
∂xi

)
∂Ui
∂xj︸ ︷︷ ︸

Pk

+KH
g

ρo

∂ρ

∂z︸ ︷︷ ︸
PB

+
∂

∂xj

[(
KM
σk
+Γ

)
∂k

∂xj

]
︸ ︷︷ ︸

D

− cL k
3/2

L︸ ︷︷ ︸
ε

(25)

With Equations (17) and (25), the indetermination now
passes to the turbulence’s characteristic length scale L. Various
ways for prescribing this length scale can be found in the litera-
ture, among them, L = κz, as shown above. Mellor & Yamada
(1974 and 1982) suggest that the length scale L could be pre-
scribed by the following expression:

L = �o
κz

κz + �o
(26)

in which,

�o = α

∫∞
0

√
k|z|dz∫∞

0

√
kdz

In these expressions, κ is the von Karman constant, α = 0.1
is a constant, z is the distance from the point considered to the
wall of the boundary,

√
k is the turbulent velocity scale, and �o

is a length scale related to the intensity of the turbulence at the
point considered. For a more detailed description of this require-
ment for the length scale, it is recommended to read Section 6 of
Mellor & Yamada (1982) and Nunes Vaz & Simpson (1994).

It is worth noting that the replacement of L, arising from ex-
pression (24), in (17), provides an expression for the turbulent
viscosity according to the ECT and the turbulent dissipation rate,
as follows.

KM = c
√
k ·
(
cL
k3/2

ε

)

KM = (c · cL) · k
2

ε

or

KM = cμ · k
2

ε
(27)

In expression (27), cμ is an empirical constant with a value
of 0.09 (Rodi, 1993; Burchard, 2002).

The turbulence models are developed to simulate turbulent
mixing processes present in virtually all environmental flows.
However, these processes only become important in certain re-
gions of the flow which are subject to strong velocity gradients,
as happens near solid surfaces or free surfaces. In oceanic flows,
this region represents a relatively thin layer, called the boundary
layer , located near the bottom (bottom boundary layer) and near
the surface (surface boundary layer), where the velocity gradients
are intense and the mixing processes are more effective. This layer
will be discussed in the next subsection. Outside these regions,
where the average velocity gradients are weak, the flow behaves
in an almost laminar fashion and the turbulent model loses its
effectiveness.

Boundary layer approach

The difference between the vertical and horizontal scales of mo-
tion within the boundary layer is so large that it allows substantial
simplification in the equations of motion. All these simplifications
receive the designation Boundary Layer Approach and consist of
disregarding: (i) all the horizontal velocity gradients; and (ii) the
vertical gradient of the vertical velocity, as a consequence of the
incompressibility condition (continuity equation).

The application of this approach in the terms on the right-
hand side of Equation (25), or more specifically, in their produc-
tion terms due to the shear and diffusion, described by Equa-
tions (19) and (23), transforms these terms into:

Pk = KM

[(
∂U

∂z

)2
+

(
∂V

∂z

)2]
(28)

D =
∂

∂z

[
(Kk + Γ)

∂k

∂z

]
(29)

The inclusion of these terms on the right hand side of the
equality of Equation (25) simplifies it to the following form

∂k

∂t
+ Uj

∂k

∂xj
KM

[(
∂U

∂z

)2
+

(
∂V

∂z

)2]
︸ ︷︷ ︸

Pk

+ KH
g

ρo

∂ρ

∂z︸ ︷︷ ︸
PB

+
∂

∂z

[
(Γ +Kk)

∂k

∂z

]
︸ ︷︷ ︸

D

− cL k
3/2

L︸ ︷︷ ︸
ε

(30)

It should be noted that the production terms due to the buoy-
ancy and dissipation remain unchanged. This equation will be
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referred to hereafter as the k-equation. Equation (30) often ap-
pears written in its contracted form,

∂k

∂t
+ Uj

∂k

∂xj
= D + Pk + PB − ε (31)

Summary of the equations: The following is a summary table

of the equations which describe the average flow and the turbu-
lence model with one equation (transport of k).

