dc.contributor.author |
Gonçalves-Araujo, Rafael |
|
dc.contributor.author |
Souza, Márcio Silva de |
|
dc.contributor.author |
Mendes, Carlos Rafael Borges |
|
dc.contributor.author |
Tavano, Virginia Maria |
|
dc.contributor.author |
Pollery, Ricardo Cesar Gonçalves |
|
dc.contributor.author |
Garcia, Carlos Alberto Eiras |
|
dc.date.accessioned |
2012-08-21T17:49:01Z |
|
dc.date.available |
2012-08-21T17:49:01Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
GONÇALVES-ARAÚJO, Rafael et al. Brazil-Malvinas confluence: effects of environmental variability on phytoplankton community structure. Journal Of Plankton Research, Oxford, v. 34, n. 5, p.399-415, 2012. Disponível em: <http://plankt.oxfordjournals.org/content/34/5/399.full>. Acesso em: 26 jul. 2012. |
pt_BR |
dc.identifier.issn |
1464-3774 |
|
dc.identifier.uri |
http://repositorio.furg.br/handle/1/2413 |
|
dc.description.abstract |
This study investigates the relationships between the spring phytoplankton commu-
nity and environmental factors in the Brazil-Malvinas confluence region. Phytoplankton community composition was determined by the high performance liquid chromatography/CHEMTAX approach, complemented with microscopic examination. Abiotic factors included temperature, salinity, dissolved inorganic macronutrients (ammonium, nitrite, nitrate, phosphate and silicate), water column stability and upper mixed layer depth (UMLD). These environmental variables were reasonably informative to explain the variability of the phytoplankton com-munities (44% of variation explained). Cluster and canonical correspondence ana-lyses allowed discrimination of four zones (coastal, Sub-Antarctic, tropical and intermediate zones), also identifiable in the T– S diagrams and in the nutrient spatial distribution patterns. The presence of nutrient-rich Sub-Antarctic waters
was a major oceanographic feature, associated with diatoms and dinoflagellates.
However, in the Sub-Antarctic zone, biomass was particularly low, probably as a
result of grazing pressure, as suggested by chemical and biological indicators. In
contrast, in oligotrophic tropical waters, phytoplankton was mainly composed by
small nanoflagellates and cyanobacteria. A large intermediate zone was also domi-
nated by nanoflagellates, mainly Phaeocystis antarctica, probably favored by strong
water column stability. The coastal zone exhibited fairly similar conditions to those
in the intermediate zone, but with deeper UMLD, a favorable condition for diatom growth. These results emphasize the importance of the properties of water
masses and also biological processes such as grazing in structuring phytoplankton
communities in the region. |
pt_BR |
dc.language.iso |
eng |
pt_BR |
dc.rights |
restrict access |
pt_BR |
dc.subject |
Brazil-Malvinas confluence |
pt_BR |
dc.subject |
Physical structure |
pt_BR |
dc.subject |
Nutrients |
pt_BR |
dc.subject |
Phytoplankton |
pt_BR |
dc.subject |
HPLC-CHEMTAX |
pt_BR |
dc.title |
Brazil-Malvinas confluence: effects of environmental variability on phytoplankton community structure |
pt_BR |
dc.type |
article |
pt_BR |