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Abstract. Usually fishery managers do not have complete information on the questions they are 
supposed to evaluate, hence they have to make decisions taking risks because of the underlying 
uncertainty. We used decision theory and a bayesian version of a biomass dynamic model to assess the 
problem of introducing a new purse-seine fleet in the skipjack tuna (Katsuwonus pelamis) fishery of the 
southwest Atlantic ocean (SWAO). Adaptive importance sampling (AIS) followed by the sampling 
importance resampling (SIR) were used to build and explore the posterior distributions. Because skipjack 
of the SWAO has been under-exploited increasing the catches by introducing purse-seine boats probably 
will not reduce too much the biomass. However the endorsement of purse-seine fishing days results in 
large economic risks for the traditional bait-boat fleet. 
 
Key words: uncertainty, posterior probability, skipjack tuna, adaptive importance sampling, bayesian 
analysis. 
 
Resumo. Análise de decisão sobre a introdução de uma nova frota pesqueira. Usualmente 
administradores pesqueiros não dispõem de todas as informações sobre as questões a serem avaliadas, e 
dessa forma eles têm que tomar decisões assumindo alguns riscos por conta das incertezas. Nós fizemos 
uso da teoria de decisão e de uma versão bayesiana de um modelo dinâmico de biomassa para avaliar o 
problema sobre a introdução de uma nova frota de cerco na pescaria do bonito-listrado (Katsuwonus 
pelamis) no sudoeste do oceano Atlântico (SWOA). Uma amostragem adaptativa ponderada (AAP) 
seguida de uma amostragem e reamostragem ponderada (ARP) foram utilizadas para a construção e 
exploração da distribuição posteriori. O bonito do SWOA pode ser considerado sub-explorado no sentido 
de que aumentos das capturas com a introdução do cerco provavelmente não reduziriam muito a 
biomassa. Entretanto a permissão de pesca para barcos de cerco resultaria em grandes riscos econômicos 
para a frota de pesca tradicional de vara-e-isca-viva. 
 
Palavras-chave: incerteza, probabilidade a posteriori, bonito-listrado, amostragem adaptativa ponderada, 
análise bayesiana. 
 

Introduction 
Fishery management deals with making 

decisions albeit the large uncertainties related to 
economic, social and ecological issues. Usually there 
are uncertainties on structure of fishery models, and 
on their parameters (e.g. growth rate, catchability). 
Observational and experimental statistical data 
provide information but do not eliminate all 
uncertainties. Hence, managers take risks in fisheries 
because all components of the problem are seldom 
known in advance. 

Decision theory is a suitable approach for 

 
fishery management because it is concerned with the 
problem of making decisions in the presence of 
uncertainty. The decision framework is flexible 
allowing the analyst to deal with multiple 
performance criteria (attributes) involving several 
objectives and tradeoffs. The formal decision 
analysis improves the management decisions 
because it helps to identify robust policies, and the 
information needed to reduce critical uncertainties. 

Since 1980s decision analysis and the 
Bayesian statistical approach have been pointed out 
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as effective methods for stock assessment and  
for the evaluation of alternative strategies of 
exploitation (Clark 1985, Walters 1986, Hilborn et 
al. 1994, McAllister et al. 1994, Punt &  
Hilborn 1997, McAllister & Kirkwood 1998, 
Peterman et al. 1998). Statistical decision theory and 
Bayesian analysis are related because each of them 
embodies a description of one of the key elements of 
decision problems, and due to their flexibility of 
utilizing non-experimental sources of information  
(Berger 1985). Alternative actions and cost-revenue 
tradeoffs can be included in the decision analysis 
framework. It is straightforward and conceptually 
easy to deal with uncertainties within the  
Bayesian approach which also provides a formal and 
coherent procedure to show how they affect the 
outcome of alternative management actions.  
Hence it favours an effective presentation of the 
relevant results to decision makers, researchers and 
the public. 

In Bayesian analysis the information 
acquired in the past – observational and/or experi-
mental data – is summarized in a prior probability 
distribution, while the sampled data are modeled 
with a likelihood function. The properly rescaled 
product of prior and likelihood results in a  
posterior probability distribution for the quantities of 
interest (e.g. parameters of a model). Whenever 
conjugate families of distributions for the prior and 
the likelihood are available, the posterior can be 
obtained analytically. However, in most  
fishery problems the analytical calculation of the 
posterior is difficult or impossible, hence  
Monte Carlo approaches are the alternative (e.g. 
Markov Chain Monte Carlo – MCMC, sampling-
importance-resampling – SIR, adaptive importance 
sampling – AIS, combinations of AIS and SIR – 
AIS/SIR) (Hastings 1970, Rubin 1988, Oh & Berger 
1992, West 1993, McAllister et al. 1994, Kinas 
1996). 

The decision analysis described in this paper 
concerns a real fishery problem involving large 
uncertainties on economic quantities, stock biomass 
and fishing fleet dynamics. Nowadays the 
introduction of a new purse-seine fleet to catch tuna 
in the southwest Atlantic is an issue of concern in 
Brazil. Decision makers have been asking for 
analyses to  what would happen with the future 
fishing yields (weight caught) and biomass of the 
skipjack population if the purse-seine boats were 
allowed to fish in the Brazilian Exclusive Economic 
Zone (SC/CPG/SEAP, 2003). In this paper we have 
used a Bayesian decision framework to show the 
expected outcomes of alternative feasible 
management actions (e.g. to allow for 100 purse-

seine fishing days each year). We not only provide 
specific results for the skipjack problem, but also 
have shown a method to deal with the general 
problem of introducing a new fishing fleet. 

