Show simple item record

dc.contributor.author Ruhoff, Anderson Luis
dc.contributor.author Aragão, Luiz Eduardo Oliveira e Cruz de
dc.contributor.author Collischonn, Walter
dc.contributor.author Rocha, Humberto Ribeiro da
dc.contributor.author Qiaozhen, Mu
dc.contributor.author Running, Steven
dc.date.accessioned 2011-11-01T19:47:16Z
dc.date.available 2011-11-01T19:47:16Z
dc.date.issued 2011
dc.identifier.citation RUHOFF, A. L. et al. MOD16: Desafios e limitações para a estimativa global de evapotranspiração. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO - SBSR, 15., 2011, Curitiba. Anais eletrônicos... Curitiba: INPE, 2011, Disponível em: <http://www.dsr.inpe.br/sbsr2011/files/p0673.pdf> Acesso em: 26 out. 2011. pt_BR
dc.identifier.uri http://repositorio.furg.br/handle/1/1256
dc.description.abstract This article present preliminary results from the NASA’s EOS MOD16 Project, which aims to estimate global evapotranspiration (ET) using remote sensing and meteorological data. The MOD16 algorithm considers both the surface energy partitioning process and environmental constraints on ET to provide critical information on the regional and global water cycle. The objective of this research is to evaluate the version 1 of the global remote sensing evapotranspiration algorithm (MOD16). We analyzed the accuracy of the algorithm using ET observations at two eddy covariance (EC) flux tower sites in different land uses and land covers (tropical rainforest (K34) and seasonal forest (RJA)), from the Large Scale Biosphere-Atmosphere in Amazonia Project (LBA). The result shows that 8-days average, monthly ET and yearly ET are in consistent with observations of eddy covariance flux tower sites when the land cover classification is correct. However misclassification of the land cover leads to the selection of wrong parameters for vapor pressure deficit (VPD) and minimum air temperature for stomatal conductance constraints, resulting in less accurate ET estimates. The existing biases between MOD16 ET and EC observations and hydrological models may be influenced by algorithm input data, such as LAI and land cover classification. Developing a robust algorithm to estimate global ET is a significant challenge because traditionally ET models require explicit characterization of numerous surface and atmospheric parameters which are difficult to determine globally. pt_BR
dc.language.iso por pt_BR
dc.rights open access pt_BR
dc.subject MODIS pt_BR
dc.subject MOD16 pt_BR
dc.subject Evapotranspiration pt_BR
dc.subject Tropical biomes pt_BR
dc.subject Energy fluxes pt_BR
dc.subject Evapotranspiração pt_BR
dc.subject Fluxos de energia pt_BR
dc.subject Biomas tropicais pt_BR
dc.title MOD16: Desafios e limitações para a estimativa global de evapotranspiração pt_BR
dc.type conferenceObject pt_BR


Files in this item

This item appears in the following Collection(s)

:

  • ICHI - Trabalhos apresentados em eventos
  • Show simple item record