Equations Unknowns

∂Ui

∂xi
= 0 U, V,W, P

∂Ui

∂t
+ Uj

∂Ui

∂xj
− fUjεij3 = − 1

ρo

∂P

∂xi
− ρg
ρo
δi3 +

∂

∂xj

(
ν
∂Ui

∂xj
− uiuj

)
−uiuj

∂Θ

∂t
+ Ui

∂Θ

∂xi
=
∂

∂xi

(
Γθ
∂Θ

∂xi
− uiθ

)
Θ, −uiθ

∂S

∂t
+ Ui

∂S

∂xi
=
∂

∂xi

(
Γs
∂S

∂xi
− uis

)
−uis

−uiuj = KM
(
∂Ui

∂xj
+
∂Uj

∂xi

)
KM

−uiθ = KH ∂Θ
∂xi

and − uis = KH ∂S
∂xi

KH = KM/σ

∂k

∂t
+ Uj

∂k

∂xj
= Pk + PB +D − ε k

L [ramp model of Fig. 2 or Equation (26)]

KM = cμ
k2

ε
and ε = cL

k3/2

L

The practice of prescribing a length scale which characterizes
the turbulence is difficult to apply, except for flows with simple
geometry. Therefore, it is ideal to determine the value of the char-
acteristic length scale L, also from a transport equation, as has
been done for the quantity k. These models are presented below.

Models with two equations

The introduction of a differential equation for the transport of a
turbulent entity (k) has inspired many researchers and, because
of this, several models have emerged for the transport of other
characteristic quantities of turbulence, many of which have been
quite successful, due to the high level of generality and quality of
the results (e.g., Eiger, 1989).

The manner in which the vortices of various sizes are dis-
tributed (in space and time) through the area of the flow, sug-
gests using a transport equation, similar to the k-equation, for the

length scale (dimensions) of the vortices. In a “turbulence grid”
(Souza et al., 2011), for example, from the instant they are gen-
erated, the vortices are subject to various processes such as ad-
vection, diffusion, and dissipation, in a way that their sizes, at
any location, depend not only on their initial dimensions but also
the relative importance of each of these processes. As a result
of this, it is observed that the length scale behaves as an entity
representative of the turbulence, whose distribution can be pre-
dicted with the aid of a transport equation, just like any other
turbulent quantities.

The equation for the transport of the length scale does not
necessarily need to have the actual length scaleL as a dependent
variable. Also, most of the equations proposed to date do not use
it in such a way. Any combination of the type Z = kmLn will
be sufficient, since the turbulent kinetic energy is already known
from the solution to the k-equation (Rodi, 1993). The most im-
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Table 1 – Most important combinations and their authors.

Quantity Symbol m n Z Authors

Dissipation rate ε 03/2 –1 k3/2
/
L Jones & Launder (1972)

Product kL kL 1 1 kL
Rodi & Spalding (1970);

Mellor & Yamada (1982)

Frequency ω 01/2 –1 k1/2
/
L

Kolmogorov (1942);

Wilcox (1988)

Vorticity ξ 1 –2 k
/
L2 Wilcox (1988)

portant kmLn combinations that have emerged over time, as well
as their authors, are cited by Rodi (1993) and Deschamps (2002)
and are reproduced in Table 1.

In general, the turbulence models with two equations use a
transport equation for k and another equation for an auxiliary
variable. The most commonly employed models are: k-ε, k-kL
and k-ω, with ε, kL and ω being the auxiliary variables.

Launder & Spalding (1972), apud Eiger (1989) showed that
these three models are conceptually equivalent to each other be-
cause, knowing the results of one of them, the other variables can
be readily obtained. Also, according to Eiger (1989), this does
not mean an equivalence of results between the different models,
since they are constructed differently. Below, the three models are
presented in a unified way in the form of a k-Z model, in which
Z can represent any of the auxiliary variables.

The k-Z model

The model thus conceived is comprised of two equations: Equa-
tion (31), which represents the transport of the turbulent kinetic
energy k, rewritten below,

∂k

∂t
+ Uj

∂k

∂xj
= D + Pk + PB − ε (32)

and a second equation for the transport of the length scale L,
represented by the auxiliary variable Z , which is written in or-
der to display the same structural form of the first, assuming the
following:

∂Z
∂t
+ Uj

∂Z
∂xj
=
∂

∂z

[
(Γ +KZ )

∂Z
∂z

]

+
Z
k

(
c1Pk + c3PB − c2εFWall

) (33)

In this equation, the terms on the left hand side represent the
local variation and the advective transport of the variableZ , while

on the right hand side the first part represents the diffusive trans-
port. In the second term on the right hand side, production terms
(due to the shear Pk and the buoyancy PB) and the dissipation
ε, (which is already defined) appear, accompanied by the coef-
ficients c1, c3 and c2, respectively, which must be determined
experimentally for each model. The values assumed for these co-
efficients in each model are presented in Table 2.

Table 2 – Parameters used in each model.

