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Estimation of birthdates and catch-at-age using length
frequency analysis (LFA), with application for
skipjack tuna (Katsuwonus pelamis) caught
in the Southwest Atlantic
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length frequency analysis (LFA), with application for skipjack tuna (Katsuwonus pelamis)
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Converting length frequencies into age frequencies is an important component of a fisheries
assessment. In this paper we use a length frequency analysis (LFA) to estimate birthdates
after converting length data into catch-at-age, and use simulation studies to compare model-
selection criteria and to examine the reliability of the resulting estimates. Deviance and an
adaptation of the Akaike Information Criterion performed best. LFA results in useful
estimates of birthdates and of catch-at-age if reliable length frequency data and estimates of
growth parameters are available. The analysis is applied to skipjack tuna (Katsuwonus
pelamis) caught in the Southwest Atlantic Ocean. Although spawning is reported to be
seasonal in subtropical waters, the birthdates of the fish caught there were spread uniformly
across the year. Young skipjack become vulnerable to fishing mainly in the first quarter of
each year. Recruitment of strong year classes did not affect fishery yields equally in the
Southwest Atlantic and the Caribbean Sea, so the assumption of a unit western stock for
management purposes and the stock structure of skipjack in the Atlantic need further
evaluation.
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Introduction

Decomposing length frequency histograms into age classes

using length frequency analysis (LFA) used to be ad hoc

(Ricker, 1975), but it has evolved into a formalized proce-

dure by extending it to the theory of mixtures of probability

distributions (Hasselblad, 1966), usually of Gaussian form.

In one of the first applications using a coherent statistical

approach (e.g. likelihood), McNew and Summerfelt (1978)

found it hard to produce consistent estimates where growth

rates varied over the period analysed. They also had some

difficulty dealing with the unknown number of age groups

and with the estimation of too many parameters, including

a standard deviation for each age class. More realistic

estimates were obtained by MacDonald and Pitcher (1979),

who modified the procedure by forcing constraints on

parameter estimations.

Further improvements in LFA were made in the papers

of Schnute and Fournier (1980) and Fournier and Breen
1054-3139/$30.00 � 2004 International Cou
(1983), by imposing some model structure and assumptions

on growth, mortality, and standard deviations of length for

each age group. Growth parameters can be poorly estimated

from frequency data, resulting in incorrect age composition.

Therefore, it is generally advisable not only to impose a

growth structure (e.g. von Bertalanffy), but also to assume

model parameters gathered from independent sources

(Quinn and Deriso, 1999). Mortality assumptions proved

to be useful sometimes (e.g. Fournier and Breen, 1983), but

not in all situations (e.g. Johnson and Quinn, 1987).

In most cases, the addition of model structure enhances

the LFA by increasing the speed of convergence in the

iterative procedure, and by helping to obtain consistent

solutions (e.g. to obtain the same estimates no matter what

the starting values used in the iteration were; Fournier and

Breen, 1983; Johnson and Quinn, 1987). In practice, esti-

mates from LFA are reliable and useful only if auxiliary

information (e.g. a growth model and parameters) is avail-

able (Quinn and Deriso, 1999).
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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Several other length-based procedures are presented in

a volume edited by Pauly and Morgan (1987), and a further

review of LFA applications was provided by Rosenberg

and Beddington (1988). During the past two decades, LFA

has proved to be useful in stock assessment with the help of

software packages developed primarily to estimate growth

parameters and age composition from length frequency data

(i.e. ELEFAN e Pauly and David, 1981; MULTIFAN e
Fournier et al., 1990; MULTIFANeCL e Fournier et al.,

1998). In most of these procedures, LFA is used to estimate

growth parameters or catch-at-age tables to support the

stock assessment. However, in this paper we extended LFA

to back-calculate birthdates, by handling the average age of

distinct age classes more freely than in traditional formula-

tions, and by including simulation studies to check the

reliability of the estimates.

We illustrate the proposed procedure by assessing a real

question. Skipjack tuna (Katsuwonus pelamis) inhabiting

the Atlantic Ocean have been divided by the International

Commission for the Conservation of Atlantic Tunas

(ICCAT) into two distinct stocks (ICCAT, 2000, 2003),

a more productive eastern stock, and a western stock, which

is the subject of the present work. Although there is a

possibility of mixing, the hypothesis of separate East and

West Atlantic stocks has been maintained as most plausible

(ICCAT, 2003), motivated by:

(i) the large distances between fishing grounds;

(ii) environmental restrictions;

(iii) the existence of a spawning area in the East as well as

in the West Atlantic;

(iv) the lack of additional evidence (e.g. no significant

transatlantic migrations in the tagging data).

