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Abstract

The present paper describes a system for the construc-
tion of visual maps (“‘mosaics™) and motion estimation
for a set of AUVs (Autonomous Underwater Vehicles).
Robots are equipped with down-looking camera which is
used to estimate their motion with respect to the seafloor
and built an online mosaic. As the mosaic increases in
size, a systematic bias is introduced in its alignment, re-
sulting in an erroneous output. The theoretical concepts
associated with the use of an Augmented State Kalman
Filter (ASKF) were applied to optimally estimate both vi-
sual map and the fleet position.

Keywords: Multi-Robots, Autonomous Underwater
Vehicles, Mosaics, Robotic Localization
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1. INTRODUCTION

The diversity of resources found at the bottom of the
sea is of well-known importance. In this context, the do-
main of the technology to design and develop Unmanned
Underwater Vehicles (UUVs) becomes a matter of strat-
egy [2, 17]. The use of UUVs to create visual maps of
the ocean floor becomes an important tool for underwater
exploration [5, 8]. UUVs can be divided into two class: a
Remote Operated Vehicles (ROVs), that require a human
pilot in the control loop; and Autonomous Underwater
Vehicles (AUVs), that have the ability to perform high-
level missions without user intervention. ROV operation
depends on a skilled and experienced pilot to control the
vehicle, meanwhile an autonomous navigation capability
would significantly reduce this workload for pilots dur-
ing many types of ROV exploration missions. Commer-
cial AUVs, however, have a high cost, limited energy and
navigation autonomy, allowing their use in very specific
and short missions. Over past decades, ROV’s have been
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highly used by the marine community.

For visual-based underwater exploration, UUVs are
equipped with down-looking cameras that produce im-
ages from the bottom of the sea, providing a visual map
during the vehicle navigation. Every frame captured by
the vehicle is used to compose the map. Consecutive
frames are aligned and then a final map is generated,
which is called mosaic [16]. Mosaics can also be used
as reference maps in the navigation/localization vehicle
process [5]. This visual map can be used either in the
surface for seabed exploration or for a visual-based AUV
localization/navigation. Thus, the vehicle is able to navi-
gate using its own online map. Given the vehicle altitude
above the ocean floor (e.g. from an altimeter) and cam-
era field of view, the actual area covered by the map (and
individual frames) is known, the navigation in real world
coordinates is possible.

A cumulative error, however, is introduced in the
alignment of the consecutive frames within the mosaic.
GPSs placed on the surface and Acoustic Transponder
Network (ATN) distributed in the exploration area are
sensorial approaches, which can be used to correct this
kind of drift [15, 11], but both have similar disadvantages:
a high cost of operation, and a restrict range of applica-
tion (small depth, ATNs areas, etc).

Occasionally, the robot path may be crossed-over, [5]
proposes a smooth adjustment of the mosaic cumulative
error detected by the crossover points in the map construc-
tion. [7] uses Augmented State Kalman Filter (ASKF) to
estimate the correct position of both the vehicle and every
frame of the mosaic, based on crossover and displacement
measurements [4]. The ASKF strategies for the mosaic
update and vehicle localization take into account simpli-
fied dynamic model of the AUV, as well as the detected
crossover regions, which is very important to the accuracy
of the system.

1.1. MULTI-AUVSFOR VISUAL MAPPING

Two issues are considered in this paper: i. High costs
and the complexity associated with more sophisticated
and long missions unable the massive use of AUVs. On
the other hand, simple vehicles are incapable to accom-
plish trivial tasks due to their low autonomy, poor number
of sensors and other limitations. ii. The possibility of
using its own explored image as information to localize
the vehicle is an attractive and low cost operation. ASKF
seems to be a good choice, specifically when the naviga-
tion provides a set of crossover regions.

In this context, we argue that a fleet of simple robots
can be more efficient than a sophisticated AUV to seabed
exploration tasks. A heterogeneous fleet can be composed
by robots equipped with different sensors and no complex
power supply systems. These simple vehicles would ex-
plore a region in a fraction of time needed by a single
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AUV. Mosaics would be more efficiently constructed and
their visual information would be used to help the local-
ization and navigation of the fleet.

