Ministério da Educação Universidade Federal do Rio Grande

Disciplina: Matemática Básica para Ciências Sociais II

Prof^a Denise Maria Varella Martinez

Exercícios Resolvidos: (alguns retirados do livro Cálculo funções de uma e de várias variáveis, de Pedro Morettin, Samuel Hazzan e Wilton Bussab).

1) Chama-se custo médio de fabricação de um produto ao custo de produção dividido pela quantidade produzida. Indicando o custo médio correspondente a x unidades produzidas por $C_{med}(x)$, teremos: $C_{med}(x) = \frac{C(x)}{x}$. O custo de fabricação de x unidades de um produto é C(x) = 500 + 4x.

a)Qual o custo médio de fabricação de 20 unidades?

$$C_{med}(20) = \frac{C(20)}{20} = \frac{500 + 4(20)}{20} = \frac{580}{20} = 29,00$$

b)Qual o custo médio de fabricação de 40 unidades?

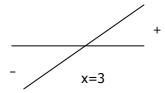
$$C_{med}(40) = \frac{C(40)}{40} = \frac{500 + 4(40)}{40} = \frac{660}{20} = 16,50$$

2) Obtenha o domínio das funções:

a)
$$y = x + 7$$
 D= $\{x \in R\} = (-\infty, +\infty)$, qualquer valor de x satisfaz a equação.

b) $y = \frac{1}{x-2}$ $D = \{x \in R \mid x \neq 2\}$, Se x=2 torna o denominador igual a zero e não existe um número real divido por zero.

c) $y = \sqrt{x-3}$ $D = \{x \in R / x \ge 3\}$, a condição é que $x - 3 \ge 0$. Ora, graficamente, a função x-3 é uma reta crescente e tem imagem positiva a direita de x=3.



d)
$$y = \frac{\sqrt{x+3}}{x-1}$$
, $x+3 \ge 0$ e $x-1 \ne 0$. Logo, $x \ge -3$ e $x \ne 1$ e

D=
$$\{x \in R / x \ge -3 \ e \ x \ne 1\} = [-3,1) \cup (1,+\infty)$$
.

3) Dada a função $f(x) = x^2$, obtenha:

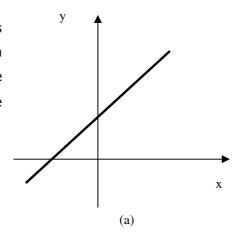
a)
$$f(2) = 4$$
 b) $f(2+h) = (2=h)^2 = 4-2h+h^2$

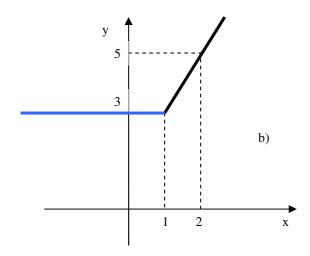
c)
$$f(2+h)-f(2)=(2=h)^2-2^2=4-2h+h^2-4=2h-h^2$$

4) Esboce o gráfico de:

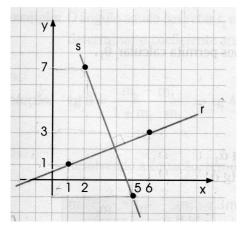
a)
$$y=x+1$$
 b) $\begin{cases} y=2x+1, \ se \ x \ge 1 \\ y=3 \ se \ x < 1 \end{cases}$

- **a)** Se x=0, y=1 e se y=0, x=-1, então temos os pontos (0,1) e (-1,0), então marcando os pontos no plano cartesiano temos o gráfico da função:
- **b)** Neste caso temos duas funções, uma para todos os valores de x maiores ou iguais a 1 ($x\ge1$) e outra para os valores de x maiores do que 1 (x<1). Então se x=1 em y=2x+1, y=3, temos o ponto P(1,3) e se x=2 y=5, temos outro ponto (2,5). E se x<1 y=3.





5) Dado o gráfico abaixo obtenha as funções representadas por r e s:



Solução: Primeiro vamos determinar a função representada pela reta **s**:

A reta s passa pelos pontos (2,7) e (5,-1). Podemos

resolver o determinante $\begin{vmatrix} x & y & 1 \\ 2 & 7 & 1 \\ 5 & -1 & 1 \end{vmatrix} = 0$ e encontrar a

equação geral da reta dada por 8x+3y-37=0, e isolando y obtém-se $y=-\frac{8}{3}x+\frac{37}{3}$. Esta função,

como mostra o seu gráfico, é uma função decrescente, ou seja, à medida que x cresce o y

(2,7) e (5,-1) e resolvemos o sistema
$$\begin{cases} 7 = 2a + b \\ -1 = 5a + b \end{cases}$$
, assim podemos determinar o valor de a e

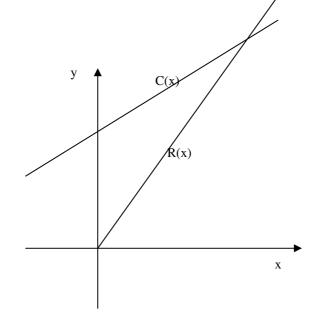
b,
$$a = -\frac{8}{3}$$
 e $b = -\frac{37}{3}$.

De maneira semelhante determinamos a reta **r** que passa por (-1,1) e (6,3), cuja função é dada por $y = \frac{2}{7}x + \frac{9}{7}$. Sendo uma função crescente, ou seja, à medida que x cresce o y também cresce. A reta que representa a função tem coeficiente angular positivo (2/7) e linear igual a 9/7.

