Show simple item record

dc.contributor.author Machado, Roselaine Neves
dc.contributor.author Isoldi, Liércio André
dc.contributor.author Santos, Elizaldo Domingues dos
dc.contributor.author Rocha, Luiz Alberto de Oliveira
dc.date.accessioned 2015-06-08T11:42:15Z
dc.date.available 2015-06-08T11:42:15Z
dc.date.issued 2013
dc.identifier.citation MACHADO, Roselaine Neves et al. Numerical study of resin distribution in two different arrangements of vascular channels by means of constructal design. In: COBEM - INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 22., 2013, Ribeirão Preto. Anais... Ribeiro Preto: Associação Brasileira de Engenharia e Ciências Mecânicas – ABCM, 2013. Disponível em: <http://www.abcm.org.br/anais/cobem/2013/PDF/437.pdf>. Acesso em: 7 jun. 2015. pt_BR
dc.identifier.issn 2176-5480
dc.identifier.uri http://repositorio.furg.br/handle/1/5003
dc.description.abstract In the present work two different arrangements of vascular channels are studied numerically and their geometry is optimized by means of Constructal Design. The main purpose is to seek for the best geometry which minimizes the resin flow resistance inside the channels. The arrangement of vascular channels consists in two horizontal channels of diameter D2 connected with two vertical channels of diameter D1. The channels of resin flow are distributed in a solid domain with two different ratios of height and length (H/L = 0.67 and 1.5) in order to illustrate the process of regeneration of composite materials. For all of evaluated configurations the ratio between the areas occupied by the channels and by the solid domain are kept fixed (ϕ = 0.1). It is considered a two dimensional, laminar and steady state flow (ReD2 = 1.0). The conservation equations of mass and momentum are solved numerically by means of the finite volume method (FVM). The results showed that the optimal geometric configuration has a flow resistance several times lower than that found with the worst geometry. For example, for H/L = 0.67, the ratio (D1/D2)o = 0.76 conduct to a fluid dynamic performance nearly 32 times superior than that found for D1/D2 = 0.1. It is also noticed that the best shapes are achieved when the pressure and velocity fields has the most homogeneous distribution, i.e., according to the constructal principle of “optimal distribution of imperfections”. pt_BR
dc.language.iso eng pt_BR
dc.rights open access pt_BR
dc.subject Vascular channels pt_BR
dc.subject Geometric optimization pt_BR
dc.subject Constructal design pt_BR
dc.subject Laminar flow pt_BR
dc.subject Resin pt_BR
dc.title Numerical study of resin distribution in two different arrangements of vascular channels by means of constructal design pt_BR
dc.type conferenceObject pt_BR


Files in this item

This item appears in the following Collection(s)

:

  • EE - Trabalhos apresentados em eventos
  • Show simple item record