Show simple item record

dc.contributor.author Oliveira, Cristiano Peres
dc.contributor.author Souza, Jeferson Avila
dc.contributor.author Isoldi, Liércio André
dc.contributor.author Rocha, Luiz Alberto de Oliveira
dc.contributor.author Amico, Sandro Campos
dc.date.accessioned 2015-06-08T16:53:13Z
dc.date.available 2015-06-08T16:53:13Z
dc.date.issued 2009
dc.identifier.citation OLIVEIRA, Cristiano Peres et al. Computational modeling of the resin transfer molding process. In: COBEM - INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 20., 2009, Gramado. Anais... Gramado: Associação Brasileira de Engenharia e Ciências Mecânicas – ABCM, 2009. Disponível em: <http://www.abcm.org.br/anais/cobem/2009/pdf/COB09-0794.pdf>. Acesso em: 7 jun. 2015. pt_BR
dc.identifier.uri http://repositorio.furg.br/handle/1/5005
dc.description.abstract The Resin Transfer Molding, or RTM, process has recently become one of the most important processes of fiber reinforced composites manufacturing. The process consists essentially of three stages: “an arrangement of fiber mats in a mold cavity, a mold filling by a polymeric resin and a curing phase”. Most of the difficulties of incorporating RTM occur during the filling stage. To create an acceptable composite part the preform must be completely impregnated with resin. The conditions which most strongly influence the flow are mold geometry, resin rheology, preform permeability, and location of the injection ports and vents. There are different types of RTM process, e.g. RTM Light or VARTM, employed in accordance with the final desired characteristics and properties of composite components. Besides, RTM may also be carried out using multilayers, with distinct characteristics. The numerical simulation of the mold filling stage becomes an important tool which helps the mold designer to understand the process parameters. Considering the fibrous preform as a porous media, the phenomenon can be modeled by Darcy’s law to describe resin flow. This study used two commercial softwares, FLUENT® and PAM-RTM®. FLUENT® is a general Computational Fluid Dynamics (CFD) code, based on Finite Volume Method (FVM). It applies the Volume of Fluid (VOF) method to solve the filling problem because it does not have a specific RTM module. PAM-RTM® is a specific package for RTM problems, based on the Finite Element Method (FEM). These tools were applied to simulate numerically several RTM examples of the resin flow into the mold and the results for both softwares were compared with previous works. pt_BR
dc.language.iso eng pt_BR
dc.rights open access pt_BR
dc.subject Resin transfer molding pt_BR
dc.subject Numerical simulation pt_BR
dc.subject FLUENT® pt_BR
dc.subject PAM-RTM® pt_BR
dc.title Computational modeling of the resin transfer molding process pt_BR
dc.type conferenceObject pt_BR


Files in this item

This item appears in the following Collection(s)

:

  • EE - Trabalhos apresentados em eventos
  • Show simple item record