6) Determine o ponto de nivelamento (ou ponto crítico), e esboce os gráficos da função receita $R(x) = 4x \, \text{e função custo } C(x) = 10 + 2x \, .$

Solução: O ponto de nivelamento é o ponto onde R(x)=C(x). Então, fazemos 4x=10+2x, e encontramos x=5, substituindo x=5 em uma das equações obtemos R(5)=C(5)=20, logo o ponto onde a receita e o custo são iguais é (5, 20). Podemos fazer uma tabela para construir os gráficos:

х	R(x)	C(x)
0	0	10
1	4	12
2	8	14



- **7)** Sabendo que a margem de contribuição por unidade (a diferença entre o preço de venda e o custo variável por unidade) é \$3,00, o preço de venda é \$10,00 e o custo fixo é \$150,00 por dia, obtenha:
- a) a função receita. b) a função custo total unitário. c) O ponto de nivelamento.

d) A função lucro diário. e) A quantidade que deverá ser vendida para que haja lucro de \$180,00 por dia.

Solução:

- **a)** A função receita é dada pela quantidade vendida (x) multiplicada pelo preço de venda, logo R(x)=10x.
- **b)** A função custo total unitário é dada por $C(x)=C_F+C_V$, onde C_F é a função custo fixo e C_V a função custo variável. Como a margem de contribuição (MC)=\$3,00, o preço de venda (PV)= \$10,00 e sabendo que **MC=PV-CV**, o custo variável (CV) é =\$7,00. Se o custo fixo é \$150,00, então a função custo é C(x)=150+7x.
- c) O ponto de nivelamento é o ponto onde a receita e o custo se igualam. Então, R(x)=C(x)

$$10x=150+7x \Rightarrow 3x=150 \Rightarrow x=50 \text{ e o ponto } \text{\'e} (50, 500).$$

- **d)** A função lucro é dada por L(x)=R(x)-C(x), então $L(x)=10x-(150+7x) \Rightarrow L(x)=3x-150$.
- e) A quantidade é x. Se L(x)=180, então $180=3x-150 \Rightarrow 3x=230 \Rightarrow x=330/3 \Rightarrow x=110$.
- **8)** O preço de venda de um produto é \$25,00. O custo variável por unidade é dado por: matéria-prima: \$6.00 por unidade e mão-de-obra direta: \$8,00 por unidade. Sabendo-se que o custo fixo mensal é de \$2500,00: a) Qual o ponto crítico? B) Qual a margem de contribuição por unidade? Qual o lucro se a empresa produzir e vender 1000 unidades por mês? d) De quanto aumenta percentualmente o lucro, se a produção aumentar de 1000 para 1500 unidades por mês?

Solução:

Pv=25,00, C_V =(6+8)x=14x, C_F =2500,00: **C=2500+14x**, a receita é PV (preço de venda multiplicado pela quantidade (x)) \Rightarrow **R(x)=25x**.

a) o ponto de nivelamento $\Rightarrow R(x)=C(x)$

$$25x=2500+14x \Rightarrow 11x=2500 \Rightarrow x=2500/11=227,27$$

- b) Margem de contribuição (MC=PV-CV)= 25-14=11,00
- c)Lucro=R(x)-C(x)=25x-2500-14x=11x-2500.

Se x=1000 L(1000)=11000-2500=8500,00

d)L(1500)=11(1500)-2500=16500-2500=14000; então 14000-8500=5500;

Se
$$\frac{100\% \rightarrow 8500}{x\% \rightarrow 5500} \Rightarrow x = \frac{5500(100)}{8500} = 64,7\%$$

9) Em certo mercado as funções oferta e demanda são dadas por:

oferta: P=0,3x+6

demanda: P=15-0,2x

Se o Governo tabelar o preço de venda em \$9,00 por unidade, em quantas unidades a demanda excederá a oferta?

Solução: Se P=9,00 e substituindo na equação da oferta P=0,3x+6, x=(9-6)/0,3=10. Se P=9,00 e substituindo na equação da demanda P=15-0,2x, x=(9-15)/(-0,2)=30. Logo, a demanda excederá a oferta em 20 unidades.

10) A quantidade de um produto demandada no mercado é função de várias variáveis: preço por unidade do produto, preço de bens substituídos, renda do consumidor, gostos etc. Supondo todas as variáveis constantes, exceto o seu preço unitário, verifica-se que esse preço (P) relaciona-se à quantidade demandada (x). Chama-se a função de demanda a relação P = f(x). O conceito de função de oferta é análogo ao de demanda. Mantidas constantes certas condições, a quantidade (x) de um produto colocado no mercado pelos produtores relaciona-se com o preço unitário do produto (P). Chama-se ponto de equilíbrio de mercado, o ponto de intersecção entre a curva de oferta e de demanda.

Considerando o preço de demanda dado pela função P = 10000 - 2x e o preço de oferta por P = $\frac{2}{7}x + 2000$, é correto afirmar que preço, no ponto de equilíbrio, é:

Solução: Para calcular o ponto de equilíbrio, igualamos Demanda=Oferta

10000 -2x =
$$\frac{2}{7}$$
 x + 2000 \Rightarrow -2x- $\frac{2}{7}$ x=2000-10000 \Rightarrow $\frac{-14x - 2x}{7} = -8000$ \Rightarrow

$$\frac{-16x}{7} = -8000 \Rightarrow -16x = -8000(7) \Rightarrow x = -56000 / -16 \Rightarrow x = 3500 \quad \text{quantidade}$$

e o preço é P=10000-2(3500)=10000-7000=3000,00.