 
2 - Data and Analysis 
2.1 - Outline for Decision Analysis 

The approach we used lines up with those of 
Raiffa (1968), Lindley (1985) and Hammond et al. 
(1999). To those who are not familiar with decision 
analysis the following checklist provides general 
information on the involved steps: 
 i) To identify management objectives. 
Because the tuna fishery deals with social, 
economic, political, ecological and cultural issues, 
the objectives of different stakeholders can be 
conflictive. Some of them may want to raise the 
yields (i.e. tons caught), while stability of fishing 
mortality may be more important for others. 
However, those goals probably can not be 
accomplished concurrently. 
 ii) To identify management options or 
alternative management actions in order to  
achieve these objectives. In fisheries, primary 
alternative actions are typically related to rules about 
effort amount, total allowable catch (TAC), gear 
selectivity or closure of fishing seasons and areas. 
However other alternatives may be taken into 
account. 
 iii) To gather all useful information 
available about the problem. Besides experimental 
and observational data, all non-experimental 
relevant information gathered from experts should 
be taken into account as well. 
 iv) To select one or more models to use in 
the analyses of the dataset. Quantities of interest, 
usually called states of nature are estimated when 
fitting the models to the fishery database. Different 
structural models can be plausible and may be 
considered. 
 v) To check the fit of the model. The model 
may be satisfactory in some sense but fail in another. 
For example, a model that is adequate to explain the 
variance of the catch may prove to be unsatisfactory 
when used to predict time trends of the catch rate. 
Hence it is mandatory to check whether the model is 
useful to answer the primary questions of interest. 
 vi) To choose one (or more) predictive 
model to assess what are the expected outcome of 
the management action. Usually the predictive 
model is similar to that used in the analysis of the 
available database. Dynamic biomass models can be 
used to fit the observed catch rates as well as to 
predict cach rates in the future after the enforcement 
of some management rule. 
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 vii) To choose criteria to verify how 
management actions accomplish the objective. Often 
there are more than one objective, hence more than 
one criterion is necessary. We denoted the 
measurable quantities used to assess how the actions 
reach the objectives as attributes. Sometimes the 
choice of one attribute comes up intuitively. For 
example, “cumulative catch landed” across a couple 
of years after enforcement of an action may be 
suitable to assess if the objective of raising the 
annual yields was reached. However, to figure out a 
measurable attribute standing for the “stock welfare” 
objective may be difficult. An ordinal instead of 
quantitative scale may help when choosing 
attributes. 
 viii) To obtain expected outcomes  
of alternative management actions by  
integrating the attributes over the uncertainties. 
Marginal expectations for each attribute are 
calculated over the Bayesian posterior probability 
distributions. 
 ix) To rank the different management 
actions. Tables and graphs must be used to  
show the trade-offs among actions and objectives. 
The choice of the decision makers depend on  
values they assign to each objective and on their 
attitude when they confront risks. For example, the 
decision maker may be unwilling to accept the 
increase of the mean yield in 30% if the chance of 
the biomass falling bellow some benchmark is 10%. 
Simple decision tables showing how actions 
accomplish each objective often contain most of the 
information the decision maker needs. Two or more 
attributes can also be weighted and summed up to 
obtain a single index on which ranking could be 
based. Here, we simply called this index “utility” 
although its meaning in standard texts on decision 
theory is more complex. Despite this difference, the 
best action is the one that maximizes the utility, 
which is in line with classical decision theory texts 
(Raiffa 1968, Lindley 1985). 
 
2.2 - The Skipjack Fishery Decision Problem - Data, 
Management Objectives and Actions 
 During the last decades the “International 
Commission for the Conservation of Atlantic Tunas” 
(ICCAT) has assumed that there are two stocks of 
skipjack in the Atlantic ocean (east and west coast) 
separated by the 30ºW meridian (ICCAT, 2004). 
However, some researchers have argued that 
because skipjack populations show various fractions 
in the oceans with low mixing rates between, 
Economic Exclusive Zones may be suitable as 
management units (Hilborn & Sibert 1986). 
Controversial initially, the use of small management 

units are considered reasonable nowadays by some 
experts (e.g. Fonteneau, 2003). 
 In fact, inside the limits of the traditional 
“west stock” of the Atlantic Ocean there are two 
large fishing grounds, separated by a huge distance. 
We denoted these two components as the northwest 
and the southwest Atlantic ocean fishing grounds 
(NWAO and SWAO). We are interested in the 
SWAO fishing ground which we consider a 
management unit motivated by ideas and results 
published by Hilborn & Sibert (1986), Fonteneau 
(2003), and Andrade & Kinas (2004). 
 The large scale industrial exploitation of 
surface tuna schools in the SWAO began in 1977 
and skipjack tuna has been the main target (more 
than 90% of the total catch) of the Brazilian bait-
boat fleet. The skipjack landings increased quickly 
in the beginning and then oscillated around 18000 
tons until the mid 1990's and around 23000 tons 
until 2005 (Tab. I). 

In the SWAO the skipjack has been caught 
along the Brazilian coast (Fig. 1) by a bait-boat fleet 
composed of close to 40 boats of up to 300 gross 
tonnages (GRT). Despite purse-seine fleets have 
been operating in all other tuna fisheries in the 
Atlantic Ocean, they are not present in Brazilian 
waters. Some discussions about the (in)convenience 
of purse-seine boats  occurred among Brazilian 
conservationists, stakeholders and government in 
recent fishery meetings (Itajaí-SC meeting on 
skipjack fishery - July, 2004). 

After introducing a new purse-seine fleet, 
how would the tuna catch increase (if so)? What 
would be the probability of confronting undesirable 
ecological scenarios (e.g. low biomass for a long 
time) in the future? Those are some typical questions 
that have been raised in these meetings. Based on 
them, we selected four major management 
objectives: 
 i) Increase yield; 
 ii) Avoid large variation of the annual 
yields; 
 iii) Avoid “biological overexploitation”; and 
 iv) Avoid overcapitalization also denoted 
“economic overexploitation”. 

We considered several management actions 
based on effort enforcements to reach the above 
objectives. But the analysis could be done based on 
catch enforcements (e.g. Total Allowable Catch - 
TAC) as well. The actions we took into account can 
be pooled in four main branches: 

i) status quo - Maintain the bait-boat fleet 
effort (number of fishing days) and do not introduce 
purse-seine boats; 

ii) increase the fleet – Allow for fishing days  
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Table I: Catch (1000 tons) and standardized catch rate indexes (tons/fishing day) for the skipjack tuna 
(Katsuwonus pelamis) in the southwest Atlantic. String “NA” indicate there is not available record. Data 
source: Paiva (1997), ICCAT (2006), Andrade (2007). 

Year Catch Catch Rate Year Catch Catch Rate Year Catch Catch Rate
1958 0.20 NA 1974 NA NA 1990 20.13 5.64
1959 NA NA 1975 NA NA 1991 20.55 3.72
1960 NA NA 1976 0.08 NA 1992 18.54 3.70
1961 0.30 NA 1977 0.19 NA 1993 17.77 3.77
1962 0.30 NA 1978 0.64 NA 1994 20.59 4.34
1963 0.30 NA 1979 2.07 NA 1995 16.56 3.69
1964 0.40 NA 1980 6.07 NA 1996 22.53 4.71
1965 0.50 NA 1981 13.91 NA 1997 26.56 5.81
1966 0.70 NA 1982 18.32 NA 1998 23.79 3.47
1967 1.50 NA 1983 15.95 3.58 1999 23.19 2.87
1968 0.80 NA 1984 13.57 3.12 2000 25.16 NA
1969 0.40 NA 1985 25.10 4.45 2001 24.15 4.06
1970 0.40 NA 1986 23.16 4.29 2002 18.34 3.99
1971 0.10 NA 1987 16.29 3.7 2003 20.42 3.85
1972 NA NA 1988 17.32 3.76 2004 23.04 4.16
1973 NA NA 1989 20.75 4.56 2005 26.39 NA

 
with purse-seine boats and/or increase the bait-boat 
fleet effort; 

iii) diminish the fleet – Reduce the bait-boat 
fleet effort but do not introduce the purse-seine fleet 
and; 

iv) replace the fleet - Replace some of the 
bait-boat fishing days by purse-seine fishing days. 

 

 
Figure 1: Skipjack (Katsuwonus pelamis) fishing ground (gray 
area) in the southwest Atlantic. Arrows stands for schematic 
representation of the surface current system and dashed line 
stands for the 200 meters isobath. 