Model c1 c2 c3 σk σZ Fwall

k − ε 1.44 1.92 1.0 1.0 1.3 1.0
k − kL 0.9 0.5 0.9 2.44 2.44 Eq. (35)

k − ω 0.555 0.833 1.0 2.0 2.0 1.0

In Equation (33), KZ = KM /σZ is the turbulent diffu-
sivity of the variable Z , and σZ is the turbulent Schmidt number,
whose values adopted in each model are also cited in Table 2. The
relationships between the different turbulent variables allow us to
obtain the length macro-scale of the respective models, given by:

L =
(kL)

k
L = cz

k3/2

ε
L = cz

k1/2

ω
(34)

in which cz =
(
c0μ
)3/4, and c0μ = 0.094 (see Burchard, 2002).

In the k − kL model, it is necessary to use an approxima-
tion function from the wall, FWall. This model uses a transport
equation precisely for the characteristic length scale from the large
scales of the turbulence or from the large vortices (more ener-
getic), which are related to the average flow which, in turn, is
the energy source that feeds the turbulence. Near a solid surface,
however, this scale is drastically reduced, by physical limitations,
and moves towards zero, as Figure 2 suggests. Therefore, it is
necessary to inform the model about the existence of boundaries
near the point analyzed. This is done with the wall function ap-
proach , FWall, which aims to ensure the reduction of the length
scale calculated near these boundaries.
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In this regard, Mellor & Yamada (1982) have already rec-
ognized that this function was absolutely necessary to guarantee
positive viscosity and diffusivity coefficients. Warner et al. (2005)
proved that all of the models with a positive n exponent in the
expression Z = kmLn require the wall function approach to
ensure the positivity of these coefficients (see Table 1). Accord-
ing to Umlauf & Burchard (2003) and Warner et al. (2005), in the
k-ε and k-ω models the modeled entity (ε or ω) is already char-
acteristic of the small scales of turbulence, thus eliminating the
need to inform the proximity of boundaries.

According to Burchard (2002), since the 1970s a controver-
sial discussion has raged about which of the two scales (kL or
ε) has greater physical relevance; that is, which one is “more
solid” in terms of physical concepts that govern turbulence in all
its scales. To give you an idea of this discussion, Burchard (2002)
draws our attention to the arguments of two important charac-
ters in turbulence modeling. Here we will try to reproduce these
arguments:

Mellor & Yamada (1982, page 861)

While we cannot claim great confidence in the
equation, we prefer it to the differential equation for
the dissipation rate ε.
...fundamentally, it seems wrong for us to use
an equation which describes the small scales of
turbulence (ε) in order to determine the turbu-
lent macro-scale required. Operationally, however,
after a few terms being modeled, the transport
equation of the dissipation (ε) is a particular case
of a more general transport equation of the length
scale (kL).

Rodi (1987, page 5311)

The arguments about the relative merits of the
equations ε and kL are somewhat academic
because both equations are completely empirical
and, with the constants conveniently adjusted, they
show similar performance. The difference is that
the kL equation requires an additional “wall ap-
proach” term, whereas the ε equation does not.

It is clear from the citations above that both models have
good physical rationale; that is, this should not be the criterion
for the preferential choice of one over the other. Another impor-
tant thing from these citations is that there is a need to adopt a
wall function approach for the k-kL model. Blumberg & Mellor

(1987) use a wall function approach with the following form,

FWall

(
1 +E

(
L

κLZ

)2)
(35)

in which LZ is a length scale defined by L−1Z = d
−1
S + d

−1
F ,

E = 1,33 is a constant, dS and dF represent the distances to
the surface and to the bottom, respectively, and κ = 0.41 is the
von Karman constant.

The following table is a summary of the equations describing
the average flow and the two-equation turbulence model.

We must keep in mind that when we choose an equation
for “‘ε”, “ω” or for “kL”, we are actually looking to discover
the length macro-scale of the turbulence in order to – with the
aid of Equation (17) – determine the viscosity and diffusivity
coefficients.

In this section we have the opportunity to mention a vari-
ety of classical turbulence models. Of the two-equation models
we quoted and analyzed in most detail, the k-ε and k-kL
models are the most widely used models in oceanic and at-
mospheric modeling, according to Burchard (2002). The k-ω
model, in which ω is the characteristic frequency of the vortices,
was also mentioned and it has only recently gained some popu-
larity in ocean modeling with the adaptations provided by Umlauf
et al. (2003).

