Show simple item record

dc.contributor.author Drews Junior, Paulo Lilles Jorge
dc.contributor.author Colares, Rafael Gonçalves
dc.contributor.author Machado, Pablo
dc.contributor.author Faria, Matheus de
dc.contributor.author Detoni, Amália Maria Sacilotto
dc.contributor.author Tavano, Virginia Maria
dc.date.accessioned 2015-05-28T16:16:17Z
dc.date.available 2015-05-28T16:16:17Z
dc.date.issued 2013
dc.identifier.citation DREWS JUNIOR, Paulo Lilles Jorge et. al. Microalgae classification using semi-supervised and active learning based on Gaussian mixture models. Journal of the Brazilian Computer Society, v. 19, n. 4, p. 411-422, 2013. Disponível em: <http://link.springer.com/article/10.1007%2Fs13173-013-0121-y>. Acesso em: 08 abr. 2015. pt_BR
dc.identifier.issn 0104-6500
dc.identifier.issn 1678-4804
dc.identifier.uri http://repositorio.furg.br/handle/1/4919
dc.description.abstract Microalgae are unicellular organisms that have different shapes, sizes and structures. Classifying these microalgae manually can be an expensive task, because thousands of microalgae can be found in even a small sample of water. This paper presents an approach for an automatic/semi-automatic classification ofmicroalgae based on semi-supervised and active learning algorithms, using Gaussian mixturemodels. The results showthat the approach has an excellent cost-benefit relation, classifying more than 90 % of microalgae in a well distributed way, overcoming the supervised algorithm SVM. pt_BR
dc.language.iso eng pt_BR
dc.rights restrict access pt_BR
dc.subject Active learning pt_BR
dc.subject Semi-supervised learning pt_BR
dc.subject Microalgae classification pt_BR
dc.title Microalgae classification using semi-supervised and active learning based on Gaussian mixture models pt_BR
dc.type article pt_BR
dc.identifier.doi 10.1007/s13173-013-0121-y pt_BR


Files in this item

This item appears in the following Collection(s)

:

  • C3 - Artigos Publicados em Periódicos
  • Show simple item record