We have a set of real situations where this approach
could be applied. For instance, in northeast of the Brazil-
ian Coast we have a protected reef of chorales area, called
“Parrachos de Maracajau”. This is a wide area, where a
continuous visual inspection is important. Due to the need
of a continuous mapping the sea-divers-based inspection
is very expensive. In this case, the use of a robotic ve-
hicle may be a good choice. Besides, the vehicle can
use the visual information as sensorial input for its local-
ization/navigation system, avoiding boring human navi-
gation/piloting tasks on the surface. In this context, the
idea is to use a fleet of AUVs that exchange information
about the area. The visual map of this wide area would be
built in a faster and more efficient way, cooperatively.

Therefore, this paper presents the first results of the
ASKF extension proposed by [7] for a set of Multi-
AUVS. The fleet needs to explore a seabed region, pro-
viding its visual map. The mosaic is composed by a set
of frames. These images are obtained by several simple
and inexpensive robots associated with an undersea cen-
tral station. The mosaic is computed by this central sta-
tion. A distributed ASKF provides an image position es-
timation as well as each robot position. *

1.2. AN ARCHITECTURE TO MULTI-AUV INSPEC-
TION FLEET

We have developed a generic architecture for multi-
robot cooperation [1]. The proposed architecture deals
with issues ranging from mission planning for several au-
tonomous robots to effective conflict free execution in a
dynamic environment. Here, this generic architecture is
applied to Multi-AUVs for a Visual Mapping Task, giving
autonomy and communication capabilities for our AUVSs.
We suppose that the robots submerge inside a central sta-
tion (CS). This CS is connected by a physical cable with
the surface. The built maps are sent to the surface through
the CS. Besides connecting physically the AUVs to the
surface, the CS does the decomposition of missions in a
set of individual robots tasks. CS receives high level mis-
sions in a TCP/IP web link.

After a brief multi-robot context analysis, section 3
presents the theoretical extension of ASKF approach to
Multi-AUV mosaicking. Next section details the imple-
mentation of the visual system, providing preliminary re-
sults and analysis of simulated tests. Finally a conclusion
and future works are presented.

TIn the literature, we can find the use of Kalman Filters to multi-robots
localization [9, 12]. They use relative sensorial information as observed
variable of the system. These papers report wheeled robots in outdoor
and indoor environments.
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2. THE CONTEXT: MuULTI AUVS AND

VISUAL MAPS MODELS

Visual maps are an important tool to investigate
seabed environments. An autonomous underwater vehi-
cle equipped with a down-looking camera can take im-
ages from the bottom of the sea, sending the images to
the surface. A visual map is constructed with these im-
ages, and it can be used also for the localization of the
robot.

The cumulative error associated with the mosaic con-
struction (frames localization) decreases the performance
of the system. Several approaches treat this problem
[5, 7]. For instance, strategies based on the crossover de-
tection realigns all frames of the mosaic according to the
crossover position information. [7] proposes a crossover
based system using an Augmented State Kalman Filter.
This filter estimates both the state of the AUV and the
state of each map image. Then, each time a new state, as-
sociated with a new image added, needs to be estimated,
resulting in an ASKF. This paper extends the theory de-
veloped by [7] to Multi-Robots context.

Consider a set of M robots in a visual seabed ex-
ploration mission. During the exploration mission, each
robot sends information to a central station (CS) for the
mosaic building. This CS congregates all information
about the mosaic, adding new frames and updating online
their localization.

Every time k only one robot v, 44 Sends to CS an infor-
mation associated with a new captured frame f29. The
subindex .44 means the robot which currently adds a new
frame to the mosaic. The mosaic F' is composed by a set
of these added frames. This mosaic is used to estimate the
future state of each generic vehicle v,. and the future state
of each generic frame £/ 2.

2.1. THE RoBOT MODEL
Each time &, a robot v,. is described by a vector state

U

)

=[a y = © & gy 2 ], (@
where x, y are relative to a mosaic-fixed coordinate sys-
tem 3. z is relative to an inertial fixed coordinate system,
¥ (yaw) is the heading of the robot associated with a fixed
coordinate system.

Each robot can have a different dynamic model A?,
see [14] for a set of different dynamic models of AUVs.
In this paper, we have chosen a simple kinematic model
to demonstrate the proposed strategy:

2We use r and 4 to describe 7*" and it generic robot and frame, re-
spectively, captured by robot ;..