ICCAT also suggested that still smaller management units

could be considered on the basis of biological character-

istics of the species and the distinct areas in which fishing

takes place.

The reproductive behaviour of Atlantic skipjack is usu-

ally assumed to be opportunistic, because mature oocytes

are found throughout the year (Cayré and Farrugio, 1986;

Goldberg and Au, 1986). The opportunistic behaviour

associated with a highly migratory lifestyle would imply

that skipjack could be in suitable oceanographic conditions

to spawn partially several times a year. Therefore, pro-

nounced seasonal variation in the birth rate and recruitment

would not be expected, at least in equatorial waters, where

environmental conditions favour continuous spawning

activity (Cayré et al., 1986).

Some authors have modelled recruitment as erratic over

time, with no main recruitment season (e.g. Fromentin and

Restrepo, 2001). In contrast, results of surveys of the West

Atlantic stock, although supporting the hypothesis of con-

tinuous spawning throughout the year, suggest peak spawn-

ing from November to March (Kikawa and Nishikawa,

1980; Matsuura, 1982, 1986; Goldberg and Au, 1986). The

theory of a main spawning season also supports the
suggestion of Matsumoto et al. (1984) that skipjack are

year-round spawners in the tropics and spring-to-autumn

spawners in the subtropics. Most skipjack in the Southwest

Atlantic are caught in the subtropics (south of 20(S;
ICCAT, 2003), giving a basis for the seasonal oscillation in

the gonadal activity observed by Goldberg and Au (1986)

and egg and larva densities (Matsuura, 1982, 1986).

Different spawning patterns in tropical and subtropical

areas are also seen in other oceans (Schaefer, 2001;

Stéquert et al., 2001).

Currently available information suggests distinct repro-

ductive and perhaps recruitment patterns for different

fractions of the skipjack population in the Atlantic Ocean.

Whereas recruitment should be assumed to be erratic for

the tropical East Atlantic stock, a seasonal peak seems

plausible for skipjack exploited in the subtropical South-

west Atlantic. It is important for the construction of assess-

ment models and for fishery management decisions to

determine whether reproductive (spawning and recruit-

ment) pulses exist for the West Atlantic stock. In order to

address this question, the ideal source of information would

be reliable, high-precision catch-at-age data, such as those

provided in some cases by daily ring studies of otoliths (e.g.

Uchiyama and Struhsaker, 1981), which allow the back-

calculation of birthdates. If birthdates were available, it

would be easier to determine whether the spawning season

supports the fishery. However, such precise catch-at-age

data are not available for West Atlantic skipjack, so we

investigate the issue by applying a proposed extension of

LFA to length frequency distributions of reported landings.

Ianelli (1993) also tried to do this, and it is his results that

encouraged us to proceed with exploring this potential use

of LFA.

Data and analyses

Fishing data

Data on the tuna fishery in the Atlantic are available from

ICCAT. In the West Atlantic, skipjack are caught mainly in

the north (Caribbean Sea), and off the southeastern coast of

South America (Figure 1). Length frequency data were

collected from May 1995 to December 2001 in Itajaı́

(26(55#S 48(40#W), the main fishing harbour on the

Brazilian coast. We assume them to be representative of all

skipjack caught in the Southwest Atlantic and landed in

Brazil. However, despite length data being easy to obtain,

there are at least three difficulties in obtaining length

frequency distributions representative of the total catch in

the fishery: the boats can fish in more than one area during

a trip; skipjack form schools, and different schools can

display different modal lengths; and while fish are offloaded

to shore, knowledge of source area and school is scanty.

In order to investigate the bias that could be introduced

into the data by the landing process, we plotted the standard

error (s.e.) of the average length as a function of the sample

http://icesjms.oxfordjournals.org/
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size. Measuring 110 skipjack ensured that the s.e. was

minimized. We also tested whether the length frequency

determined early during a landing operation differed from

that obtained when offloading was almost finished. In

almost half the landings analysed, there were peaks repre-

sentative of different length classes, so the sampling proce-

dure adopted wherever possible was to measure at least 110

skipjack during the first half of the offloading process and

another 110 during the second half. The effective number

of skipjack measured per month and year are shown in

Table 1.

