The matrix product ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds

Lazo, Matheus Jatkoske


We obtain through a Matrix Product Ansatz (MPA) the exact solution of the most general N-state spin chain with U(1)N symmetry and nearest neighbour interaction. In the case N = 6 this model contain as a special case the integrable SO(6) spin chain related to the one loop mixing matrix for anomalous dimensions in N =4 SYM, dual to type IIB string theory in the generalised Lunin-Maldacena backgrounds. This MPA is construct by a map between scalar fields and abstract operators that satisfy an appropriate associative algebra. We analyses the Yang-Baxter equation in the N = 3 sector and the consistence of the algebraic relations among the matrices defining the MPA and find a new class of exactly integrable model unknown up to now.

Show full item record


Files in this item

This item appears in the following Collection(s)


  • IMEF - Artigos publicados em periódicos