3We suppose that the robots have a known inertial referential, associated
with the first frame of the mosaic.
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AL = [ @

dtl 4x4
04><4

l4x4
where | is a 4-dimension identity matrix and dt is the
sampling period between states at discrete-time instants.
A process noise, Q. associated with each v,., can be
defined as:

Q (k) = [ 3)

2 2
1dtio?l”  Ldt3o?
1743 w2 2 _v?
sdt oy dt°oy

2 . . . . .
where o is a diagonal 4-dimension matrix of process
noise variance in all coordinates (z,y,z,¥).

2.1.1. The Mosaic Construction Moded: As de-
scribed by [7], every frame has a state vector that contains
the information required to pose the associated image in
the map. In the multi-robot context, a frame f, captured
by vehicle v,., has the following state vector relative to a
mosaic-fixed coordinate: x{ —[zyz9]".

2.1.2. The Observation Model: Kalman Filters are
based on the measurement of successive information of
the system behavior. In this approach two measure vec-
tors are used:

® Z,4i(k): this measure is provided directly by each
robot v, 44, Which is adding a new image to the mo-
saic map. It gives the displacement between two
consecutive frames captured by v,qq. In the litera-
ture we find several approaches to obtain z,q; (k), for
instance we can use Corner Points Correspondence
[6], Motion Estimate and HSV Algorithms [10], Fre-
quency Domain Analyse [13], see [7] for others. We
have used texture matching algorithm [16], which
runs onboard of each robot, giving the displacement
between captured consecutive frames.

® Z..0ss(k): it measures the displacement associated
with the mosaic area, where the crossover has been
detected. To provide this information we detect a
crossover trajectory, analyzing the current captured
image and the mosaic region, applying the same al-
gorithms used to obtain zqq;(k). This process runs
onboard the central station.

These vectors can be described by:

Zadj,cross = [Al' Ay z A\I/}T, (4)

where the subindex adj is associated with the coordi-
nated relatives (Az, Ay, z, A¥) between the current im-
age k and the previous image of the same robot v,.. Simi-
larly,the subindex cross is related to the displacement be-
tween the crossover area with respect to the closer node of
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the mosaic image (node j). We suppose that z can be ob-
tained from a sonar altimeter, being the absolute measure
of the altitude of the vehicle at time k.

Two measured sub-matrices need to be defined:

Hy (k) = [laxa Ouxa] (5)

that describes the vehicle measurement, and the image
measurement sub-matrix:

HYe_y) (k) = HY" (k) = diag{1,1,0,1},  (6)
which  describes the image associated with

adjacent,H{,;l)(k;) (captured by a generic robot v,.) and

crossover situations, H f ’ (k) (captured by any other robot
vs ). One should observe that a component related to z
coordinate is provided directly by the altimeter sensor.

If there is no crossover, the measurement covariance
matrix is

R(k) = o230 (k), (7)
with:
oud (b) = diag{ o2 (), k),

o244 (k), 040" (k)},

where ¢244” (k) o;’ddz (k) and o494 (k) are the mea-
surement variances of v,4q added images correlation in
the mosaic, and o2 (k) the variance of the sonar altimeter
of this robot.

Notice that equation 7 is associated only with the co-
variance of the adjacent image addition measurements
done by v,qq. However, if there is a crossover detection,
R(k) becomes:

add (k) 0
R(k) = |%adi ( 4x4 9
( ) 04><4 Ugross(k) ( )
Similarly,
2 oss (k) = diag{o2(k), a0 (k), 02 (k), 05, (k)}, (10)

with 02(k), o2 (k) and o, (k) are the measurement vari-
ances of all images correlation in the mosaic, and o2 (k)
the variance of the sonar altimeter.

In accordance to the kinematic model and to the z,4;
and z.,.,ss measurements, ASKF estimates a new state to
the fleet and the mosaic frames at every k time.

3. ASKF FOR MULTI-AUV MOSAICK-
ING

Kalman Filter uses two sets of equations to predict
values of the variable state. The Time Update Equations
are responsible for predicting the current state and
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covariance matrix, used in future time to predict the pre-
vious state. The Measurement Update Equations are re-
sponsible for correcting the errors in the Time Up-
date equations. In a sense, it is backpropagating to get
new value for the prior state to improve the guess for the
next state. The equations for our ASKF for Multi-AUV
and mosaic localization are presented.