Lengtheweight relationships for the Southwest Atlantic

(Andrade and Campos, 2002) were used to estimate the

total weight of the fish in the samples. Ratios between the

total weight caught and the weight of the samples were

used to extrapolate the total monthly length frequency from

length frequency samples (Sparre et al., 1989).

Model building and fitting

To derive the maximum likelihood function for LFA, we

used the approach of Schnute and Fournier (1980), and

Figure 1. Skipjack tuna catches and spawning area in the West

Atlantic. Spots indicate small catches. This schematic map was

constructed by overlaying the spawning map of Matsuura (1986)

on the map of catches available from ICCAT (2003).
Fournier and Breen (1983), reviewed in MacDonald (1987).

Hence, we assume the probability density function of

length l for a given age class i to be normal:

fiðlÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2psi
2

p exp �ðl� miÞ
2

2si
2

" #
ð1Þ

where i ¼ 1;.;A refers to the index for the age class with

mean age ai, mi the mean length predicted for age class i,

and si the corresponding standard deviation (s.d.). We

assume that mi is related to ai by a von Bertalanffy growth

equation and that si is proportional to the square root of ai:

si ¼ s
ffiffiffiffi
ai

p ð2Þ

The above function is an extension of that of Fournier and

Breen (1983), though where we use the more general mean

age ai, Fournier and Breen used the age-class index i.

In all, k length intervals (l ( j�1), l ( j)], indexed by j

(j ¼ 1;.; k), are defined. The probability that a length

measurement for a fish in age class i is in length interval j is

Fji ¼
ðlðjÞ

lðj�1Þ

fiðlÞ dl ð3Þ

If N is the number of fish measured and gi the true

proportion of fish in age class i, then the expected number

of fish of size class j is

Lj ¼ N
XA
i¼1

Fjigi ð4Þ

The proportion of fish in size class j is then

pj ¼
Lj

N
¼
XA
i¼1

Fjigi ð5Þ

Finally, if the k-dimensional vector of observed length

frequency Lobs ¼ fLobs
j g is assumed to follow the multino-

mial distribution

fðLobsÞ ¼ N

Lobs
1 .Lobs

k

� �Yk
j¼1

p
Lobs
j

j ð6Þ

then the negative log-likelihood function to be minimized is

‘ðLobs
Kfmig;fgig;sÞ ¼ �

Xk
j¼1

Lobs
j log

XA
i¼1

Fjigi

 !
ð7Þ

We used the von Bertalanffy parameters estimated by

Vilela and Castello (1991) to describe the growth process.

Hence, the model used to predict mean length ma for a given
mean age a was

http://icesjms.oxfordjournals.org/
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Table 1. Number of skipjack tuna measured per year and month.

Month 1995 1996 1997 1998 1999 2000 2001 Total

January d 954 879 1 351 2 449 3 516 250 9 399
February d 1 254 795 1 174 1 115 1 975 2 093 8 406
March d 1 398 1 011 1 301 1 108 749 1 072 6 639
April d 569 900 1 070 1 390 924 831 5 684
May 177 551 151 d 545 1 264 495 3 183
June 239 668 634 618 462 497 399 3 517
July 566 d 600 317 1 660 684 697 4 524
August 676 104 691 861 617 d 910 3 859
September 292 100 597 456 478 232 298 2 453
October d d 882 213 d d d 1 095
November 629 485 d 418 1309 130 553 3 524
December 578 86 376 175 d d 454 1 669

Total 3 157 6 169 7 516 7 954 11 133 9 971 8 052 53 952
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ma ¼ 87:078½1� exp�0:22ðaþ2:071Þ� ð8Þ

where ma is in cm and a is in years.

To fit an LFA to data, A, the number of age classes,

needs to be specified in advance. In order to deal with this

unknown number, we fitted a set of models from A ¼ 1 to a

maximum as large as necessary to represent all discernible

age classes, and used an index (e.g. the Akaike Information

Criterion, AIC; Akaike, 1974) to choose the best fit.