Data available for the analysis are limited. 
There are landing reports and a few standardized 
catch rates as estimated by Andrade (2007) using 
commercial catch-per-unit-effort (CPUE) (Table I). 
Generalized linear models (GLM) were used to 
estimate standardized catch rates. Geographic 
position of the fishing sets, season of the year, and 
boat characteristics were included as factors in  
those linear models. Although the effect of these 
factors have been reduced and/or eliminated  
the catch rates estimated are still a limited index  
of abundance. See Andrade (2007) for more  
details about estimations and limitations of the 
available catch rates. Some could argue that no 
decision should be made until more informative  
data have been gathered. Nevertheless notice that the 
choice to wait is also an action (similar to the status 
quo option above). In fact decision makers  
often have to confront scenarios with sparse 
information and many uncertainties, particularly 
when dealing with tuna stocks management 
(ICCAT, 2004). 
 
2.3 - The assessment model 
 A biomass dynamic model was used because 
only catch and catch rate times series were available. 
Despite simple models lack realism the result 
gathered with them are in many situations as useful 
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as those obtained with complex, more data 
demanding models (Ludwig & Walters 1985). 
 We used the following version of the 
Schaefer model. 
 

(1) ( )[ ] u
ttttt ekBBr+CB=B ⋅−⋅− −−−− /1 1111  

where C  and B  are the catch and the biomass, and 
time is indexed by t . The parameter r  is the 
population growth rate, k  is the carrying capacity 
biomass, and u  is normally distributed random 
process noise with variance W . The observation 
error in tC  is assumed to be negligible. The 
relationship between the biomass tB  and an 
observable index tI  of abundance is 
 

(2) v
tt eBq=I ⋅⋅  

 

where v  is a normally distributed random variable 
with variance V  accounting for observational noise, 
and q  is the catchability coefficient. 
 We assumed q approximately constant 
relying on the “standardization” of the catch  
rates Andrade (2007) did using generalized  
linear models (GLM). Hence the effect of variations 
of q on the catch rate we used was reduced.  
For example, as far as fishing set geographic 
position and quarter were considered in the GLM, 
the effects of the variations of q due to area and 
seasons on  
the catch rate were small. Such assumption can be 
made just because “area” and “season” factors  
were included in the standardization analysis. 
However, other components were not included  
in the GLM, hence they are still sources of  
variation of q in equation 2. For example, the 
catchability coefficient can still change across  
time due to biomass variations, which was not 
included in the standardization model of  
Andrade (2007). An attempt to deal with the 
possibility that q change according to biomass  
would be to consider more parameters and  
complex models to describe the relationship  
among I, q and B across the years. In order to  
gather estimates for such models the data would  
have to be very informative and/or auxiliary data 
such as age-structured catches would be necessary. 
However, our data set is rather limited. Hence we 
opted to use a simpler model. The results we 
gathered might be interpreted in the light of the 
hypothesis described in the equation 2, in which the 
variations of the abundance index I (standardized 

catch rate as calculated by Andrade, 2007) are 
primarily caused by changes in the biomass. 
 In the state-space model as described  
in equations 2 and 1, besides the nuisance  
parameters W  and V , there are three parameters of 
interest, r, k and q. Because it is mathematically 
more convenient to deal with parameters  
defined over the real line, we define 

{ }qk,r,  log log log=θ  as the three dimensional 
parameter vector of interest in the Bayesian 
approach. 
 
2.4 - Bayesian approach to the assessment model 
 Bayesian inference of θ  is obtained using 
prior probability density distribution ( )θπ  and 
likelihood ( ) ( )θ|p=θL data  after the data have 
been sampled. The posterior density distribution for 
θ  is 

(3) ( ) ( ) ( )
( ) ( )∫ ⋅
⋅

θLθπ
θLθπ=|θp data  

 
 We first describe the likelihood function, 
then we explain how we built the prior and posterior 
probability distributions. 

 
Likelihood 
 In order to estimate θ  only the 
observational error was considered. The solution 
developed  
by Kinas (1993 and 1996) is summarized bellow. 
After taking the logarithm of equation 2 and for 
notational convenience, we define tt I=Y  log  and 
( ) ( )tt Bq=θμ ⋅log . The probability model for data 

point tY  is 
 

(4) ( ) ( )( )V,θμNVθ,|Yp tt ~  
 

where ( )( )V,θμN t  is an one-dimensional normal 
distribution with mean ( )θμt  and variance V. Let 
the complete data set be ( ) { }τY,Y=τY ..1,. , hence the 

joint likelihood is ( ) ( )( )Vθ,|τYp=Vθ,L . If 
independent prior distributions are assumed for θ  
and for V, say ( ) ( ) ( )Vπθπ=Vθ,π ⋅ , then the 
likelihood ( )θL  is obtained by marginalization with 
respect to V 
 

(5) ( ) ( )( ) ( )dVVπVθ,|τYp=θL ∫  
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 If the prior for V is an inverse-gamma 
density distribution, say ( ) ( )βα,IGVπ ~ , the 
solution is 
 
 

(6)      ( ) ( )( )
2/

1

22/2
τα+τ

=t
tt θμYβ+βθL

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−∝ ∑  

 
 

 That choice is convenient because the 
inverse-gamma is conjugated with the normal 
probability in equation (5). The resulting likelihood 
equation is simple in the sense that it only depends 
on the residuals with respect to ( )θμ  and on the 
prior parameters for V. The first and the second 
central moments for the posterior inverse-gamma 
distribution of V are 

 

(7) [ ] ( ) ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−

− ∑ βθμYβ+E
τ+α

=τY|VE
τ

=t
tt

τY|θp 2/2
12/

1)(
1

2)(  

 
and 
 

(8) [ ] ( ) ( )
( )

( )( )

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−⋅−

∑
2

1

2

2

2

2

22/12/
1)(

β

θμYβ+
E

τ+ατ+α
=τY|VE

τ

=t
tt

Y(τ(|θp  

 
where [ ]⋅E  and ( )( )[ ]⋅τY|θpE  represent the expectation 
and the expectation over the posterior. 
 In order to calculate the likelihood (eq. 6), 
biomasses are estimated recursively using equation 
1. Hence an initial value, the biomass for the first 
year, needs to be defined in advance. We assumed 
the initial biomass equal to the carrying capacity (k) 
because large commercial fishery had not begun 
previously to the time series of available data (Table 
I). Furthermore, under this assumption, the bias 
when estimating effort at the MSY is not large 
whenever the observational error is used to fit the 
model (Punt 1990). 
 