3.1. THE PREDICTION STAGE

From the kinematic model of the system (vehicles and
mosaic), ASKF can propagate the following state estima-
tive:

o
(11)
which means the estimated position of each robot v,. (r =
0..(M — 1)) and each frame estimated position (from
frame O to (k — 1)). The covariance P(k) associated with
this estimative is also propagated.

3.1.1. Arobot v,qs addsanew frametothe mosaic:
When a new mosaic frame is added by v,qq, New pre-
dictions and covariance (for time (k + 1)) are obtained,
according to time update equations:

)A(au,g (k+ 1) = Aaug (k))A(au,g (k)+Ba,1f,g (k)ﬂaug (k‘), (12)
Prug(k +1) = Aqug(k)Paug(k)Ag, (k)
+Baug (k)Qau,g(k)BZ,ﬂug (k)

Notice that X,.q(k + 1) is the state of x augmented

of a new image added state, f(iadd (k + 1), added by v,q44,

with

(13)

add

%] (k+1) =] laxa Osxa | Xiga(k+1), (14)

similarly,

Pry(0,oirs (M =1,k k—1,...,0) (B + 1) =
[ laxa Osxa | Pyo,mvi—1)rk-1,...0)(k + 1)),

(15)

where equation 15 selects the information from the row

and column associated with the vehicle position v ,4q
which captured this new frame f fkdf1)-

As the position of images does not vary as a function

of time, the system dynamics A4 (k) and the noise co-

variance Q,,,, (k) can be described by:

Quug (k) =diag [Qo(K) .. QU(E) ... Qlar—1yy 0] (A7)
where the identity matrix | has a size k. dim (x{). Since

the system does not have any input, u(k) = 0 and B(k) =
[, see [7] for more details.
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3.2. THE CORRECTION STAGE

For each time step k, a robot v,qq adds a new im-
age to the visual map. The vehicle finds the observation
measurement between two consecutive (adjacent) cap-
tured frames. Notice that the adjacent concept is as-
sociated with two consecutive images (i.e. fgdd, fgdd)
of the same robot v,4g. Two frames can be consecu-
tive to the robot v,q4, but not necessarily consecutive
to the mosaic system, for instance, in the capture in-
terval between f$4, fgdd any other robot 7sqqq can
add an intermediate image to the mosaic system. In
this case, for example, the final sequence of the mosaic
becomes: f“dd,f(k 1),fk o) Therefore, two mosaic
frames f[, fr are adjacent if they are captured in a
successive order éy the same robot v,..

A new measured z,4; (k) is obtained at every time step
by the robot v,4q4. The value z(k) measures the position
of the k*" image (which corresponds to the position of the
vadd) With respect to the (k — p)*" previous frame of this
robot in the mosaic, so that:

2(k)

Z44i (k) (18)
Haug(k) - Hadj(k) Hf

[Hig (k) HE, (0] 29)

where adjacent measurement sub-matrix, see equations 5
and 6 associated with the vehicles, and the images are:

va(k) = [0...0 Hig(k) 0...0]  (20)
HY (k) = [o...o —HE" () .o} (1)

However, when a crossover is detected, the current im-
age k" also intersects with the previous mosaic image.
Then, the measurement vector z(k) becomes:

Z(k) [ngj (k) Zz;oee(k)}

in this case we have two measurements: one regarding to
the previous image of robot v,q4, Z.q;(k), and the other
with respect to the area where the crossover has been de-
tected z.,.,s5(k). Notice that the crossover region could
be captured by another robot v.,..ss. If we suppose that
the crossover corresponds to an image f ", the mea-
surement matrix H .4 (k) incorporates a measurement in
column 3, becoming:

(22)

[Hadj(k) Hmoee(k)]T
= [ngoee(k) H(froee(k)]

with vehicle and image measurement sub-matrix defined
as:

Haug (k)
Hcross(k)

(23)
(24)

HY  os(k) = [0...0 HYua(k) 0...0} (25)
Hloes(k) = [0...0 —H{™""(k) 0...0|26)
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Innovation is the difference between the measurement
z(k) and the previous a priory estimation and according
to [7] it is given by:

T(k) = Zau,g(k) - Haug(k))A(aug(k)v (27)
and its covariance S(k) is defined as:
S(k) = Haug (F)Poyg (F)Hgug (k) + R(K),  (28)

where R(k) is the measurement error covariance, see 9.

