Modelos ARMA-GARCH na modelagem da volatilidade de ações financeiras

Thomaz, Paulo Siga

Abstract:

 
O presente estudo teve como objetivo avaliar o desempenho da aplicação conjunta dos modelos Autoregressivos de Médias Móveis (ARMA) e Autoregressivos de Heteroscedasticidade Condicional (GARCH) na previsão da volatilidade das ações diárias da empresa AmBev (ABEV3), do banco Bradesco (BBDC3) e da empresa Vale (VALE3). Além do modelo GARCH, também foram aplicadas algumas de suas extensões assimétricas, os modelos GARCH Exponencial (EGARCH), GARCH com limiar (TGARCH), Potência GARCH (PGARCH) e o GARCH Glosten-Jaganathan -Rukle (GJR-GARCH), com o objetivo de considerar o efeito alavanca, geralmente presente em séries financeiras. Além disso, como as três séries de retornos apresentaram volatilidade persistente, o modelo GARCH Integrado (IGARCH) também foi aplicado. Os modelos foram especificados considerando-se duas distribuições para os resíduos, normal e t de Student. Na avaliação da previsão, foi utilizada a volatilidade realizada, calculada a partir de retornos intradiários computados a cada 15 minutos, durante o intervalo de previsão de 21 dias. Os achados do estudo indicam que a melhor modelagem foi da série ABEV3, de menor volatilidade dentre as três séries, em que os modelos PGARCH(1,1) - Student e GARCH(1,1) - Student apresentaram os menores erros, respectivamente, nas previsões dinâmica e estática. Os resultados evidenciaram superioridade por parte dos modelos seguindo a distribuição t de Student, os quais, ao contrário dos modelos seguindo a distribuição normal, foram capazes de produzir resíduos seguindo a distribuição especificada no modelo. Além disso, na modelagem de todas as séries, os modelos seguindo a distribuição t de Student apresentaram critérios de informação menores nos ajustes e erros menores de previsão. No que diz respeito ao desempenho dos modelos, os assimétricos se mostraram, de forma geral, superiores no ajuste, de acordo com os critérios de informação. Em relação a previsão, no entanto, a modelagem da série BBDC3 apresentou como melhor modelo o GARCH(1,1) - Student simétrico, indicando que, para essa série, os modelos assimétricos não resultaram em uma melhoria de desempenho na previsão. Comparando-se os modelos simétricos, o modelo IGARCH apresentou menores critérios de informação que o modelo GARCH nas séries ABEV3 e VALE3, entretanto não teve erros menores de previsão em nenhuma das três séries. Os achados se alinham com outros trabalhos presentes na literatura, em que, de forma geral, os modelos GARCH apresentam melhor desempenho em séries de baixa volatilidade e que o uso de modelos assimétricos especificados com outras distribuições além da normal podem conduzir a resultados melhores de previsão da volatilidade.
 
The aim of this study was to evaluate the performance of the joint application of the Autoregressive Moving Average (ARMA) and Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models in forecasting the volatility of the daily stocks of the AmBev company (ABEV3), Bradesco bank (BBDC3) and Vale company (VALE3). In addition to the GARCH model, some of its asymmetric extensions have also been applied, the Exponential GARCH (EGARCH), Threshold GARCH (TGARCH), Power GARCH (PGARCH) and Glosten-Jaganathan-Rukle GARCH (GJR-GARCH), with the objective of considering the leverage effect, usually present in financial time series. Also, since the three series of returns presented persistent volatility, the Integrated GARCH model (IGARCH) was also applied. The models were specified considering two distributions for the residues, normal and Students t. In the forecast evaluation, the realized volatility was calculated from intraday returns, computed every 15 minutes, during the forecast interval of 21 days. The results showed superiority for the models following the Students t distribution, which, unlike de models following the normal distribution, were able to produce residues following the specified distribution. In addition, in the modelling of all three series, the models following the Students t distribution presented smaller information criteria in the fitting and smaller forecast errors. Regarding the performance of the models, the assymetric models were, in general, better in the fitting, according to the information criteria. Regarding the forecast, however, the modelling of the BBDC3 series presented as the best model the GARCH(1,1) - Student symmetric, indicating that, for this series, the consideration of the leverage effect did not result in a performance improvement in the forecast. In the comparison between the symmetric models, the IGARCH model presented smaller information criteria than the GARCH model in the ABEV3 and VALE3 series, however it did not obtain smaller forecast errors in any of the three series. The findings agree with other studies, where GARCH models generally perform better in low volatility time series and the use of assymetric models specified with other distributions besides the normal can lead to better resuls in forecasting the volatility.
 

Show full item record

 

Files in this item

This item appears in the following Collection(s)

:

  • IMEF – Mestrado em Modelagem Computacional