DISCUSSION AND FINAL CONSIDERATIONS
An important concept about turbulence was highlighted in this
study: it is an entity that can be generated, transported by advec-
tion or diffusion, and dissipated. A model that intends to be rea-
sonably realistic and general must be capable of considering these
processes. However, many models, even very successful ones in
some cases, do not meet these requirements and therefore should
not be extrapolated for conditions that are very different to those
for which they have been validated (e.g., Eiger, 1989), as is the
case with the equationless transport models.

The fact that turbulence is capable of transport led to the
proposal of a classification criterion for the turbulence models,
according to the number of partial differential transport equa-
tions considered. Some models are based on algebraic equations
which relate the turbulent quantities to the average flow variables
and, therefore, do not consider the transport of turbulence.

The turbulence models, either with constant turbulent viscos-
ity or variable viscosity, present some shortcomings, including
the fact of not considering the transport of turbulence; that is,
the coefficients of turbulent viscosity and diffusivity are assumed
to be constant or a function of local quantities only, defined for
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Equations of the k-Z model Unknowns

∂Ui
∂xi
= 0 U, V,W, P

∂Ui

∂t
+ Uj

∂Ui

∂xj
− fUjεij3 = − 1

ρo

∂P

∂xi
− ρg
ρo
δi3 +

∂

∂xj

(
ν
∂Ui

∂xj
− uiuj

)
−uiuj

∂Θ

∂t
+ Ui

∂Θ

∂xi
=
∂

∂xi

(
Γθ
∂Θ

∂xi
− uiθ

)
Θ, −uiθ

∂S

∂t
+ Ui

∂S

∂xi
=
∂

∂xi

(
Γs
∂S

∂xi
− uis

)
S, −uis

∂k

∂t
+ Uj

∂k

∂xj
= KM

[(
∂U

∂z

)2
+

(
∂V

∂z

)2]
+KH

g

ρo

∂ρ

∂z
+
∂

∂xj

[(
ΓS +Kk

) ∂k
∂xj

]
− cL k

3/2

L
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the average flow. This means that, for these models, the turbu-
lence at a point is independent of the turbulence at other loca-
tions of the flow; that is, the turbulence at a location neither influ-
ences nor is influenced by the turbulence elsewhere in the flow.
For these models, a condition of local equilibrium predominates,
in which the mechanisms of advection and diffusion of turbulence
are neglected, and the turbulence is dissipated at the same loca-
tion where it is generated (e.g., Buchard, 2002).

The turbulence models with variable viscosity transfer the
problem of determining the viscosity to the problem of determin-
ing the mixing length, which must be prescribed. In flows with
simple geometry this is not really a serious problem; however, in
flows with complex geometry it can be very difficult to correctly
determine the mixing length. For geophysical flows, this length
scale can be prescribed with the aid of Figure 2, for example.

In the models with a transport equation, generally an equa-
tion for the turbulent kinetic energy, the shortcomings cited do
not occur because the mechanisms of advection and diffusion
are included in this equation, which provides k for use in Equa-
tion (17). The turbulence at one point then starts to influence and
be influenced by the turbulence at other points of the flow, which
represents a major advance over previous models. According to
Deschamps (2002), the major shortcoming of the one-equation
models, and also of the formulation of the mixing length , is the
need to prescribe a length scale , characteristic of the turbulence,
in order to sustain Equation (17) and allow the turbulent viscos-
ity to be determined. We should not, however, conclude that lit-
tle progress has been made with the introduction of the turbulent
kinetic energy equation into the model. It ensured that several in-
novative concepts in relation to the zero-equation models were
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introduced; for example: (i) considering k as a measure of the
turbulence intensity, a concept that has more solid foundations
than the measures for the mixing length; and (ii) the presence
of a transport equation for k stressed that the turbulence at one
point affects and is affected by the turbulence at other points of
the flow (e.g., Eiger, 1989).

With the development of the two-equation transport models,
one for the turbulent kinetic energy and the other for the charac-
teristic length scale of the turbulence, the prescription problem
of this latter scale for Equation (17) was overcome. The fact that
these two scales are determined by differential transport equations
gives such models greater generality.

We must keep in mind that when we choose an equation for
ε, ω or for kL – variables that in Equation (33) are represented
by the auxiliary variable Z – we are actually looking to know
the length macro-scale of the turbulence so that, with the aid
of Equation (17), we may determine the viscosity and diffusivity
coefficients. Among the algebraic turbulence models; that is,
those that use an algebraic equation like Equation (17) to deter-
mine the turbulent viscosity, the models with two equations are
considered to be the most complete.