The adjacent and crossover measurements allow the
correction of the estimated state (of the robots and frames)
and its associated covariance are corrected according to
the KF measurement update equations. So, the filter gain
can be expressed as:

= Prug(k)H Gy (K)S7" (k).

Once the KF gain is computed, the estimate state can
be obtained:

(29)

)A(GU«Q (k) - Xaug (k) + K(k)(Z(k) - Hauy(k)y(;ug (k()?zo)
and its corrected error covariance:
Paug (k) =
(I = K(k)Haug (k)P (k) (1 = K(k)Haug (k)" +
+K(F)R(k)K (k)"

31)

Once the stages of estimation and correction have
been completed, the state vector and the covariance ma-
trices are augmented to add the positioning of the new & t*
image, captured by robot v,44. The final mosaic is com-
posed by the set of frames f].

Observe that we can have either i. only one ASKF
running in a Central Station, or ii. a set of decentralized
ASKEF run in each robot of the fleet. The first is a central-
ized localization system, where, even without crossover
detection, to localize each robot is a role only of the CS.
The second approach is a decentralized localization sys-
tem, where each robot is in charge of localizing itself, ex-
cept when a crossover is detected. However, the ASKF
theory is the same for both workload approaches.

4. THE IMPLEMENTATION OF VISUAL
M APPING

We have a test environment where simple undersea
robots can accomplish inspection tasks [3]. Starting
from the proposed architecture, a CS can be accessed via
TCP/IP web connection. Users can specify a set of mis-
sions for the robots: navigate, localize and inspect a spe-
cific region.
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4.1. BUILDING MOSAICS

We have developed a set of image processing services,
called NAVision. It is composed by two different mod-
ules: i. an individual robot module responsible for cap-
turing and pre-processing the frames through the down-
looking camera, and ii a module which provides an online
mosaic and pattern recognition.

The visual correlation between consecutive frames is
the main aspect of the mosaicking system. From frames
taken by an underwater robot equipped with a camera,
the visual correlation is made online, providing an offset
between them. This offset is used as zadj information by
ASKF.

Subwater images introduce different problems, like
lack of distinct features, low contrast, nonuniform illumi-
nation and small particles suspended into the water (ma-
rine snow). To develop the visual correlation efficiently,
it is necessary to treat the captured frames. A set of fil-
ters are applied, aiming to smooth the image and enhance
borders. In the current version, the signum of Laplacian
of Gaussian filter was chosen because it has useful prop-
erties, like a gaussian mask that smooths noises and the
signum of Laplacian filter to convert a smoothed image
into a binary image.

A correlation window, I, _1y(;,).is defined in the pre-
vious frame. This window has n x m pixels. The algo-
rithm correlation searches in the current frame, a set of
candidate matches, I (7, j)*. An error measure is used:

w

Z?:o E;‘n:o XOR(sgn(VQG) * (I(kfl) (4,7)),
sgn(V2G) * (Ii(i, j)*)),

32)
to find the best candidate, Ij(i,j)B¢st|ePest =
min(e). The measure, z,q; can be extracted from the dis-
placement between I}, and the best candidate region. This
process is repeated every time when a new frame is added
to the mosaic.

Figure 1 presents the generation of a mosaic from
our underwater test environment. This mosaic was cre-
ated using one robot and ASKF to estimate mosaic frames
and robot positions. An Athlon XP 2400 with 512 MB of
RAM memory was used to construct this mosaic and run-
ning simulations.

4.2. LOCALIZING MULTI-AUVSUSING ASKF

We have developed an ASKF system able to receive as
input the observation of the world: displacement between
consecutive frames (z4q;) and crossover regions (zcross),
giving as output the prediction state (localization) of each
robot and mosaic frames.

4.2.1. Two robots in a inspection task: We have
tested our system in a inspection simulated task with two
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Figure 1. The visual map composed by a set of frames

robots: R1 and R2. R1 begins at (-120:-65) coordinates
and R2 begins at (0:-70) position, see figure 2(a). Each
vehicle has a different dynamical model. Their percep-
tion systems have different noise features. Circular points
represent the true trajectory of each robot. In addition to
real trajectory, the simulator gives the estimated trajec-
tory provided by the perception system without crossover
detection, it means only observed information (see star
green points). We can see that we have a cumulative er-
ror associated with the image processing observation (star
points). Cross points show the smoothed trajectory ob-
tained with our approach. We can see that, before the
crossover both robots have a cumulative error between
the real and estimated trajectories (see figure 2(b) and (c)).
When R1 crosses an old mosaic area imaging by R2 (near
(6:-49) coordinates), the ASKF provides a new estimation
motion to R1, reseting its cumulative localization error
(see 2(e)).

