Photodynamic action of Benzo[a]pyrene in K562 Cells
Abstract:
Benzo[a]pyrene (BaP) is ubiquitously distributed in the environment, being considered the most phototoxic element among polycyclic aromatic hydrocarbon (PAHs). In presence of oxygen, PAHs can act as a photosensitizer by means of promoting photo-oxidation of biological molecules (photodynamic action, PDA). Thus, the present study analyzed the photodynamic action of BaP under UVA irradiation (BaP + UVA) and its oxidative effects on K562 cells. The evaluation of BaP kinetics showed that the highest intracellular concentration occurred after 18 h of incubation. Cell viability, reactive oxygen species (ROS) generation, lipid peroxidation, DNA damage (breaks and DNA–protein cross-link [DNAPC]) were assessed after exposure to BaP, UVA and BaP plus UVA irradiation (BaP + UVA). Cell viability was decreased just after exposure to BaP + UVA. Lipid peroxidation and DNA breaks increased after BaP + UVA exposure, while the DNAPC increased after BaP, UVA and BaP + UVA exposure, suggesting that BaP + UVA effects were a consequence of both type II (producing mainly singlet oxygen) and type I (producing others ROS) mechanisms of PDA.