For A age classes, there are 2!A parameters to be esti-

mated. In preliminary applications of the LFA, the solutions

appeared to be highly dependent upon the starting values

of the parameters, because the shape of the negative log-

likelihood function is not informative or has several local

minima. Therefore, each optimization procedure was tried

with 10!A random starting parameter sets. For instance,

for A ¼ 3, 30 random starting parameter sets were simu-

lated and the optimization was applied 30 times. Seidel’s

updating method was used as a ‘‘tuning’’ mechanism to find

the minimum negative log-likelihood for each set of start-

ing parameters. For a given set of starting parameters

m#if g; g#if g;sð Þ, the optimization function was applied to

estimate {mi}, {gi}, and s. Then, the estimated {mi}
replaced the initial m#if g, the optimization was applied

again, and the estimated {gi} replaced the initial g#if g, and
so on. The procedure was repeated until further variation in

the likelihood function was negligible. Finally, the smallest

negative log-likelihood obtained from all 10!A optimiza-

tions was selected.

Simulation study

To choose among models fitted for different values of A,

some criterion had to be used. However, the reliability of

the model-selection criterion had to be examined too, so an

operating model was used to simulate data and to test the

performance of different criteria. The simulation study
allowed assessment of the bias and the uncertainty in the

resulting parameter estimates. Our operating model was

defined after fitting the proposed model to real data using

the AIC as the optimization criterion, assuming that the

uncertainty structure of the model was correct, and taking

the estimated parameters as if they were true.

Given the operating model, length frequencies were

simulated with age A ranging from 2 to 6. Each simulation

was conducted for three sample sizes of fish length

measurements (N): 15 000, 40 000, and 65 000. The vector

{ai} was simulated in three ways:

(i) a random selection of ages from a continuous uniform

distribution between 1 and 6 years, i.e. random

distances between age classes;

(ii) a random selection of a1 from a uniform distribution

from 1 to 3 years, with ai ¼ a1 þ ði� 1Þð0:5Þ for age
groups i ¼ 2;.;A, a constant distance of 0.5 years

between age classes;

(iii) as for (ii), but with a constant distance of 1.0 year

between age classes.

These simulation arrangements emulate three biological

ideas in simplified form: (i) random distances emulate the

lack of a cyclic pattern in the occurrence of reproductive

pulses; (ii) a constant distance of 0.5 years emulates two

reproductive pulses each year; (iii) a constant distance of

1.0 year emulates one reproductive pulse per year. These

three simulation arrangements correspond with ideas on

reproduction published elsewhere (Cayré and Farrugio,

1986; Cayré et al., 1986; Goldberg and Au, 1986;

Matsuura, 1986; Pagavino, 1997).

The vector {gi} was built by randomly sampling A

independent values (u1;.; uA) from a uniform distribution

between 0 and 1, and standardizing these values to add up

to 1:

gi ¼
uiP
s us

ð9Þ
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Finally, a Normal random variable with mean zero and

s.d. sj was added to the simulated length frequency in

length class j ( j ¼ 1;.; k), emulating a sampling error. To

make the shape of the length frequency more realistic, the

standard deviation sj was defined as the square root of 10,

15, and 20% of the number of fish simulated in each length

class, respectively.

Overall there are 135 different scenarios in a factorial

design (5 values for A, 3 values for N, 3 mechanisms to

define {ai}, and 3 values of sj). For each scenario we

simulated three replicates. Hence, we performed a total of

405 length frequency simulations to assess the model-

selection criteria and the accuracy of the estimates (see

details below).

The best fit and the reliability of estimates

The AIC (Akaike, 1974) and Deviance (McCullagh and

Nelder, 1989) were used as criteria to select among models

with different values of A. Choosing among any two models

using the AIC is simply to select the model with the

smallest AIC. In contrast, the Deviance function (DEV)

applies only to nested models, by testing if the addition of

more parameters significantly improves the fit (McCullagh

and Nelder, 1989). Under suitable conditions, the reduction

in Deviance attributable to the addition of new parameters

can be accurately approximated by a c2 distribution. We

used a 5% significance to decide if the reduction in

Deviance represented a marked improvement of fit.

Four variations of the traditional AIC and DEV were

evaluated:

(i) the global minimum AIC (AIC_G);

(ii) the global minimum AIC restricted to the condition

that distance (in years) between estimated ages was

R1/12 years, which reflects the monthly scale of the

data (AIC_GR);

(iii) the first local minimum AIC (AIC_F);

(iv) Deviance (DEV).

To compare the performances of the different model-

selection criteria, three measures were defined:

(i) the error in determining the correct number of age

classes;

(ii) the distance in years between the simulated age and

the nearest estimated age class;

(iii) the sum of the absolute differences between the

proportion of fish in each year class in the simulated

and in the estimated models.