Prior 
 The prior may strongly affect the posterior 
distribution when database is non-informative. 
Therefore, it is very important to show how the 
priors have been built. We shall use a three 
dimensional non-central student distribution for 

{ }qk,r,=θ logloglog , so that ( ) ( )cm,df,Tθπ 3~ , 
where df is the degree of freedom, m is the mean 
vector and c is the main diagonal of the (3x3) 
covariance matrix of the three dimensional student 
density function ( )⋅3T . We assumed independence 
among the parameters so that all off-diagonal terms 
of the covariance matrix are zero. The impact on the 
posterior was evaluated by using two different prior 
distributions. In the “informative” prior we 
summarized all available knowledge on the 

parameters to the best of our knowledge. In the 
“diffusive” prior we exaggerated our ignorance by 
inflating variances. In order to define these prior 
distributions we first build suitable independent 
normal distributions for each component of the 
vector , then we used the means and the variances of 
these three distributions to build vector m and the 
main diagonal of the covariance matrix c in the three 
dimensional student prior. All the components of the 
priors were based on information published in 
scientific journals. 
 We did not found estimates of r for skipjack, 
hence we have build the informative prior based on 
estimates for other tuna stocks (south Atlantic 
albacore and yellowfin tuna) published elsewhere 
(e.g. Polacheck et al. 1993, Su & Liu 1998, 
Anonymous, 2004). The estimates of r for yellowfin 
ranged from 0.3 to 0.9, but we opted for a more 
conservative prior (i.e. a coefficient corresponding 
to a less productive stock) for skipjack. 
 Jablonski & Matsuura (1985) and Vilela & 
Castello (1993) have estimated the standing biomass 
in mid 1980’s using traditional “cohort analysis”  
(~ 70,000 tons) and “virtual population analysis”  
(~ 100,000 tons) respectively. In order to estimate 
biomass Jablonsky & Matsuura (1985) converted 
catch-at-length in catch-at-age using estimations  
of growth parameters, while Vilela & Castello 
(1993) have used an age-length key. We used the 
lower of the above estimates (~ 70,000 tons)  
to approximate the median for the prior on the 
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carrying capacity biomass. That was a conservative 
choice because the biomass before the beginning  
of the fishery was probably larger than in mid 
1980’s. 
 To build the prior on the catchability 
coefficient we considered that the standing stock 
biomass of the mid 1980’s, as estimated by 
Jablonsky & Matsuura (1985) and Vilela & Castello 
(1993) had fallen to close to 40000 by the end of 
1990’s due to the increasing annual catches. We then 
used the catch rate of the end of 1990's and equation 
(2) without the error term to get the estimate 

41.2540000/5/ −E==BI=q , which we took 
as the median of the informative prior for 
catchability. 
 The informative mean and covariance 
diagonal are m = {-1.3, 11, -9.3} and c = {0.16, 
0.16, 0.16}, while the diffuse mean and  
covariance are m = {-1.9, 10.7, -9.4} and c = {1.00, 
1.21, 0.81}. The df was 9 for both, diffuse  

and informative prior distributions, hence the  
priors have heavy-tails with respect to the  
normal curve. In the inverse-gamma prior 
distribution for V we used 7=α  and β  = 14. A plot 
of the prior distributions for the parameters of 
primary interest r, k and q in the original scales is in 
Figure 2. 
 It is important to mention that we used  
all the available evidence to build the prior 
distributions. Probably other researchers would  
build priors similar to ours if the information we had 
were also all the information made available to  
them. Furthermore, the diffuse prior largely 
exaggerates the uncertainty on the knowledge  
about the parameters, so that the influence of our 
subjective “guesses” on the results could be 
evaluated by comparing the posterior distributions as 
estimated using informative and diffuse prior 
distributions. 

 

 
Figure 2: Informative and diffuse prior and posterior distributions for parameters of the dynamic biomass model: (r) 
population intrinsic growth rate, (k) biomass at carrying capacity, and (q) catchability coefficient. Solid lines stand for 
informative prior, while dashed lines stand for diffuse prior. Empirical informative posterior distributions are indicated 
by filled circles, but lines with opened circles represent diffuse posterior distributions. 
 
Posterior 

In order to draw a sample from the posterior 
distributions using the Monte Carlo methods the 
initial step is the choice of a suitable importance 
function. A good importance function must be easy 
to sample from and should be similar to the true 
posterior density distribution function. The standard 
importance function is a multivariate normal or 
student distribution centered at the maximum 
likelihood estimates and with covariance matrix 
proportional to the Hessian matrix (Gelman et al. 
1995). Some improvement in the method of 
choosing importance function when using the 
sampling importance resampling (SIR) algorithm 
has been developed by McAllister & Ianelli(1997). 

 

The mixture of student distributions is 
another alternative to improve the first importance 
function (West 1992, 1993). This procedure called 
adaptive importance sampling (AIS) can be followed 
by a SIR when drawing the final sample, and was 
the method we chose. Relative entropy (RE) as 
suggested by West (1993) was the diagnostic 
measurement we used in the AIS/SIR procedure to 
assess the convergence. RE approximates 1 as ( )θg  
approaches ( )datap |θ . The adaptive updating 
procedure of ( )θg  is performed recursively until a 
target minimum relative entropy has been reached. 
Further details on AIS algorithm and it’s technical 
issues are in Kinas (1993) and Andrade (2004). 
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2.5 - Checking the fit of the model 
 Model checking can be done by comparing 
the posterior predictive distribution of observations 
with the actual data (Gelman et al. 1995). The 
procedural steps are: i) to draw simulated values 
from the posterior distribution; ii) to use these values 
to predict a replicated data set; and finally iii) to 
compare these predicted samples to the actual 
observed data using some measurement of 
discrepancy. 
 We shall use ( )θy,T , in which y is the 
response variable and θ  is the estimand, to denote 
the measure used as standard to compare the data to 
the predictive simulations. Since in this work we are 
primarily interested in the time trend of the biomass, 
( )θy,T  is the slope of a simple linear model fitted 

to the catch rate data points as calculated for the 
most recent ten years to show up in the time series. 
 A Bayes p-value is defined as the posterior 
probability that the test quantity ( )⋅T  for the 
replicated data ( repy ) be more extreme than for the 
observed data ( y ): 
 

(16) ( ) ( )( )y|θy,Tθ,yT=p rep ≥Pr  
 

To calculate this probability, s  vectors of θ  
are draw from the posterior, one repy  is simulated 
for each of the s  vectorsand ( )θ,yT rep  is 
calculated. The p-value is the proportion of the s  
simulations of equal or larger than the observed 
value ( )θ,yT . A small value of p  indicates a poor 
fit of the model. 
 
2.6 - Expected catch and stock biomass 
 A predictive model shall be used to project 
biomass and catch into the future under different 
exploitation regimes (i.e. management actions). 
Future fishery scenarios can be simulated in 
different ways. One of them is to assume 
enforcements on total allowable catch (TAC). 
However, two reasons motivated us to deal with 
fishing effort and catchability instead: i) We were 
interested in estimating how many purse-seine 
fishing days would be necessary to achieve a target 
catch – if we had simulated the catch directly, this 
number of fishing days would remain unknown; and 
ii) Apparently, it is easier to restrict the effort (i.e. 
fishing days) instead of implementing catch control 
programs in this fishery. 
 We rely on basic fishery theory (e.g. Clark 
1985, Gulland 1983) and assumed that the catch at 

time t is 
 

(17) ttt BF=C ⋅  
 

where tF  is the fishing mortality at time t caused by 
all the fleets. Fishing mortality at time t is the sum of 
fishing mortalities caused by b fishing fleets 
 

(18) ∑
b

bt,t F=F  

Finally, we assumed that fishing mortality caused by 
each fleet could be unfolded as  
 