Once R2 has a lower cumulative localization error, it
is used as setpoint. Therefore this robot holds the same
old trajectory (and localization) after the crossover detec-
tion, see figure 2(d) and (f).

Figure 3(a) shows the final estimated position at the
end of this mission.

4.2.2. Three robots in a inspection task: We have
added a third robot, R3 to the context. R3 begins at (-
30:125), see figure 4(a). Now during the inspection there
is another crossover situation, near (-11.8:125.6), provid-
ing a second smoothed crossover correction in the final
mosaic. It happens between R3 and R2.

Now R3 has a lower cumulative error, then it is
used as setpoint. So this robot holds the same old tra-
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Mosaic Task Simulation
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Figure 3. The simulated multi-AUV mosaicking with ASKF: (a) with 2
robots. (b) with 3 robots

jectory (and localization), see 4(d)(h). However, R2 has
an enhancement of its estimated localization, see 4(c)(qg).
Moreover, as ASKF updates all states of the system, and
R1 has an old intersection situation with R2, the for-
mer suffers also a very small correction in its states, see
4(b)(f). The final mosaic and robot trajectories can be
seen in figure 3(b).

Tables 1 and 2 show the final localization errors of
both tests with 2 robots and 1 crossover situation and with
one more robot and one more crossover situation. Sec-
ond column shows the error between real and observed
trajectory. Column 3 shows the error between real and
ASKEF corrected smoothed trajectory. Table 1 shows a
decrease of around 93% of the estimation error of R2 af-
ter one crossover detection. In table 2, we can see that the
final smoothed error decreases with two crossover situa-
tions. With our approach, the localization mean errors of
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Observed Error | Smoothed Error
R1 51.8 3.8
R2 49.5 41.0
R3 - -

Table 1. Final errors with 2 robots and 1 crossover situations.

Observed Error | Smoothed Error
R1 51.8 2,2
R2 49.5 7.5
R3 35 32.84

Table 2. Final errors with 3 robots and 2 crossover situations.

two robots R1 and R2 have fallen by more than 85%. R3
mean error has not changed. As expected, the approach
gives good results when a crossover situation between two
robots happens when one of the robots is in the beginning
of its trajectory, what means when one of the robots has a
minor cumulative error.

Observe that the localization system workload is dis-
tributed among the robots. Each robot can run its own
ASKF, measuring its own frame adjacent displacement
(2aqj). It is necessary a centralized process only when
a crossover risk exists. In this moment, a centralized
crossover measure (z.ross) must be calculated. The fleet
shares information aiming to enhance individual localiza-
tion estimative.

5. CONCLUSION

We have proposed and discussed a theoretical scheme
for cooperative multi-AUVs Mosaicking. A set of robots
can explore the seabed in a more efficient and faster way
than a single vehicle. We have built a generic architecture
for multi-robot cooperation. Its interest stems from its
ability to provide a framework for cooperative decisional
processes at different levels: mission decomposition and
high level plan synthesis, task allocation and task achieve-
ment.

For Visual Mapping, our approach is an extension of
the [7] to the multi-vehicle context. ASFK is used for
both estimating the state of each robot, and the position
of each mosaic image. This estimation changes with the
error observation based on adjacent and crossover mea-
surements obtained by the fleet. The proposed method-
ology treats the mosaic as a centralized map, where dif-
ferent robots add frames and provide information of the
observation. We intend to simulate our approach through
a number of significant different dynamical models and
parameters, taking into account real-time issues and other
sensorial information.
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Mosaic Task Simulation
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Figure 2. Inspection task with 2 robots and a crossover situation: The fleet localization before (a) and after the crossover detection (d). The error
between true and both observed (in red) estimated (in black) trajectory of the robots before (b), (c) and after (e), (f) crossover detection.
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Figure 4. Inspection task with 3 robots and 2 crossover situations: The estimated localization before (a) and after the crossover detection (e). The
error between true and estimated trajectory of the robots before (b), (c) (d) and after (f), (g), (h) crossover detection.
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