These three measures are represented by the quantities D, d,

and T in Equations (10)e(12) below.
The estimated ages should be ‘‘near’’ the simulated ages

in accurate models, especially where age classes contain

many fish. Hence, let B and B# denote the number of age

classes in the operating and the estimating models,

respectively. Similarly, let {a1;.; aB} and a#1;.; aB#f g
denote the corresponding mean ages, and the vector

{h1;.; hB} denote the proportion of fish in the age classes

of the operating model. We defined

D¼ B#�B ð10Þ

and

di ¼ min
j¼1;.;B#

jaj#� aij for i¼ 1;2;.;B: ð11Þ

The larger the absolute values of D, the poorer the quality

of the estimation model. Acceptable models should result in

estimates of a#i close to ai, at least for the most represent-

ative age classes. Therefore, the larger the value of hi, the

smaller should be the corresponding di.

In order to make comparisons between simulated and

estimated proportions of fish in different age classes, the

third measure had to be defined. For convenience, age

classes of the simulation and estimation model were

rounded to the nearest year and denoted by the term ‘‘year

classes’’. For instance, a model with a vector {ai} with five

age-class parameters {2.8, 3.5, 4.1, 4.4, 5.3} would result in

a vector of three year classes {3, 4, 5}. Let E and E# denote
the number of year classes in the operating and the

estimating models, respectively. Similarly, {f1;.; fE} and

f#1;.; f#E#f g denote the corresponding proportion of fish in

these year classes. Then

T¼
P

k jf#k � fkj
2

with k¼ 1;.;maxfE;E#g ð12Þ

The larger the values of T, the poorer the quality of the

fit. The division by 2 simplifies the interpretation: if all fish

are classified in a wrong year class, the summation in the

numerator is 2, and T is 1 (i.e. an error of 100%).

One among the four model-selection criteria (AIC_G,

AIC_GR, AIC_F, DEV) was chosen on the basis of the

performance of the measurements. To verify which factor

(e.g. noise, number of simulated age classes) affects the

performance of the chosen model-selection criterion most,

we undertook an analysis of variance using D and

logðTþ 0:03Þ as response variables. This transformation

for T proved to be necessary to make the response variable

nearly Normal.

Birthdate calculations

Once the LFA procedure and the selection criteria had been

tested through simulation, the procedure was applied to

available monthly length frequency data. The estimated

catch-at-age parameters a#if g, together with the correspond-

ing proportions gi#f g, were the main results of the analysis.

These estimates were used to back-calculate the estimated

month of birth (the birthdate), as follows. If in a given

month we estimated an age-class parameter, for instance

a#iZ2:8 years, this indicates a birthdate 34 months earlier

for 100g#i% of that month’s total catch. We made the

http://icesjms.oxfordjournals.org/
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simplifying assumption that all data were from instanta-

neous fishing in the middle of the month.

In order to determine whether there were seasonal

variations in the time-series of monthly birthdate estimates,

we first eliminated the effect of the variability between

years by replacing monthly estimates by their normalized

z-scores (Zar, 1984). A z-score of �0.5 for a given month

would indicate that the estimate was 0.5 s.d. below the

annual average. For each month we calculated the average

z-score over all years, and also performed autocorrelation

and spectral analysis of z-score time-series to evaluate

whether there was an apparent cyclic pattern in the monthly

birthdate estimates.

Results

Fishery and length frequency data

The Brazilian bait boat fleet of Santa Catarina state yields

almost half the country’s skipjack catch in the West

Atlantic (Figure 2). Catches of this West Atlantic stock

increased from the mid-1970s to the mid-1980s, when they

peaked at 40 272 t, then decreased to oscillate around

28 000 t, apparently in dynamic stability (Figure 2).

However, despite the apparent stability in the average

annual catch, there has been strong seasonal variability in

skipjack catches in the area of study. The main fishing

season is JanuaryeMarch, the austral summer (Figure 3),

when monthly catches are about four times larger than

those made in winter (JulyeSeptember).

The size frequency plots are highly variable. In most

cases there were one or two modes, but there were other

modes sometimes, mainly from May to September (Figure

4). Clearly too, the dynamics of the age groups sampled is

high, some modes occurring in one month but missing from

the next.