(19) bbt,bt, qf=F ⋅  
 

where bt,f  is the effort of the bth fishing fleet at time 
t and bq  is the coefficient of catchability for this bth 
fleet. Therefore, if bt,f  is enforced by some 
management action and estimates of r , k  and bq  
( boat bait =bbb q=q , and  seinepurse =bps q=q ) are 
available, future catches and biomasses can be 
simulated using the set of equations 19, 18 and 17 
and the biomass dynamic model (eq. 1). 
 The posterior distribution for θ  provides 
sets of r , k  and bbq . Results published by Almeida 
& Andrade (2002) and Andrade (2007) suggest that 
the ratio bbpsbbps qq=q //  is probably between 1 
and 4. Therefore we used the following continuous 
uniform distribution to simulate uncertainties in 

bbpsq / : 
 

(20) ( ) )4,1(~/ UqP bbps  
 

If bbpsq /  and bbq  are available, psq  can be 
calculated. Some comments are warranted. In order 
to get estimations of the ratio bbpsq /  Almeida & 
Andrade (2002) calculated the ratio between 
commercial catch-per-unit-efforts of purse-seine and 
bait-boats that fished at the same place and time. 
Theoretically the difference between the two CPUE 
would be due to the differences between the 
vulnerability of skipjack to the two types of boats. 
Andrade (2007) used another approach. Estimations 
of bbpsq /  were based on coefficients as calculated 
using generalized linear models in which “type of 
fleet” was included as explanatory factor, and CPUE 
was the response variable. 

In order to project the catches and the 
biomass, we needed to simulate future efforts across 
T  years into the future. Firstly we calculated the 
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effort vector for the most recent years ( 1995≥ ) as 
the ratio between catch and catch rate indexes. 
Secondly we calculated the average (“base effort 
value” - basef ) of that vector. Finally, the future 
effort vector under the four different alternative 
management actions were defined as follows: 

i) Status quo actions  – Base effort ( basef ) 
was used as the expectation of the bait-boat effort in 
each one of the next T  years. Purse-seine fishing 
days are not allowed. 

ii) Increase the fishing fleet 
ii.1) Base effort was used as the expectation 

of the bait-boat effort in each of the next T  years. 
The amount of purse-seine fishing days allowed is 
constant over the next T years.. We simulated 
several scenarios using a different constant value 
between 300 up to 3000 fishing days. 

ii.2) Purse-seine fishing days are not 
allowed, but the bait-boat effort in each of the next 
T  years is constant and larger than basef . We 
simulated that effort raised from five to twenty 
percent with respect to base effort. For example the 
constant basef⋅1.05  was used to emulate an increase 
of 5% of the bait-boat effort. 

ii.3) Purse-seine fishing effort was simulated 
like in ii.1, and bait-boat fishing effort was 
simulated like in ii.2. 

iii) Diminish the fishing fleet  – Purse-seine 
fishing days are not allowed. Expectation of bait-
boat effort in each of the next T  years is constant 
but smaller than basef . We simulated that effort 
decreased five to twenty percent with respect to base 
effort. For example the constant basef⋅0.80  was 
used to emulate an effort decrease of 20 %. 
 iv) Replace the fishing fleet – Purse-seine 
fishing effort was simulated like in ii.1, and bait-
boat fishing effort was simulated like in iii. 
 We gathered close to 11,000 vectors using 
AIS and extracted final SIR samples with 1,650 
values from both, diffuse and informative posterior 
distributions. Therefore all fishery management 
scenarios cited above were simulated 1,650 times. In 
all simulations we used T = 5 years. 
 Process error was not considered in the 
estimation, but optimal effort is overestimated if that 
error is not used in the projection of future outcomes 
(see Ludwig & Walters 1989). Hence we used half 
of the expectation of the variance of the estimation 
model (eq. 7) as process error variance (W), and half 
was used as observation error (V) in the Monte Carlo 
simulations of future outcomes. Similar solutions 

had been adopted elsewhere (e.g. Ludwig & Walters 
1985, Kinas 1996). 
2.7 - Criteria to assess the performance of 
alternative management actions 
 Four attributes were defined to evaluate 
alternative management actions. : 
 i) Present value of the accumulated catch 
over the next T  years ( TAC ); 
 ii) Coefficient of variation of the annual 
catches ( cCV ); 
 iii) Probability that expectation of catch rate 
of bait-boats decrease and remain bellow 4 
tons/fishing day during three subsequent years 
(“catch rate failure” risk - CRF ); 
iv) Probability that biomass falls and remains bellow 

MSYB  during three subsequent years (“biomass 
failure” - BF ). 
 The first attribute stands for the objective of 
increasing yield, which is one of the main goals of 
the fishery industry and government. To calculate 
the present value of the accumulated catch ( TAC ) 
we used an exponential discounting factor (see Clark 
1985): 
 

(21) ∑ ∑ ⋅−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

T

=t

tδ

=b
bbt;T eevC=AC

1 seine-purse boat;-bait

 

 

where bt;C  is the catch of the thb  fishing fleet in 
year t , δ  is the annual discount rate, and bev  is the 

relative economic value of the catch of the thb  fleet. 
We used δ  = 0.05 just as an example, but other 
value could be used as well. The influence of the 
discount rate is predictable, the larger the δ  the less 
conservative would be the decision. 
 There is some consensual bat vague opinion 
that purse-seine is probably more efficient in the 
economic sense, hence we used 1.0=ev -boatbait=b  
and { }1.4.0.9,1.0,.. ,=ev seine-purse=b  to express the 
economists uncertainty exposed in the Itajaí-SC 
meeting on skipjack fishery, July, 2004. 
 The second attribute ( cCV ) is associated 
with the objective of avoiding large variations of 
yields across the years, while the third attribute 
( CRF ) is associated to the economic risk for the 
bait-boat fleet. We used CRF as an indicator for the 
“economic overexploitation” objective. We 
calculated CRF as the proportion of vectors (length 
T ) of future catch rates of bait-boat in which 
occurred three subsequent values smaller than 4 
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tons/fishing day. In fact an estimation of the 
minimum catch rate required to pay the costs of a 
fishing day is not available. This threshold was an 
arbitrary choice among several values suggested by 
stakeholders during the Itajaí-SC, 1994 public 
meeting. 
 The fourth attribute ( BF ) is associated with 
the objective of maintaining the stock at sustainable 
levels. We calculated BF  as the proportion of 
simulated future biomass vectors (length T) in which 
at least three subsequent values of biomass were 
smaller than MSYB . The MSY threshold is 
reasonable for populations of tropical small tunas 
like skipjack, because they are very productive (see 
comments in Hilborn & Walters 1992 and Longhurst 
1998). 
 In order to combine all attributes in a single 
measurement, we standardized them to make them 
comparable. Given the attribute iA  with 

{ }1,2,3,4=i  indexing posterior expected values of 

TAC , cCV , BF  and CRF , we defined 
 

(22) 
( )

( ) ( )ii

ii
i AA

AA=U
minmax

min
−

−
 

 
where ( )iAmin  and ( )iAmax  denote smallest and 
largest values of iA  over all management actions 
under consideration. 
 Notice that 10 ≤≤ iU  and that the best 
performance is indicated by 1=U  for TAC  ( )1=i  
while it is indicated by 0=U  for all other attributes 
( )2,3,4=i  Because we would like to maximize 

TAC  and minimize cCV , BF  and CRF . 
 A simple overall measure is 
 

(23) 
⎟
⎠

⎞
⎜
⎝

⎛
⋅

⋅

∑

∑
4

1

4

1

max
=i

ii

=i
ii

T

Uwu

Uwu
=U  

 
where iwu  is the weight of the ith attribute iU . 
Only 1wu  (the weight of the TAC=U1 ) is 
positive, and all other weights are negative  
because other attributes denote non-desirable 
qualities (i.e. BFU ≈4  that is the biomass risk 
failure). The order of preference among management 
actions is related to increasing values of TU . The 

denominator of equation 23 assures that 
( ) 1max =UT . Best option among contenders, is the 

one that maximizes TU . We used equal absolute 
weights for all attributes as baseline, but we also 
calculated TU  using variations of this standard case 
in which some of the attributes are considered more 
important than others. 
 
