dc.contributor.author |
Abujamara, Laís Donini |
|
dc.contributor.author |
Prazeres, Martina de Freitas |
|
dc.contributor.author |
Borges, Vinícius Dias |
|
dc.contributor.author |
Bianchini, Adalto |
|
dc.date.accessioned |
2015-05-14T23:19:25Z |
|
dc.date.available |
2015-05-14T23:19:25Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
ABUJAMARA, Laís Donini et al. Influence of copper pre-exposure on biochemical responses of the sea anemone Bunodosoma cangicum to changes in oxygen availability. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, v. 162, p. 34-42, 2014. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1532045614000283>. Acesso em: 05 maio 2015. |
pt_BR |
dc.identifier.issn |
1532-0456 |
|
dc.identifier.uri |
http://repositorio.furg.br/handle/1/4846 |
|
dc.description.abstract |
The influence of copper on the ability of the intertidal sea anemone Bunodosoma cangicum to cope with reactive oxygen species generation associated with changes in oxygen availability was evaluated. Sea anemones were kept under control condition or pre-exposed (96 h) to dissolved copper (6.1 μg ± 2.7 μg/L) and then subjected to a 6-h period of hypoxia (0.5 mg O2/L) followed by a 6-h period of re-oxygenation (7.5 mg O2/L). Antioxidant capacity against peroxyl radicals (ACAP), superoxide dismutase (SOD) activity, reduced glutathione (GSH) concentration, lipid peroxidation (LPO) level, and ATP concentration were evaluated. Control sea anemones showed variations in SOD and LPO while copper pre-exposed sea anemones displayed changes in ACAP, GSH, LPO and ATP. However, no clear pattern of change over time was observed. ACAP was lower in copper pre-exposed sea anemones than in the control ones during hypoxia and recovery. SOD activity was increased during hypoxia and reduced shortly after recovery in control sea anemones. GSH concentration was higher in copper preexposed sea anemones than in the control ones in all experimental conditions. The LPO level increased shortly after recovery in both groups of sea anemones, being higher in control sea anemones than in copper preexposed ones. ATP concentration showed transient changes in copper pre-exposed sea anemones, being lower in these sea anemones than in control ones during recovery. These findings suggest that B. cangicum possess
mechanisms to prevent oxidative stress generated by changes in oxygen availability associated with the tidal cycle, which can be disturbed by pre-exposure to copper. |
pt_BR |
dc.language.iso |
eng |
pt_BR |
dc.rights |
restrict access |
pt_BR |
dc.subject |
Copper |
pt_BR |
dc.subject |
Hypoxia |
pt_BR |
dc.subject |
Oxidative stress |
pt_BR |
dc.subject |
Sea anemone |
pt_BR |
dc.subject |
Tidal cycle |
pt_BR |
dc.title |
Influence of copper pre-exposure on biochemical responses of the sea anemone Bunodosoma cangicum to changes in oxygen availability |
pt_BR |
dc.type |
article |
pt_BR |
dc.identifier.doi |
http://dx.doi.org/10.1016/j.cbpc.2014.03.003 |
pt_BR |