Criteria for model selection

When taken as a function of A (the number of age classes),

model fitting with AIC and DEV worked well for most data

Figure 2. Historical landings of skipjack tuna in the West Atlantic:

WAT, total catches of the West Atlantic stock; BR, Brazilian fleet

catches; BRSC, catches of the Brazilian fleet of Santa Catarina

state; OTH, catches of other fleets (source: Paiva, 1997; GEP/

UNIVALI, 2002; ICCAT, 2003).
sets. In some cases, however, both criteria showed undesir-

able patterns (Figure 5). The results of the comparisons

among all four criteria are shown in Figures 6e8. All criteria,
except the AIC_G, tend to underestimate the true number of

age classes (Figure 6), but calculations of median and mean

D suggest that AIC_G is more biased than AIC_F and DEV

(Table 2). Closer examination indicated that there were very

large negative errors (i.e. underestimation) only when age

classes with a very small number of fish (usually !1%)

showed up in the model simulation.

The minimum distance (di) between simulated and

estimated ages and the proportion of fish at each simulated

age is depicted in Figure 7. Most age classes containing

a large proportion of the fish were estimated accurately

using any of the four criteria. Values of di were large only

for age classes with a small proportion of fish. Overall,

about 75% of ages in the length frequencies were accur-

ately estimated ( precision of one month) employing any of

the four criteria.

The proportions of fish classified in incorrect year classes

were slightly different among criteria (Figure 8). In more

than 45% of the fits with criteria AIC_F and DEV, no fish

were classified in wrong year classes, whereas this

proportion was about 40% for the other two criteria. In

more than 70% of cases, the proportion of fish classified in

wrong year classes was not O15% when the criteria AIC_F

and DEV were considered.

In summary, the performances of the four criteria are not

substantially different, but AIC_F was selected as best

owing to the central tendency displayed by the measure of

accuracy D (Table 2), and because of the slightly better

performance for measure T.

Analyses of variance

While the factor ‘‘number of fish’’ in the length frequency

is not significant (Table 3), the number of age classes has

a negative effect on the accuracy (Figure 9b, e). Measure D

is not close to 0, and measure T becomes large for length

Figure 3. Monthly variation in skipjack tuna landings in Santa

Catarina state pooled from 1995 to 2001 (source: Paiva, 1997;

GEP/UNIVALI, 2002).

http://icesjms.oxfordjournals.org/
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Figure 4. Length frequencies of skipjack tuna caught in the Southwest Atlantic. Months correspond to the rows, and years (from 1995 to

2001) to the columns. Empty squares depict missing length frequency samples.
frequencies in which the distance between age classes is 0.5

years (Figure 9c, f). Therefore, a small distance between

age classes (in this case, 0.5 years) also has a negative effect

on the accuracy.
The number of peaks in the length frequency distribu-

tions increases if noise (related to sj) is introduced, so the

chance of detecting false age classes is greater when analys-

ing such samples. Consequently, as noise increases, the

http://icesjms.oxfordjournals.org/
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Figure 5. Three examples of atypical performances of the c2 p-value of AIC and Deviance, as a function of the number of age groups in

the estimation model. (a) The correct number of age groups (A ¼ 3) is associated with the first local minimum AIC; (b) the correct number

of age groups (A ¼ 3) is associated with the first local minimum AIC, but the global minimum is never reached; (c) the correct number of

age groups (A ¼ 5) is not at a minimum AIC. In all cases, the c2 p-value of Deviance oscillates or never reaches the significance level

adopted (0.05).
proportion of fish classified in wrong year classes increases

(Figure 9d). In contrast, analysis of samples with noise in the

data did not result in large errors in the estimated number of

age classes (Figure 9a). In that case, the tendency induced by

the noise to overestimate was compensated for, because

AIC_F favours underestimation of the number of age classes.
Birthdate and catch-at-age calculations

Skipjack caught from 1995 to 2001 were spawned between

1989 and 2000, most (89.5%) between 1993 and 1998

(Figure 10). Such dominance is explained by the short

period during which skipjack are available to the fishery,

only the 1993e1998 year classes being available in the data
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Figure 6. Distribution of the difference between the number of

estimated and simulated age classes (D) according to four model-

selection criteria: AIC_G, the global minimum AIC; AIC_GR, the

global minimum AIC with restricted distance between estimated

successive age classes of at least 1/12; AIC_F, the first local

minimumAIC for increasing number of age classes;DEV,Deviance.
sjm
at their ‘‘strong’’ ages 2 and 3 (see below). Consequently,

we considered just these six years in the birthdate analysis.