3 - Results 
3.1 - Model fitting and posterior estimation 
 Relative entropy (RE) reached 0,98 in  
just four adaptive adjustments of the importance 
function. As far as RE was close to 1, the 
convergence was assumed satisfactory. First  
and second central moments for the posterior 
distribution of the variance of the observational  
error (V) were 2.2E-2 and 5.1E-4 for both, the 
informative and the diffuse prior distributions. 
Summaries of the marginal posterior distributions  
of r, k and q are in Figure 2 and in Table II.  
Posterior distributions were not strongly affected  
by priors (Fig. 2). Central trends of prior and 
posterior distributions are very different (Fig. 2). 
Posterior estimates for r are much larger, while  
the posterior estimates for q are much smaller  
than those of the prior distributions. The posterior 
for r is especially of concern because it includes 
values (i.e. > 1.5) that are suspicious from the 
biological point of view. 
 Usually posteriors calculated from  
diffuse priors include a wider range of values than 
those calculated using informative priors.  
However, note that only for the carrying capacity 
parameter (k) the diffuse posterior indeed has  
a heavier right tail than the informative posterior 
(Fig. 2). 
 Because of the overall similarities  
between the posterior distributions obtained from 
diffuse and informative priors, we proceed  
showing only the latter results. Large uncertainties 
on the parameter estimates are evident from  
the contour plots for the joint posterior  
distributions (Fig. 3). The three parameters are 
strongly correlated, which is typical in results 
gathered with dynamic biomass models (Hilborn & 
Walters 1992). Also notice the “banana shape”  
of the joint posterior for k and q (Fig. 3 c) indicating 
a non-linear correlation between the parameters. 
The correlations involving k are strong and 
negative, while the correlation between q and r is 
positive. 

Catch rate data and model fits as 
described by samples of θ  from the 
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Table II: Summary of the posterior distributions for the parameters of the biomass dynamic models as 
estimated using informative and diffuse prior distributions. 

 Informative 
Estimate 5% 25% median 75% 95% 

R 0.579 0.812 1.022 1.250 1.614 
k 75422 103451 132375 180010 385192 
q 1.168E-5 2.650E-5 3.756E-5 4.959E-5 7.084E-5 
 Diffuse 

Estimate 5% 25% median 75% 95% 
r 0.479 0.752 0.976 1.229 1.653 
k 80654 117394 161816 239692 489258 
q 8.729E-6 1.910E-5 2.962E-5 4.259E-5 6.551E-5 

 
posterior are shown in Figure 4. To further check the 
fit of the model to data, we used the slope of the 
regression of catch rates over the latter ten years in 
the time series as our discrepancy measure ( )θy,T  
(see item “Checking the Fit of the Model” above). 
Predictive probability of the slope estimated from 
the posterior being larger than the slope estimated 
from the real data was 0.64=p . Because that value 
is not extreme, we assumed the model is acceptable. 
In addition estimations indicate the central trend of 
slopes is close to zero ( 0.05−≈ ), though with large 
variance. 
 
3.2 - Biomass and exploitation rate estimations 
 Because we assumed the relationship 
between catch rate (i.e. index of abundance)  
and biomass is log-linear (see eq. 2), time  
trend variations of these quantities are similar. 
Therefore slight decreasing trends of the catch rates 
mean that there is not evidence of strong variations 
of biomass across the last years. Although 
uncertainties are high (large variance), the results 
 

suggest that there was not a strong decreasing trend 
since the industrial fishery began in early 1980’s 
(Fig. 5). 

Biomass point estimates were also gathered 
by Jablonski & Matsuura (1985) and Vilela & 
Castello (1993) using virtual population and length 
cohort analyses without auxiliary information 
(Gulland 1965, Pope 1972, Jones 1984). Estimation 
published in Vilela & Castello (1993) are 
consistently lower (~ 70,000) than those we have 
calculated, while the Jablonski & Matsuura (1985) 
estimates using natural mortality (M) equal to 0.8 
year-1 (~ 100,000) are in line with the median of our 
posterior. 

Summary of relevant quantities for 
management as estimated from the posterior are in 
Table III. There is a low probability that skipjack 
had been biologically overexploited in the last years. 
Median point estimates provide an optimistic 
scenario if the reference MSY is the management 
objective. Exploitation rates and catches have been 
smaller than those corresponding to the MSY. On 
the other hand, the biomass in 2005 - the most recent 

 
Figure 3: Joint posterior distributions for the dynamic biomass model parameters (r, k and q). The lines are at the 0.05, 
0.25, 0.50, 0.75 and 0.95 of the largest density. 
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Figure 4: Catch rate and the fitting of de models as 
described by the samples of θ  draw from the posterior. 
Solid lines stands for the minimum and maximum catch 
rates as predicted with all sampled θ  vectors. Dashed 
line is the median. 
 

 
Figure 5: Projection of the biomass as predicted using 
posterior empirical distribution as estimated using 
informative prior distribution. Solid line stands for the 
median, while dashed lines stand for the quantiles of 0.05 
and 0.95. 
 
year in the data time series - was probably 50% 
larger than the BMSY, though uncertainties are large 
as can be verified from the inter-quantile range. 
 
3.3 - Management actions and objectives 
 Expectations as calculated using posterior 
distributions are in Table IV. If effort levels remain 
like they are nowadays (status quo – BB = 0 and PS 
= 0 in Table IV) expectations of annual catches is 
close to 21,500 tons over the next 5=T  years. 
Similar yields could be obtained by replacing 20% 
of the current bait-boat effort by 600 fishing days of 
purse-seine boats. The proportion of skipjack 

catches by bait-boats decreases sharply concurrent 
with the authorization of fishing days for purse-seine 
boats. Expectations of the coefficient of variation 
(CV) are between 0.1 and 0.2 no matter the 
management action adopted. 