The choice of model for the simulation of turbulent flow must
satisfy certain desirable assumptions. In principle, the model must
be mathematically simple and involve the least possible num-
ber of physical concepts. It should also be capable of simulat-
ing the largest possible number of flows without needing to ad-
just its constants or constituent equations. Finally, the model
must be numerically stable (e.g., Deschamps, 2002). However,
the complexity of the geophysical flows does not enable indica-
tion that a particular turbulence model is more (or less) suitable
for a certain hydrodynamic situation of interest. The choice of a
simpler turbulence model may ultimately inhibit certain phenom-
ena involved in the process under study, which would only be
known to the researcher when he compares his results (if pos-
sible) with those derived from the use of more complex models.
The use of simpler models is attractive to the user, since these
models require less computational effort, thus allowing results
to be obtained more quickly.

An example of how the choice of turbulence model affects
the final outcome of a certain process being studied can be
found in Xing & Davies (1999). These authors studied the influ-
ence of the intensity and direction of the wind on the scattering
of an estuarine plume. In this study, the effect of tidal currents
was not considered; however, three turbulent closure models
were coupled to the hydrodynamic model: a two-equation model
(Mellor & Yamada, 1982, or MY82) and two one-equation

models, which solve the equation for turbulent kinetic energy
but prescribe the length scale differently. According to the au-
thors, in the simulations with no wind, the results were simi-
lar; however, significant differences were observed between the
models when the wind action was considered.

In a second example, Blaise et al. (2007) used RANS
models in the investigation of tidal flow around Rattray Island in
the Great Barrier Reef, in Australia, which causes the appearance
of vortices in the wake of the motion. They claim that the ele-
vated turbidity of the surface water suggests intense upwelling
that is capable of transporting sediments from the bottom to
the surface. Based on previous numerical studies it was unclear
whether the most intense upwelling occurs near the center of the
vortices, relatively far from the island, or near the headlands of the
island. According to Blaise et al. (2007), all of these past studies
used simple turbulent closure models of the zero-equation type,
whereby the vertical viscosity coefficient is calculated via an al-
gebraic expression. In this study, the authors evaluated the in-
fluence of the turbulent closure on the results of the numerical
model. They modeled the flow around the island using a sim-
ple algebraic model and the two-equation model (from Mellor
& Yamada, 1982). Also according to the authors, the upwelling
velocity was significantly influenced by the two-equation model
in terms of the algebraic closure. The difference was explained by
the turbulent viscosity which, on average, was lower with the two-
equation model, leading to a smaller mixture and a greater vertical
shearing in the horizontal velocity near the bottom, which explains
the increase in the upwelling at the center of the vortices.

Even after choosing a particular turbulent closure scheme,
like the one with two equations, the choice of the variable
(ω, ε, L) representative of the length scale of the turbulence
Z may affect the results obtained in the numerical simulation
of the process under study. This can be seen in the experiment
for deepening of the oceanic mixture layer through the action of
a constant and uniform wind acting on the sea surface, which
was presented in Souza et al. (2013) and included the com-
parison of three two-equation turbulence models coupled to the
same hydrodynamic model. The results showed that, although
the models are the same type, the simulations produce small
differences, which the authors attributed to the different relative
importance that each model gives to different physical processes
involved in the turbulent closure scheme; for example, shear,
buoyancy, and dissipation. Figure 3 shows the temporal evolu-
tion of the deepening of the oceanic mixture layer from numeri-
cal simulations that differ among themselves due to the turbulent
closure scheme used.
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Figure 3 – Temporal evolution of the deepening of the oceanic mixture layer from
numerical simulations that differ among themselves due to the turbulent closure
scheme used. The empirical solution was obtained experimentally (more details
in Souza et al., 2013).
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Mecânicas – ABCM. Rio de Janeiro. Vol. 2, Cap. 3, p. 153–204.

GALPERIN B, ROSATI A, KANTHA LH & MELLOR GL. 1989. Modeling
Rotating Stratified Turbulent Flows with Application to Oceanic Mixed
Layers. Journal of Physical Oceanography, 19: 901–916.

GARVINE RW. 1999. Penetration of Buoyant Coastal Discharge onto the
Continental Shelf: A Numerical Model Experiment. Journal of Physical
Oceanography, 29: 1892–1909.

HASSID S & GALPERIN B. 1983. A Turbulent Energy Model for Geo-
physical Flows. Boundary-Layer Meteorology, 26: 397–412.
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