Peak birthdates throughout the year were apparent in those

six years (Figure 10), but spectral and autocorrelation

analyses (not shown here) showed that there was no sea-

sonal variation. This result is further supported by analysis

of the z-score index. The variances of this index were high

at the beginning and end of the year. Also, the average

z-score is generally higher at the end of the year, although

there is no statistical evidence for a strong 12-month cycle

(Figure 11).

Skipjack are available to the fishery mainly from ages 1

to 4, though most catches (about 85%) are of ages 2 and 3.

During the austral summer, much of the total catch is of

young fish (z2 years old; Figure 12), but in autumn and

spring, slightly older fish (z3 years old) dominate the

catches.

The 1994 and 1997 year classes were seemingly rela-

tively strong, as evidenced by the catches of 2-year-olds in

1996 and 1999 (Figure 12b). In particular, the strong

recruitment of skipjack spawned in 1994 can be tracked
 at F
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Figure 7. Comparison of the difference between simulated and the nearest estimated ages with the proportion of fish at the simulated age,

according to four model-selection criteria: (a) the global minimum AIC; (b) the global minimum AIC with restricted distance between

estimated successive age classes of at least 1/12; (c) the first local minimum AIC for increasing number of age classes; and (d) Deviance.
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through ages 2 to 4 from 1996 to 1998. The recruitment of

fish spawned in 1997 was not so easily tracked, though its

strength was still not negligible.

Discussion

Operating models are usually necessary to test the estima-

tion procedures. In the example of skipjack, operating

models proved useful for evaluating the different model-

selection criteria and the accuracy of the estimates.

Although AIC is a popular model-selection criterion, it

can be biased for multinomial likelihoods (Hilborn and

Mangel, 1997), and because our intention was to use a

multinomial density distribution, Deviance was expected to

perform better than traditional AIC (McCullagh and

Nelder, 1989). The results of the analysis confirmed this

expectation. Nevertheless, the performance of two modified

AIC (i.e. AIC_GR and AIC_F) was similar to that of

Figure 8. Frequency distribution of the proportion of fish classified

in wrong year classes (T) for four model-selection criteria: AIC_G,

the global minimum AIC; AIC_GR, the global minimum AIC with

restricted distance between estimated successive age classes of at

least 1/12; AIC_F, the first local minimum AIC for increasing

number of age classes; DEV, Deviance.

Table 2. Basic statistics for the difference (D) between the number

of estimated and simulated age classes for different model-selection

criteria: AIC_G, the global minimum AIC; AIC_GR, the global

minimum AIC with restricted distance between estimated succes-

sive age classes of at least 1/12; AIC_F, the first local minimum

AIC for increasing number of age classes; and DEV, Deviance.

Model-selection criterion Median Mean Variance

AIC_G 1 1.452 4.011
AIC_GR �1 �0.664 3.347
AIC_F 0 �0.370 3.254
DEV 0 �0.207 3.373
Deviance, and there is likely merit in the performance of

these and other model-selection criteria (e.g. Bayesian

Information Criterion e Schwarz, 1978) being evaluated in

order to improve the LFA approach.

Selection of a representative growth model and its para-

meters is also important for LFA. As there is only one

source of growth parameter estimates for the Southwest

Atlantic (i.e. Vilela and Castello, 1991), this is the model

used in this application to skipjack. A key point for the

accuracy of the estimates obtained with LFA is the

curvature of the growth model. If the curve is relatively

flat, conversion of length to age is imprecise near the

asymptotic length (Rosenberg and Pope, 1987). Although

the model available in Vilela and Castello (1991) is

somewhat flat, the accuracy of the estimates used here was

still acceptable. In the few cases for which the estimation

models were extremely inaccurate (T > 40; Figure 8), the

poor performance was caused by, first, age classes

simulated with small proportions (e.g. !1%) being

embedded in age classes with larger proportions, and

second, rounding errors attributable to the collapsing of age

groups into year classes (the so-called ‘‘rounding effect’’).

The first cause introduced small errors because such

undetectable embedded age classes had little weight in

the analysis. However, the ‘‘rounding effect’’ introduced

large errors. For example, if an estimated mean age of 2.45

years is compared with a simulated mean age of 2.52 years,

they appear as highly inaccurate in Figure 8, because after

rounding, they fall into year classes 2 and 3, respectively.