If 1200 purse seine fishing days were 
allowed together with current bait-boat effort (BB = 
0) the annual landings would increase to 29,000 
tons, but the risk of economic struggles for bait-
boats (CRF) would be large (> 0.25). In fact, the 
risks for catch rates of bait-boats seem to be of more 
concern than risks about the skipjack biomass (BF), 
which were all quite low. 
 Relationships among the four measurement 
criteria for all alternative actions are in Figure 6. All 
the correlations are positive, but non-linear. If the 
accumulated yield (ACT) increases, the coefficient 
of variation (CV) and the risk measurements (BF 
and CRF) increase as well. The point is how 
decision makers deal with compensations between 
risks and earnings. The shape of the curves 
representing the relationship between ACT and CRF 
and between ACT and BF are similar, but the catch 
rate failure risk (CRF), that stands for the economic 
struggles of the bait-boat fleet, increases faster and 
is comparatively larger than the biomass failure risk 
(BF). For example, if the current bait boat effort is 
maintained and 1200 purse-seine fishing days are 
allowed, than the catch rate risk will be much larger 
(> 25 %) and the biomass risk will remain low 
(Table IV). Most of the aggressive management 
actions, like allowing for 2100 or more purse-seine 
fishing days, result in large catch rate failure risk 
(CRF) but also in large accumulated catches (ACT) 
(Fig. 6). 

The five top management actions as ranked 
using the overall performance measure TU  are  
in Figure 7. In the base case (equal weights for  
all attributes) just a slight increase of bait-boat  
fleet (5%) is the best choice, because it maximizes 

TU  (Fig. 7 A). Status quo and even some 
replacement of bait-boats by purse-seine  
boats are also in the top five actions. When  
the weight of the risk for biomass (BF) is large,  
the results are similar to those of the base case 
(Figs. 7 A and B). However, sharp management 
strategy changes are requested if the weight of 
accumulated yield (ACT) is large, because 
aggressive replacement of bait-boats by purse- 
seiners are the solution (Fig. 7 C). Finally, if  
the weight for the risk of economic struggle for  
bait-boat fleet (CRF) is large, we should expect  
that reductions of the fleet to be the action that 
maximizes TU . 
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Table III: Summary of the estimates as calculated using the joint informative posterior distribution. C, B and 
ER are catch, biomass and explotation rate respectively. The term MSY indicates the estimated values at the 
traditional “Maximum Sustainable Yield” and LAST stands for the estimates in the last year analyzed. 
 
 5% 25% median 75% 95% 
CMSY 25271.85 28539.74 31930.60 38217.33 55373.80 
BMSY 39784.97 51338.92 64341.63 80869.19 126019.10 
BLAST 56620.09 77098.74 100201.62 129862.90 215462.64 
ERMSY 0.31 0.43 0.52 0.62 0.78 
BLAST/BMSY 1.36 1.48 1.55 1.64 1.77 
CLAST/CMSY 0.48 0.69 0.83 0.92 1.04 
CLAST/BLAST 0.12 0.20 0.26 0.34 0.47 
ERLAST/ERMSY 0.27 0.42 0.53 0.63 0.77 

 

 
Figure 6: Trade-off between attributes: CV - coefficient of variation of the catches, ACT - Present value of the 
accumulated catch, BF - biomass failure risk and CRF - catch rate failure risk. Different management actions are 
represented by dots. 
 

Results we gathered could be also used to 
grossly generalize catch instead of “fishing days” 
enforcement.  

Expected annual total landings given in 
Table IV could be used as TAC. For example, if 
decision makers choose to replace 20% of bait-boat 

fleet by 600 purse-seine fishing days, they could 
allow for an annual TAC equal to 22,566 tons. The 
total TAC could be shared by fleets according to the 
PB proportion which is also showen in Table IV. 
Close to 17,150 tons (≈ 76% of the total TAC) 
should be caught by bait-boat fleet. 
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Table IV: Expectation of quantities of interest after enforcement of 36 different management actions. 
Numbers in the column “BB” are the alteration (%) of bait-boat effort, while in the column “PS” they are the 
number of fishing days allowed for purse-seine fleet. “C” stands for expected means of annual catches over 5 
years, while “PB” stands for the proportion of total yields that is caught by bait-boat fleet. Attributes 
evaluated are: ACT - Present value of the accumulated catch, CV - coefficient of variation of the catches, CRF 
- catch rate failure risk, and BF - biomass failure risk. 
BB PS C PB CV ACT  BF CRF BB PS C PB CV ACT  BF CRF

-20 0 17876 1.00 0.11 84069 0+ 0.01 0 1200 29202 0.67 0.13 140117 0+ 0.29

-20 600 22566 0.76 0.10 107560 0+ 0.06 0 2100 33160 0.54 0.18 160464 0.01 0.39
-20 1200 26519 0.62 0.11 127465 0+ 0.20 5 0 22313 1.00 0.10 105027 0+ 0.05
-20 2100 31116 0.49 0.16 150843 0.01 0.33 5 600 26429 0.80 0.11 125795 0+ 0.18
-15 0 18806 1.00 0.11 88460 0+ 0.01 5 1200 29821 0.68 0.13 143042 0.01 0.31
-15 600 23381 0.77 0.10 111403 0+ 0.08 5 2100 33623 0.55 0.19 162647 0.01 0.40
-15 1200 27221 0.63 0.12 130772 0+ 0.22 10 0 23136 1.00 0.10 108921 0+ 0.07
-15 2100 31656 0.50 0.16 153384 0.01 0.35 10 600 27138 0.81 0.11 129149 0+ 0.21
-10 0 19715 1.00 0.11 92751 0+ 0.02 10 1200 30419 0.69 0.14 145871 0.01 0.33
-10 600 24175 0.78 0.11 115148 0+ 0.10 10 2100 34067 0.56 0.19 164743 0.01 0.42
-10 1200 27902 0.64 0.12 133983 0+ 0.24 15 0 23937 1.00 0.10 112715 0+ 0.08
-10 2100 32177 0.52 0.17 155833 0.01 0.36 15 600 27826 0.82 0.11 132406 0+ 0.24
-5 0 20603 1.00 0.10 96943 0+ 0.02 15 1200 30998 0.70 0.14 148606 0.01 0.35
-5 600 24947 0.79 0.11 118795 0+ 0.12 15 2100 34493 0.57 0.20 166753 0.01 0.43
-5 1200 28562 0.66 0.12 137098 0+ 0.26 20 0 24717 1.00 0.10 116412 0+ 0.10
-5 2100 32678 0.53 0.17 158193 0.01 0.38 20 600 28493 0.82 0.12 135567 0+ 0.27
0 0 21468 1.00 0.10 101035 0+ 0.03 20 1200 31556 0.70 0.15 151248 0.01 0.37
0 600 25699 0.8 0.11 122343 0+ 0.15 20 2100 34901 0.58 0.21 168680 0.01 0.44

 
4 - Discussion 
 If there is no contrast in the fishing effort 
time series – periods of low effort alternating with 
periods of high effort - then the estimations of 
biomass dynamic model parameters are unreliable 
(Hilborn & Walters 1992). However the data set we 
analyzed is reasonably informative because prior 
distributions were clearly updated for r and q 
parameters. 
 Posterior estimation of r was too  
large and has no biological meaning. Maybe  
we should look at this estimate just as 
mathematical coefficient suitable to fit the data. 
In fact Laloë (1995) argues that parameters of 
biomass dynamics models should not be 
interpreted as biological attributes. Whatever, 
large estimates of r are not uncommon for tunas. 
For example in a recent stock assessment of 
South Atlantic yellowfin tuna, a log-normal 
prior, ( )0.050.8; =σ=μN , together with 

bounds for r at 0.65 and 0.9 resulted in a final point 
estimation close to 0.8 (Anonymous, 2004). Hence, 
the estimate we gathered for the skipjack in the 
Southwest Atlantic might indicate that the 
populations of the small skipjack tuna is probably 
more productive than the yellowfin tuna population. 
Skipjack ranked fourth in the world landings (FAO, 
2002). 

If we compare k and the biomass estimated 
for the last simulated year (i.e. 2006) it becomes 
apparent that the biomass has decreased 25% across 
the last decades if compared with original unfished 
level, probably due to the fishery mortality mainly. 
That reduction in the stock biomass is similar to that 
observed for the Western and Central Pacific oceans 
(WPO), where current catch levels are considered 
sustainable for current stock productive conditions 
(Langley et al. 2004). In the eastern Pacific ocean 
(EPO) the current catches are considered bellow the 
MSY (Maunder, 2003) and the stock biomass has  
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Figure 7: Performance as measured using UT of ten of the better actions in three simulations. Coefficient of variation (CV) of 
catches, cumulated catch over T years (ACT), risk for stock biomass (BF) and economic risk for the traditional bait-boat fleet (CRF) 
are the measurements used to calculate UT. The weights of the attributes are the numbers in the boxes inside the panels. The paired 
numbers in the main area of the panel stands for the management actions. The number at left stands for modifications (%) of the bait-
boat effort while the number at right stands for modifications (fishing days) of the purse-seine effort. 
 
not changed too much in the EPO (IATTC, 2003). 
The results we gathered for the Southwest Atlantic 
(SWAO) are similar to those of the Western, 
Central and Eastern Pacific (WPO and EPO). In 
contrast, for the East Atlantic (EAO) fishing 
ground, the scenario is not so optimistic. Although 
no formal assessment analysis has been done, 
Fonteneau (2003) suggests that the decreasing 
trends in the catch per unit of effort and in the 
average length and weight of fish landed, is an 
indication that skipjack is fully exploited in the 
EAO. 

Probably the main restrictions to our results 
are related to the assumption of a constant 
catchability coefficient (q). The validity of such 
assumptions depends on the believes that 
standardization analysis of the catch rate (Andrade, 
2007) was enough to produce reliable abundance 
indexes. Here we just assume that the available 
indexes are reasonable. Another issue related to q is 
that we assumed it would remain constant for bait-
boat and purse-seine when calculating the predictive 
outcomes of alternative management actions into 

the next five years. Although this is speculative, any 
attempt to estimate the future modifications of q 
would be probably a speculation as well. Hence, our 
choice was to adopte the simplest approach. 

In order to use more complex and realistic 
models, and to relax restrictive assumptions on 
relevant parameters like q, more information would 
be necessary. An alternative would be to integrate 
into a model the catch rates as available in the paper 
of Andrade (2007), and the catch-at-length (or 
catch-at-age) data as published in Jablonski & 
Matsuura (1985) and Vilela & Castello (1993). 
Those extended models should be evaluated in 
future studies but are not available to decision 
makers today. 

Although there are international institutions 
in charge of the tuna stocks management 
worldwide, there are no management 
recommendations for the skipjack fishery. The lack 
of fishery assessment analysis results in inexistence 
of formal management actions in the Atlantic. 
Hence skipjack fishing activities have been working 
similarly to an open-access fishery system. Most of 
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those types of fishery systems tend to biological 
overexploitation scenarios, for which skipjack 
provide one of the few exceptions (Clark 1985, 
Hilborn & Walters 1992). When the prices are low 
and/or markets saturate, there is no advantage in 
increasing catches. This seems to be very true for 
skipjack fisheries. The inclusion of market prices 
into the analysis framework seems to be mandatory 
in order to model the behavior of fishery systems. 
Examples of such economic analyses can be found 
in Clark (1985). 

Economic factors probably prevent 
biological overexploitation in the skipjack fishery. 
Biomass has been larger than MSY in the SWAO in 
spite of more than 20 years of unregulated industrial 
fishery. Indeed the economic risks of expanding the 
Brazilian fishing operations are much larger than 
risks for the skipjack stock. Expansion of industrial 
fisheries depends primarily on the possibilities of 
increasing the economic efficiency of the systems. 
The introduction of a purse-seine fleet could 
enhance the overall fishing fleet efficiency, but it 
would increase the risks of economical problems for 
the traditional bait-boat fleet. In fact “replacement” 
actions are apparently the better management 
alternatives if the objective is to increase the 
accumulated economic gains across the coming 
years. The “aggressiveness” of the implementation 
depends on the profile of the decision makers. Risk 
prone decision makers will favour a large number of 
purse-seine fishing days and the elimination of 
some bait boats, while risk averse decision makers 
will tend to replace a moderate number of bait-boats 
by a small (maybe moderate) number of purse-seine 
fishing days. 
 Finally, it is important to highlight that, as 
new data become available, follow-up studies about 
the Brazilian skipjack tuna should include other 
criteria to measure how suitable the exchange 
between purse-seine and bait-boats is. Changes in 
the number of jobs should be one of the criteria 
among the “social” ones. Among the ecological 
issues the risk of catching undesirable juveniles 
and/or adults of other marine species, is also of 
primarily interest. 
 
5 - Conclusion 
 To this day, the main argument against 
introducing purse-seine is the economic difficulties 
it would cause to the traditional bait-boat fleet. 
Although we only did a partial evaluation of effects 
from introducing a new tuna purse-seine fleet, we 
would like to highlight some things we have learned 
about skipjack tuna management in the SWAO from 
this exercise. 

 In any business, including those related to 
exploration of natural resources, the reduction of 
uncertainty usually helps when choosing options 
assuming less risks and increased benefits (Raiffa 
1968, Walters 1986, Frederick & Peterman 1995). 
In special, we highlight that the smaller the 
uncertainty on the relative efficiency of purse-
seiners (e.g. bbpsq / ), the more accurate are 
estimates and predictions about the suitable actions 
from an economic point of view. Any effort to 
estimate more reliable indexes of abundance, and to 
build an up to date catch-at-length (or catch-at-age) 
database should be encouraged. Those are the 
critical information to reduce uncertainty on the 
estimates which are necessary to take management 
decisions. 
 It is hard to guess what would happen with 
the fishery system, before effectively implementing 
some action one is interested in. To a certain extend 
optimal levels of exploitation must be determined 
by trial and error. In this sense, endorsement of few 
fishing days for purse-seiners seems to be positive 
in promoting acquisition of knowledge with small 
risks for biomass. Informative but reversible 
experiments seem always the best alternative 
(Ludwig et al. 1993). In this sense, we believe that 
experiments with chartered purse-seine vessels on 
temporary contracts are a sensible first step before 
taking chances with a long-term, maybe 
irreversible, decision. 
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