Nevertheless, such inaccuracies affect catch-at-age (in year

Table 3. Analysis of variance to examine the effects of different

factors used to construct the operating model on the difference

between the number of estimated and simulated age classes (D),

and on a transformation of the proportion of fish classified in wrong

year classes (T). The model-selection criterion was the first local

minimum AIC (AIC_F).

Parameter d.f.
Sum of
squares

Mean
square F p

D
Sampling error 2 11.20 5.60 2.7632 0.06431
Number of fish 2 5.73 2.87 1.4145 0.24428
Number of

age classes
4 440.22 110.06 54.3049 !2.2e�16

Distance between
age classes

2 58.80 29.40 14.5069 8.3e�07

Residuals 394 798.49 2.03

Log(T+0.03)
Sampling error 2 5.658 2.829 3.8922 0.02119
Number of fish 2 1.016 0.508 0.6986 0.49788
Number of

age classes
4 6.602 1.650 2.2707 0.06104

Distance between
age classes

2 7.777 3.889 5.3499 0.00510

Residuals 394 286.388 0.727
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Figure 9. Box and whisker plot for the effects of the factors sampling error (noise), number of age classes, and distance between age

classes in the operating model on the accuracy of estimates obtained using the first minimum AIC (AIC_F). D is the difference in estimated

and simulated number of age classes, and T is the proportion of fish classified in wrong year classes.
classes) but not the estimate of birthdates, the main quantity

of interest.

One reasonable assumption is that birthdates can be used

to infer spawning dates, because times between the eggs

floating free in the water and hatching are probably short. If

the time lags are large, but constant throughout the year, the

oscillations of birthdates would mirror the variability of

spawning dates (with a fixed time lag). No matter which

assumption holds, there is no evidence in the current anal-

ysis to support the hypothesis of a single main spawning
season providing the fish entering the fishery in the

Southwest Atlantic. It is likely that, given their highly

migratory nature, skipjack derived from seasonal spawning

in subtropical waters (Matsuura, 1982, 1986; Goldberg and

Au, 1986) quickly mix with others spawned at any time and

elsewhere in equatorial waters. Therefore, the seasonal

subtropical spawning cycle does not translate into re-

cruitment variability.

Continuous recruitment of juveniles to the adult stock

does not necessarily translate into continuous recruitment to
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the fishery. Apparently, young fish join the adult population

throughout the year, but become highly vulnerable only

during the first summer after they reach 1.5 years of age. This

increase in catchability during summer has been related to

the oceanography (e.g. thermocline depth; Andrade, 2003).

To validate the results of recruitment strength obtained

with LFA, the use of other methods would be desirable.

Unfortunately, however, at present there is no other source

of information on recruitment of skipjack in the Southwest

Atlantic. Notwithstanding, although further comparisons are

not possible, the results indicating a strong year class in 1994

were consistent throughout the analysis. The dominant age

class in the catch clearly shifts from 2 to 3 and then to 4 years

old after 1996 (Figure 12), so the increasing catches of the

Brazilian fleet after 1995 (Figure 2) are clearly based on the

successful recruitment of the 1994 year class.

The definition of just one West Atlantic stock is based

on the conjecture that the fisheries for skipjack in the

Caribbean Sea and Southwest Atlantic (south of 20(S)
share the same spawning ground northeast of South

America and the recruits generated by that spawning,

Figure 10. Birthdate and the number of skipjack tuna caught in the

Southwest Atlantic from 1995 to 2001. Most catches (almost 90%)

were of fish spawned between 1993 and 1998.

Figure 11. Box and whisker plot for the standardized z-score

calculated for the number of fish born by month from 1993 to 1998.
despite the large geographical gap between the two main

fishing grounds. If this is true, spawning events leading to

strong year classes should affect catches equally, and

fishery yields on both fishing grounds should be more in

synchrony. However, the current results fail to demonstrate

such a link between skipjack fished in the two areas: the

strong year class of 1994 detected in the Southwest Atlantic

seems not to have affected catches in the Caribbean Sea.

This suggests that the unit West Atlantic stock assumption

may be open to question. Analysis of data from the

Caribbean Sea, perhaps using a procedure similar to that

described here, could help to clarify how closely related the

recruitment events and abundance oscillations of skipjack

are in both fishing grounds of the West Atlantic.
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